Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (536)

Search Parameters:
Keywords = berry anthocyanins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2688 KiB  
Article
Effect of Biostimulant Applications on Eco-Physiological Traits, Yield, and Fruit Quality of Two Raspberry Cultivars
by Francesco Giovanelli, Cristian Silvestri and Valerio Cristofori
Horticulturae 2025, 11(8), 906; https://doi.org/10.3390/horticulturae11080906 (registering DOI) - 4 Aug 2025
Viewed by 251
Abstract
Enhancing the yield and qualitative traits of horticultural crops without further hampering the environment constitutes an urgent challenge that could be addressed by implementing innovative agronomic tools, such as plant biostimulants. This study investigated the effects of three commercial biostimulants—BIO1 (fulvic/humic acids), BIO2 [...] Read more.
Enhancing the yield and qualitative traits of horticultural crops without further hampering the environment constitutes an urgent challenge that could be addressed by implementing innovative agronomic tools, such as plant biostimulants. This study investigated the effects of three commercial biostimulants—BIO1 (fulvic/humic acids), BIO2 (leonardite-humic acids), and BIO3 (plant-based extracts)—on leaf ecophysiology, yield, and fruit quality in two raspberry cultivars, ‘Autumn Bliss’ (AB) and ‘Zeva’ (Z), grown in an open-field context, to assess their effectiveness in raspberry cultivation. Experimental activities involved two Research Years (RYs), namely, year 2023 (RY 1) and 2024 (RY 2). Leaf parameters such as chlorophyll, flavonols, anthocyanins, and the Nitrogen Balance Index (NBI) were predominantly influenced by the interaction between Treatment, Year and Cultivar factors, indicating context-dependent responses rather than direct biostimulant effects. BIO2 showed a tendency to increase yield (g plant−1) and berry number plant−1, particularly in RY 2 (417.50 g plant−1, +33.93% vs. control). Fruit quality responses were cultivar and time-specific: BIO3 improved soluble solid content in AB (12.8 °Brix, RY 2, Intermediate Harvest) and Z (11.43 °Brix, +13.91% vs. BIO2). BIO2 reduced titratable acidity in AB (3.12 g L−1) and increased pH in Z (3.02, RY 2) but also decreased °Brix in Z. These findings highlight the potential of biostimulants to modulate raspberry physiology and productivity but underscore the critical role of cultivar, environmental conditions, and specific biostimulant composition in determining the outcomes, which were found to critically depend on tailored application strategies. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

19 pages, 8805 KiB  
Article
Effects of Inactive Yeast Biostimulants on Mechanical and Color Attributes of Wine Grape Cultivars
by Giovanni Gentilesco, Vittorio Alba, Giovanna Forte, Rosa Anna Milella, Giuseppe Roselli and Mauro Eugenio Maria D’Arcangelo
Sustainability 2025, 17(15), 6958; https://doi.org/10.3390/su17156958 - 31 Jul 2025
Viewed by 159
Abstract
Background: Biostimulants naturally improve plant growth, stress tolerance, and nutrient use efficiency and activate defenses by increasing protective metabolites (phenols, anthocyanins) in grapes. In viticulture, especially when using inactive yeasts, they modulate genetic expression and improve the skin resistance, color, and aroma profile [...] Read more.
Background: Biostimulants naturally improve plant growth, stress tolerance, and nutrient use efficiency and activate defenses by increasing protective metabolites (phenols, anthocyanins) in grapes. In viticulture, especially when using inactive yeasts, they modulate genetic expression and improve the skin resistance, color, and aroma profile of wine grapes in line with sustainable practices. Methods: Two wine grape cultivars, Merlot and Cabernet Sauvignon, were sprayed with the inactive yeast Saccharomyces cerevisiae in a single treatment in pre-veraison or in a double treatment in pre-veraison and veraison. Berry weight, must, total polyphenols, anthocyanins, and mechanical and colorimetric properties were measured on fresh grapes. Results: Two-way ANOVA revealed that titratable acidity (TA), pH, and total polyphenol content (TPC) were not affected, while mean berry weight and anthocyanin content varied by cultivar, treatment, and interaction; total soluble solids (TSS) differed only by cultivar. Inactive yeasts reduced weight in the single-treatment thesis but stabilized it in the double-treatment one; anthocyanins decreased in Cabernet Sauvignon but increased in Merlot. Mechanical and colorimetric analyses showed cultivar-dependent responses, with significant improvements in elasticity, skin thickness, and hue of berries, especially in Merlot when the treatment was applied twice. Conclusions: Inactive yeasts (IYs) showed an effect on the weight of the berries, the anthocyanins, the mechanics, and the color; Merlot significantly improved skin thickness, elasticity, and hue; and Cabernet remained less reactive to treatments. Full article
Show Figures

Graphical abstract

26 pages, 2132 KiB  
Article
Effect of Contrasting Redox Potential Evolutions and Cap Management Techniques on the Chemical Composition of Red Wine
by Dallas J. Parnigoni, Sean T. Kuster, Jesus Villalobos, James Nelson, Robert E. Coleman and L. Federico Casassa
Molecules 2025, 30(15), 3172; https://doi.org/10.3390/molecules30153172 - 29 Jul 2025
Viewed by 189
Abstract
This study investigated the effects of six cap management protocols targeting contrasting oxidation-reduction potential (ORP) evolutions during alcoholic fermentation of Pinot noir wines. Treatments included twice-daily punch-downs (PD) and pump-overs (PO), 1 h air or N2 injections (AirMix, N2Mix), air [...] Read more.
This study investigated the effects of six cap management protocols targeting contrasting oxidation-reduction potential (ORP) evolutions during alcoholic fermentation of Pinot noir wines. Treatments included twice-daily punch-downs (PD) and pump-overs (PO), 1 h air or N2 injections (AirMix, N2Mix), air injections triggered by ORP ≤ −40 mV (RedoxConAir), and equal N2 injections concurrent to RedoxConAir wines (RedoxConN2). AirMix wines maintained ORP values above 0 mV throughout fermentation, showed an oxidatively favored glutathione-to-glutathione disulfide ratio (GSH:GSSG) of 0.3:1, and had 21% lower total phenolics and 24% lower anthocyanins than PD wines. In contrast, N2Mix wines maintained the lowest ORP, near −100 mV, and showed a reductively favored GSH:GSSG ratio (7:1). PD wines extracted 48% more flavan-3-ols than PO wines, consistent with greater berry integrity disruption and seed submersion. Volatile composition was also impacted: ethyl n-octanoate showed the highest OAV among esters, ranging from 147 in PO wines to 116 in AirMix wines. Results suggest the GSH:GSSG ratio served as an indicator of redox history, with potential implications for color and aroma preservation during aging. Inert gas mixings resulted in equal or greater total phenolic content, while excessive air injections may provide a tool to soften astringency. Full article
Show Figures

Graphical abstract

25 pages, 3460 KiB  
Article
Morphometric, Nutritional, and Phytochemical Characterization of Eugenia (Syzygium paniculatum Gaertn): A Berry with Under-Discovered Potential
by Jeanette Carrera-Cevallos, Christian Muso, Julio C. Chacón Torres, Diego Salazar, Lander Pérez, Andrea C. Landázuri, Marco León, María López, Oscar Jara, Manuel Coronel, David Carrera and Liliana Acurio
Foods 2025, 14(15), 2633; https://doi.org/10.3390/foods14152633 - 27 Jul 2025
Viewed by 464
Abstract
Magenta Cherry or Eugenia (Syzygium paniculatum Gaertn) is an underutilized berry species with an interesting source of functional components. This study aimed to evaluate these berries’ morphometric, nutritional, and phytochemical characteristics at two ripening stages, CM: consumer maturity (CM) and OM: over-maturity. Morphometric [...] Read more.
Magenta Cherry or Eugenia (Syzygium paniculatum Gaertn) is an underutilized berry species with an interesting source of functional components. This study aimed to evaluate these berries’ morphometric, nutritional, and phytochemical characteristics at two ripening stages, CM: consumer maturity (CM) and OM: over-maturity. Morphometric analysis revealed size and weight parameters comparable to commercial berries such as blueberries. Fresh fruits were processed into pulverized material, and in this, a proximate analysis was evaluated, showing high moisture content (88.9%), dietary fiber (3.56%), and protein (0.63%), with negligible fat, indicating suitability for low-calorie diets. Phytochemical screening by HPLC identified gallic acid, chlorogenic acid, hydroxycinnamic acid, ferulic acid, quercetin, rutin, and condensed tannins. Ethanol extracts showed stronger bioactive profiles than aqueous extracts, with significant antioxidant capacity (up to 803.40 µmol Trolox/g via Ferric Reducing Antioxidant Power (FRAP assay). Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopic analyses established structural transformations of hydroxyl, carbonyl, and aromatic groups associated with ripening. These changes were supported by observed variations in anthocyanin and flavonoid contents, both higher at the CM stage. A notable pigment loss in OM fruits could be attributed to pH changes, oxidative degradation, enzymatic activity loss, and biotic stressors. Antioxidant assays (DPPH, ABTS, and FRAP) confirmed higher radical scavenging activity in CM-stage berries. Elemental analysis identified minerals such as potassium, calcium, magnesium, iron, and zinc, although in moderate concentrations. In summary, Syzygium paniculatum Gaertn fruit demonstrates considerable potential as a source of natural antioxidants and bioactive compounds. These findings advocate for greater exploration and sustainable use of this native berry species in functional food systems. Full article
Show Figures

Graphical abstract

23 pages, 2215 KiB  
Article
Improving Dehydration Efficiency and Quality in Highbush Blueberries via Combined Pulsed Microwave Pretreatment and Osmotic Dehydration
by Shokoofeh Norouzi, Valérie Orsat and Marie-Josée Dumont
Agriculture 2025, 15(15), 1602; https://doi.org/10.3390/agriculture15151602 - 25 Jul 2025
Viewed by 334
Abstract
The impact of processing time, temperature, and sample on solution ratio parameters, along with pulsing microwave pretreatment, was assessed in the osmotic dehydration of waxy skin highbush blueberries. Fresh blueberries were pre-treated with 20% microwave power for 90 s before being subjected to [...] Read more.
The impact of processing time, temperature, and sample on solution ratio parameters, along with pulsing microwave pretreatment, was assessed in the osmotic dehydration of waxy skin highbush blueberries. Fresh blueberries were pre-treated with 20% microwave power for 90 s before being subjected to osmotic dehydration for 8 h in a 60 °Brix sucrose solution, with three different sample to solution ratios (1:4, 1:7, and 1:10). Changes in water loss, solid gain, total anthocyanin content, total phenolic content, and total soluble solid content during osmotic dehydration, as well as color and texture changes, were investigated at four temperature levels (room temperature, 60 °C, 65 °C, and 70 °C). The highest rate of reduction in the total soluble solid content in the osmotic solution was observed during the initial hours (0–4 h) of the process. The most effective combination for reducing the total soluble content of the osmotic agent involved the microwave-pretreatment of the blueberries at 70 °C, using a sample to solution ratio of 1:4, resulting in a decrease of 11.98%, compared to 7.83% for non-pretreated samples. The solid gain was found to be affected by the sample to solution ratio × temperature × pretreatment at a 1% probability level (p ≤ 0.01). The temperature, osmotic solution ratio, and microwave pretreatment interacted together to affect the quality parameters of the osmotically dehydrated blueberries, including total anthocyanin content, total phenolic content, and color. Higher temperatures, along with microwave pretreatment, showed the worst effects on the quality characteristics mentioned. Microwave pretreatment did not change the texture significantly in comparison with non-pretreated blueberry samples. The enhancing effect of microwave pretreatment and higher temperatures on the efficiency of the osmotic dehydration process was obvious. An optimized microwave pretreatment can reduce both the required processing time and temperature for the osmotic dehydration of waxy skinned blueberries, which in turn can lead to the higher quality preservation of processed blueberries and lower energy consumption. This could be especially useful for the large-scale processing of waxy skinned berries. Full article
Show Figures

Figure 1

15 pages, 2281 KiB  
Article
Transcriptome and Anthocyanin Profile Analysis Reveals That Exogenous Ethylene Regulates Anthocyanin Biosynthesis in Grape Berries
by Min Liu, Boyuan Fan, Le Li, Jinmei Hao, Ruteng Wei, Hua Luo, Fei Shi, Zhiyuan Ren and Jun Wang
Foods 2025, 14(14), 2551; https://doi.org/10.3390/foods14142551 - 21 Jul 2025
Viewed by 376
Abstract
Anthocyanins are important phenolic compounds in grape skins, affecting the color, oxidation resistance, and aging ability of red wine. In recent years, global warming has had a negative effect on anthocyanin biosynthesis in grape berries. Ethylene serves as a crucial phytohormone regulating the [...] Read more.
Anthocyanins are important phenolic compounds in grape skins, affecting the color, oxidation resistance, and aging ability of red wine. In recent years, global warming has had a negative effect on anthocyanin biosynthesis in grape berries. Ethylene serves as a crucial phytohormone regulating the development and ripening processes of fruit; however, the specific molecular mechanism and the regulatory network between ethylene signaling and the anthocyanin biosynthesis pathway remain incompletely understood. In this study, 400 mg/L ethephon (ETH) solution was sprayed onto the surface of grape berries at the lag phase (EL-34), and the changes in anthocyanin-related genes and metabolites were explored through transcriptomic and metabolomic analysis. The results showed that ETH treatment increased Brix and pH in mature berries. In total, 35 individual anthocyanins were detected, in which 21 individual anthocyanins were enhanced by ETH treatment. However, the anthocyanin profile was not affected by exogenous ethylene. Transcriptomics analysis showed that there were a total of 825 and 1399 differentially expressed genes (DEGs) 12 h and 24 h after treatment. Moreover, key structural genes in the anthocyanin synthesis pathway were strongly induced, including VvPAL, VvCHS, VvF3H, VvF3′5′H, VvDFR and VvUFGT. At the maturity stage (EL-38), the expression levels of these genes were still higher in EHT-treated berries than in the control. ETH treatment also influenced the expression of genes related to hormone biosynthesis and signal transduction. The ethylene biosynthesis gene (VvACO), ethylene receptor genes (VvETR2, VvERS1 and VvEIN4), ABA biosynthesis gene (VvNCED2), and ABA receptor gene (VvPYL4) were up-regulated by ETH treatment, while the auxin biosynthesis gene (VvTAA3) and seven genes of the auxin-responsive protein were inhibited by exogenous ethylene. Meanwhile, ETH treatment promoted the expression of the sugar transporter gene (VvEDL16) and two sucrose synthase genes (VvSUS2 and VvSUS6). In EHT-treated berries, 19 MYB and 23 ERF genes were expressed differently compared with the control (p < 0.05). This study provides the theoretical foundation and technical support for the regulation of anthocyanin synthesis in non-climacteric fruit. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

20 pages, 2144 KiB  
Article
Effects of Crop Load Management on Berry and Wine Composition of Marselan Grapes
by Jianrong Kai, Jing Zhang, Caiyan Wang, Fang Wang, Xiangyu Sun, Tingting Ma, Qian Ge and Zehua Xu
Horticulturae 2025, 11(7), 851; https://doi.org/10.3390/horticulturae11070851 - 18 Jul 2025
Viewed by 392
Abstract
The aim of this study was to investigate the effects of the crop load on the berry and wine composition of Marselan grapes. Thus, the appropriate crop load for Marselan wine grapes in Ningxia was determined based on the shoot density and the [...] Read more.
The aim of this study was to investigate the effects of the crop load on the berry and wine composition of Marselan grapes. Thus, the appropriate crop load for Marselan wine grapes in Ningxia was determined based on the shoot density and the number of clusters per shoot. Marselan grapes from the Gezi Mountain vineyard, located at the eastern foot of Helan Mountain in the Qingtongxia region of Ningxia, were selected as the research material to conduct a combination experiment with four levels of shoot density and three levels of cluster density. The analysis of the berry and wine chemical composition was combined with a wine sensory evaluation to determine the optimal crop load levels. Crop load regulation significantly affected both the grape berry composition and the basic physicochemical properties of the resulting wine. Low crop loads improved metrics such as the berry weight and soluble solids content. A low shoot density facilitated the accumulation of organic acids, flavonols, and hydroxybenzoic acids in wine. Moderate crop loads were conducive to anthocyanin synthesis—the total individual anthocyanins content in the 10–20 shoots per meter of the canopy treatment group ranged from 116% to 490% of the control group—whereas excessive crop loads hindered its accumulation. Crop load management significantly influenced the aroma composition of wine by regulating the content of sugars, nitrogen sources, and organic acids in grape berries, thereby promoting the synthesis of esters and the accumulation of key aromatic compounds, such as terpenes. This process optimized pleasant flavors, including fruity and floral aromas. In contrast, wines from the high crop load and control treatments contained lower levels of these aroma compounds. Compounds such as ethyl caprylate and β-damascenone were identified as potential quality markers. Overall, the wine produced from vines with a crop load of 30 clusters (15 shoots per meter of canopy, 2 clusters per shoot) received the highest sensory scores. Appropriate crop load management is therefore critical to improving the chemical composition of Marselan wine. Full article
(This article belongs to the Section Viticulture)
Show Figures

Figure 1

23 pages, 596 KiB  
Article
Bioactive Compounds and In Vitro Health-Promoting Activity of the Fruit Skin and Flesh of Different Haskap Berry (Lonicera caerulea var. kamtschatica Sevast.) Cultivars
by Natalia Żurek, Stanisław Pluta, Michał Świeca, Leszek Potocki, Łukasz Seliga and Ireneusz Kapusta
Int. J. Mol. Sci. 2025, 26(14), 6618; https://doi.org/10.3390/ijms26146618 - 10 Jul 2025
Viewed by 235
Abstract
The study focused on the distribution of polyphenolic compounds, iridoids, organic acids, and sugars, as well as in vitro antioxidant, anti-inflammatory, antidiabetic, antiproliferation, and antibacterial potential, and physicochemical properties between the skin and flesh of 10 haskap berry (Lonicera caerulea var. kamtschatica [...] Read more.
The study focused on the distribution of polyphenolic compounds, iridoids, organic acids, and sugars, as well as in vitro antioxidant, anti-inflammatory, antidiabetic, antiproliferation, and antibacterial potential, and physicochemical properties between the skin and flesh of 10 haskap berry (Lonicera caerulea var. kamtschatica Sevast.) cultivars. It was found that the content of individual bioactive compounds significantly depended on the fruit cultivar and the analyzed morphological part. Anthocyanins, kaempferol derivatives and iridoids dominated in the skin, which significantly correlated with most of the analyzed health-promoting properties. In turn, the flesh showed a higher content of quercetin derivatives, sugars and organic acids. No differences were found in the content of phenolic acids, flavan-3-ols and antibacterial activity. The most beneficial properties were shown for the cultivar (cv.) ‘Honeybee’. The study suggests that haskap fruit skin is a valuable raw material for use in the pharmaceutical and food industries. Full article
Show Figures

Figure 1

17 pages, 1910 KiB  
Article
Production of Lambic-like Fruit Sour Beer with Lachancea thermotolerans
by Rubén Bartolomé, Elena Alonso, Antonio Morata and Carmen López
Antioxidants 2025, 14(7), 826; https://doi.org/10.3390/antiox14070826 - 4 Jul 2025
Viewed by 480
Abstract
Consumer demand for low-alcohol acidic beers is driving the use of non-conventional yeasts in the brewing process. In this study, the addition of mixed berries and fermentation with L. thermotolerans L31 are performed in crafting a low-alcohol acidic beer. Four different beers were [...] Read more.
Consumer demand for low-alcohol acidic beers is driving the use of non-conventional yeasts in the brewing process. In this study, the addition of mixed berries and fermentation with L. thermotolerans L31 are performed in crafting a low-alcohol acidic beer. Four different beers were brewed in the primary stage with either Saccharomyces cerevisiae or L. thermotolerans and with or without added berry mixture. Beer was fermented for 8 days at 20 °C, stored, and bottled. pH, density, alcoholic content, bitterness, and color of final beer were analyzed for all samples using analytical methods. Volatile compounds, anthocyanin content, and antioxidant activity were also evaluated. Sensory analysis was performed and correlated (PCA) with the analytical results. The obtained data indicated that beers brewed with L. thermotolerans were significantly more acidic and less bitter than S. cerevisiae beers. No difference in alcoholic content was found. Fruity aroma-associated compounds were present in L. thermotolerans beers, which correlated with the sensory analysis. Fruit beers were also redder and showed higher anthocyanin content and stronger antioxidant activity due to the presence of anthocyanins such as cyanidin, delphinidin, and malvidin from fruit, and other antioxidant compounds. Full article
Show Figures

Graphical abstract

19 pages, 2605 KiB  
Article
Transcriptome and Metabolome Analyses of Flavonoid Biosynthesis During Berry Development of Muscadine Grape (Vitis rotundifolia Michx)
by Qiaofeng Yang, Changlin Li, Yan Wang, Xian Pei, Aixin Wang, Li Jin and Linchuan Fang
Plants 2025, 14(13), 2025; https://doi.org/10.3390/plants14132025 - 2 Jul 2025
Viewed by 398
Abstract
Flavonoids play a crucial role in plant development, resistance, and the pigmentation of fruits and flowers. This study aimed to uncover the mechanism of flavonoid biosynthesis and fruit coloring in muscadine grapes. Two muscadine genotypes (Paulk and Supreme) were investigated via metabolomic and [...] Read more.
Flavonoids play a crucial role in plant development, resistance, and the pigmentation of fruits and flowers. This study aimed to uncover the mechanism of flavonoid biosynthesis and fruit coloring in muscadine grapes. Two muscadine genotypes (Paulk and Supreme) were investigated via metabolomic and transcriptomic analysis during three developmental stages (bunch closure, veraison stage, and ripening stage). A total of 314 flavonoids were identified, with flavones and flavonols being the primary constituents. The contents of many differentially accumulated metabolites (DAMs) were higher at the veraison stage. The total anthocyanin content was upregulated during berry development, with the dominant type of anthocyanidin-3,5-O-diglucoside. Proanthocyanins accumulated higher levels in the ripening stage of Paulk than Supreme. Transcriptomic analyses revealed that over 46% of the DEGs exhibited higher expression levels in the bunch closure stage. Moreover, phenylalanine ammonia-lyase (PAL), cinnamyl 4-hydroxylase (C4H), and coumaryl CoA ligase (4CL) genes were upregulated during berry development, suggesting they promote second metabolites biosynthesis. The upregulation of dihydroflavonol 4-reductase (DFR) and leucoanthocyanin reductase (LAR) may related to the higher levels of PA in Paulk. Anthocyanidin synthase (ANS) and UDP-glucose:flavonoid-3-O-glucosyltransferase (UFGT) showed higher expression levels in the ripening stage, which may relate to the accumulation of anthocyanidins. This study provides comprehensive insights into flavonoid metabolism and berry coloration in Vitis rotundifolia. Full article
Show Figures

Figure 1

23 pages, 1237 KiB  
Review
The Health-Promoting Potential of Fruit Pomace and Its Application in the Confectionery Industry
by Anna Tama and Monika Karaś
Appl. Sci. 2025, 15(10), 5790; https://doi.org/10.3390/app15105790 - 21 May 2025
Viewed by 782
Abstract
Every year, around 1.3 billion tons of food is wasted globally, with fruits and vegetables making up a significant portion. One by-product of this waste is pomace—the solid remains after juice extraction—which is rich in valuable nutrients like fiber, polyphenols, flavonoids, carotenoids, organic [...] Read more.
Every year, around 1.3 billion tons of food is wasted globally, with fruits and vegetables making up a significant portion. One by-product of this waste is pomace—the solid remains after juice extraction—which is rich in valuable nutrients like fiber, polyphenols, flavonoids, carotenoids, organic acids, vitamins, and minerals. Common sources of pomace are apples, grapes, citrus fruits, and berries. Researchers have highlighted its potential use in the confectionery industry. For example, replacing flour with pomace in cookies can improve antioxidant content and reduce hardness. Adding grape pomace to gummy candies increases levels of anthocyanins, flavanols, and proanthocyanidins while enhancing texture. Fortifying waffles with raspberry pomace boosts their nutritional value and may inhibit enzymes linked to free radical production. As a functional ingredient, pomace could help lower the risk of cardiovascular disease, diabetes, obesity, and colon cancer. Using fruit waste in food production supports sustainability by reducing waste and improving nutrition. Public awareness efforts, such as the NRDC’s Save the Food campaign, underscore the importance of repurposing food waste. Investing in functional confectionery made with pomace offers both health and environmental benefits, making it a key ingredient for sustainable food innovation. However, despite increasing attention to functional foods, the potential of fruit pomace specifically in confectionery has not been reviewed comprehensively. This review aims to fill this gap, providing a focused synthesis on the use of fruit pomace in the confectionery industry, identifying research trends, challenges, and practical applications. Full article
(This article belongs to the Special Issue Bioactive Compounds for Functional Foods and Sustainability)
Show Figures

Figure 1

14 pages, 2554 KiB  
Article
Impact on Grape Juice Quality and Phenolic Composition of Greek Autochthonous Grapevine Variety Mouhtaro Under Abscisic Acid Biostimulation
by Dimitrios-Evangelos Miliordos, Anastasios Alatzas, Nikolaos Kontoudakis, Marianne Unlubayir, Konstantinos Nikolakis, Polydefkis Hatzopoulos, Arnaud Lanoue and Yorgos Kotseridis
Sustainability 2025, 17(10), 4385; https://doi.org/10.3390/su17104385 - 12 May 2025
Viewed by 411
Abstract
Sustainable viticulture practices could be useful tools for ensuring grape and wine quality, especially in the context of climate change. A promising and innovating approach is the use of bioelicitors in order to stimulate productivity and metabolite biosynthesis in an environmentally friendly way. [...] Read more.
Sustainable viticulture practices could be useful tools for ensuring grape and wine quality, especially in the context of climate change. A promising and innovating approach is the use of bioelicitors in order to stimulate productivity and metabolite biosynthesis in an environmentally friendly way. However, the result depends on the variety, the phenological stage, concentration of the biomolecule applied, and climate conditions. The present study examined the impact of the plant hormone abscisic acid on the phenolic compound accumulation in the autochthonous, red-colored Greek grapevine variety Mouhtaro. During 2018 and 2019 vintages berry quality characteristics, and metabolome were evaluated at three stages: véraison, beginning and mid, and harvest. Abscisic acid (ABA) was given at doses of 0.04% w/v and 0.08% w/v during the véraison stage. According to the results, the ABA-treated grape berries were smaller and exhibited lower total soluble solid levels and increased titratable acidity compared to the control. Although no significant differences were observed in amino acids or anthocyanin and stilbene accumulation upon ABA treatment, application of ABA at the higher dose resulted in increased concentrations of phenolic acids, flavan-3-ols, and flavonols. Therefore, the application of ABA could be considered as a promising method for improving the grape quality characteristics of Mouhtaro. Full article
Show Figures

Figure 1

21 pages, 2769 KiB  
Article
Utilizing Natural Deep Eutectic Solvents (NADESs) for Sustainable Phytonutrient Recovery: Optimization and Multi-Matrix Extraction of Bioactive Compounds
by Ainur Makarova, Ceylin Özten and Bartłomiej Zieniuk
Appl. Sci. 2025, 15(9), 4843; https://doi.org/10.3390/app15094843 - 27 Apr 2025
Viewed by 677
Abstract
Bioactive phytochemicals, such as polyphenols, play vital roles in human health, but conventional extraction methods rely on hazardous solvents. This study establishes natural deep eutectic solvents (NADESs) as versatile and environmentally friendly alternatives for recovering a variety of bioactive compounds from plant materials. [...] Read more.
Bioactive phytochemicals, such as polyphenols, play vital roles in human health, but conventional extraction methods rely on hazardous solvents. This study establishes natural deep eutectic solvents (NADESs) as versatile and environmentally friendly alternatives for recovering a variety of bioactive compounds from plant materials. Five choline chloride-based NADESs were evaluated for their effectiveness in extracting betalains (from beetroot), carotenoids (from carrot and sweet potato), anthocyanins (from chokeberry pomace and red onion), and polyphenols (from Lonicera japonica flowers, hop cones, rowan berries, and spent coffee grounds). Notably, NADES2 outperformed water in betalain recovery (179.86 mg of betanin/100 g of beetroot), while NADES4 (choline chloride-urea, 1:2 molar ratio) matched the polyphenol extraction efficiency of ethanol. Using L. japonica flowers as a model for optimization, Response Surface Methodology (RSM) identified the solvent ratio and temperature as critical extraction parameters, using high ratios (12:1–15:1 v/w) and moderate heat (55–75 °C) to maximize recovery. NADES4 emerged as a high-performing solvent, achieving a total phenolic content (TPC) of 75.94 mg chlorogenic acid/g and antioxidant activity of 451.00 µmol Trolox/g under the following conditions: 60% aqueous dilution, 15:1 solvent ratio, and 80 °C, 30 min. These findings highlight NADESs as a green, tunable solvent system for phytochemical extraction across plant species, offering enhanced efficiency, reduced environmental impact, and alignment with sustainable practices. Full article
Show Figures

Figure 1

17 pages, 2020 KiB  
Systematic Review
Berry Fruit Extracts as Topical Cosmeceuticals for Skin Health Applications: A Systematic Review
by Filipe Silveira Azevedo, Allan Rodrigues Pires, Mary Ann Lila, Giuseppe Valacchi, Roberta Targino Hoskin, Mariaurea Matias Sarandy, Rômulo Dias Novaes and Reggiani Vilela Goncalves
Cosmetics 2025, 12(3), 87; https://doi.org/10.3390/cosmetics12030087 - 23 Apr 2025
Viewed by 1640
Abstract
Berries are a popular source of natural bioactive compounds with distinctive aspects and sensory attributes. In this review, the term “berry” refers to generally round, small, colorful, and juicy fruits with English common names ending in “berry”. They have high phenolic content, which [...] Read more.
Berries are a popular source of natural bioactive compounds with distinctive aspects and sensory attributes. In this review, the term “berry” refers to generally round, small, colorful, and juicy fruits with English common names ending in “berry”. They have high phenolic content, which has been linked to their health-relevant properties. To gather information on the potential of berries for treating skin inflammatory diseases, this systematic review was conducted following PRISMA guidelines (PROSPERO registration number CRD 42024549567), based on studies from PubMed, Scopus, Web of Science, and Embase. It focused on preclinical murine model studies, with bias and methodological quality assessed using SYRCLE’s RoB tool. Studies showed evidence that berries have anti-inflammatory and antioxidant properties due to compounds like anthocyanins, cyanidins, polyphenols, and catechins. Berry exposure reduced oxidative stress markers, such as malondialdehyde, carbonylated proteins, nitric oxide, 8-OHdG, and pyrimidine dimers. This stress reduction was associated with NF-κB and COX-2 pathway downregulation, lower IL-6, IL-1β, TNF-α, and MAPK, and increased IL-10. Morphological outcomes included increased collagen, elastin, glycosaminoglycans, and proteoglycans and reduced metalloproteinases. Bias analysis revealed a low risk, suggesting reliable studies. Berry treatments improved wound healing and extracellular matrix (ECM) production, supporting their potential in pharmaceutical topical formulation. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Graphical abstract

23 pages, 2633 KiB  
Review
Polyphenolic Spectrum of Goji Berries and Their Health-Promoting Activity
by Tunde Jurikova, Simona Morvay Tinakova, Jana Ziarovska, Ladislav Szekeres, Jiri Mlcek, Katarina Fatrcova-Sramkova, Zuzana Knazicka and Sona Skrovankova
Foods 2025, 14(8), 1387; https://doi.org/10.3390/foods14081387 - 17 Apr 2025
Viewed by 1575
Abstract
A significant increase in interest in new, naturally occurring sources of antioxidants is evident not only in the food industry but also in the pharmaceutical and cosmetic industries. Plant sources such as fruits, both traditional and less common, are often investigated. Goji berries [...] Read more.
A significant increase in interest in new, naturally occurring sources of antioxidants is evident not only in the food industry but also in the pharmaceutical and cosmetic industries. Plant sources such as fruits, both traditional and less common, are often investigated. Goji berries (Lycium barbarum, Lycium chinense, and Lycium ruthenicum) represent fruits rich in polyphenols, especially phenolic acids (38.91 to 455.57 mg/kg FW) and flavonoids, with black goji berries (L. ruthenicum) containing a predominance of anthocyanins (119.60 to 1112.25 mg/kg FW). In this review, a comparison of polyphenol occurrence and content in the orange-red and black berries of L. barbarum, L. chinense, and L. ruthenicum is described. Goji berries represent a valuable source of nutrients and bioactive compounds that manifest a wide range of health-promoting effects. These benefits represent antioxidant, neuroprotective, and cytoprotective impacts, with effects on the metabolic control of glucose and lipids. This review is focused on an overview of the polyphenolic compounds occurring in these fruits, as well as their antioxidant activity and health benefits. Full article
(This article belongs to the Special Issue Dietary Polyphenols in Foods)
Show Figures

Figure 1

Back to TopTop