Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (92)

Search Parameters:
Keywords = benzothiophene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3211 KiB  
Article
Synthesis and Cytotoxic Activity of a New Family of α-Hydroxyphosphonates with the Benzothiophene Scaffold
by Mátyás Milen, Tamás Miklós John, Anna Sára Kis, Zsófia Garádi, Zsuzsanna Szalai, Angéla Takács, László Kőhidai, Konstantin Karaghiosoff and György Keglevich
Pharmaceuticals 2025, 18(7), 949; https://doi.org/10.3390/ph18070949 - 24 Jun 2025
Viewed by 516
Abstract
Background: α-Hydroxyphosphonates, one of the most prominent classes of phosphonates, remain of utmost importance because of their potential and real biological activity as pharmaceutical or pesticide agents. The effect is the consequence of their enzyme inhibitory properties. Objectives: It was planned [...] Read more.
Background: α-Hydroxyphosphonates, one of the most prominent classes of phosphonates, remain of utmost importance because of their potential and real biological activity as pharmaceutical or pesticide agents. The effect is the consequence of their enzyme inhibitory properties. Objectives: It was planned to make available new heterocyclic hydroxyphosphonate derivatives with cytotoxic activity. Methods: After optimizing the synthesis, 23 members of a new family, α-hydroxy-α-(benzothiophen-2-yl)-methylphosphonates, were prepared by the Pudovik reaction of benzo[b]thiophene-2-carboxaldehydes and diethyl phosphite. The addition was performed at 26 °C in the presence of triethylamine as the catalyst. One of the products was also characterized by single-crystal X-ray analysis. Results: The cytotoxic effect of the α-hydroxy-α-benzothiophenyl-methylphosphonates was tested on U266 myeloma, A2058 melanoma, HT-29 colon, and EBC-1 lung cancer cell lines. Most of the molecules showed significant activity; the greatest effects were seen after treatment with hydroxyphosphonates with a trifluoromethyl group in the benzene ring. Conclusions: The cytotoxic activity of the newly synthesized α-hydroxyphosphonates is encouraging to find even better derivatives. Full article
Show Figures

Graphical abstract

14 pages, 1524 KiB  
Article
Design, Synthesis, Theoretical Study, and Antioxidant Activity of Aromaticity-Extended Resveratrol Derivatives Incorporating Chalcogen
by Sangwon Ko, Hyun Min Lim, Yeonho Song, Hyonseok Hwang and Jeong Tae Lee
Int. J. Mol. Sci. 2025, 26(12), 5872; https://doi.org/10.3390/ijms26125872 - 19 Jun 2025
Viewed by 459
Abstract
Naturally occurring antioxidants have attracted significant research interest, owing to their radical scavenging ability that can be improved via structural modifications. In this study, aromaticity-extended resveratrol analogues (35) containing chalcogens were designed and synthesized using ring closure and Horner–Wadsworth–Emmons [...] Read more.
Naturally occurring antioxidants have attracted significant research interest, owing to their radical scavenging ability that can be improved via structural modifications. In this study, aromaticity-extended resveratrol analogues (35) containing chalcogens were designed and synthesized using ring closure and Horner–Wadsworth–Emmons reactions. The antioxidant activities of the derivatives were evaluated using 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABST) assay. All resveratrol derivatives (35) exhibited higher radical scavenging activities than resveratrol 1 and analogue 2, with benzoselenophene-conjugated derivative 5 demonstrating the highest activity. The improved antioxidant performance of the resveratrol derivatives was attributed to the extended π conjugation resulting from the incorporation of fused rings, benzoheteroles. Additionally, the integration of benzoheteroles into resveratrol contributed to an efficient reduction in HOMO-LUMO gaps. This study demonstrates that aromaticity extension by introducing benzofuran, benzothiophene, and benzoselenophene is a feasible strategy for improving the antioxidant activity of naturally occurring oxidants. Full article
Show Figures

Graphical abstract

13 pages, 2903 KiB  
Article
D1-A-D2 Conjugated Porous Polymers Provide Additional Electron Transfer Pathways for Efficient Photocatalytic Hydrogen Production
by Zheng-Hui Xie, Yu-Jie Zhang, Jinhua Li and Shi-Yong Liu
Molecules 2025, 30(10), 2190; https://doi.org/10.3390/molecules30102190 - 16 May 2025
Viewed by 497
Abstract
The strategic design of donor–acceptor (D-A) conjugated porous polymers has emerged as a pivotal methodology for advancing efficient photocatalytic hydrogen evolution. However, conventional D-A polymeric architectures face inherent limitations: excessively strong acceptor units may lower the LUMO energy level, compromising proton (H+ [...] Read more.
The strategic design of donor–acceptor (D-A) conjugated porous polymers has emerged as a pivotal methodology for advancing efficient photocatalytic hydrogen evolution. However, conventional D-A polymeric architectures face inherent limitations: excessively strong acceptor units may lower the LUMO energy level, compromising proton (H+) reduction capability, while weak D-A interactions result in inadequate light-harvesting capacity and insufficient photogenerated electrons, ultimately diminishing photocatalytic activity. To address these challenges, we developed a new D1-A-D2 conjugated porous polymer (CPP) system. The strategic incorporation of a secondary donor benzothiophene (DBBTh) unit enabled precise bandgap engineering in D1-A-D2 CPPs. Experimental results demonstrate that DBBTh integration significantly enhances both light absorption efficiency and proton reduction ability. Under visible-light irradiation (λ > 420 nm), the Py-BKh1 photocatalyst achieved a hydrogen evolution rate (HER) of 10.2 mmol h−1 g−1 with an apparent quantum yield (AQY) of 9.5% at 500 nm. This work provides a groundbreaking paradigm for designing high-performance organic photocatalysts. Full article
Show Figures

Graphical abstract

20 pages, 4439 KiB  
Article
Predicting UV-Vis Spectra of Benzothio/Dithiophene Polymers for Photodetectors by Machine-Learning-Assisted Computational Studies
by Abrar U. Hassan and Mamduh J. Aljaafreh
Coatings 2025, 15(5), 558; https://doi.org/10.3390/coatings15050558 - 7 May 2025
Cited by 3 | Viewed by 635
Abstract
The current study represents a machine-learning (ML)-assisted reverse polymer engineering for the rational design of high-performance benzothiophene (BT) benzodithiophene (BDT) polymers for photodetector applications. By integrating their 5617 units with various acceptor moieties, a total of 72,976 unique polymer combinations are generated. The [...] Read more.
The current study represents a machine-learning (ML)-assisted reverse polymer engineering for the rational design of high-performance benzothiophene (BT) benzodithiophene (BDT) polymers for photodetector applications. By integrating their 5617 units with various acceptor moieties, a total of 72,976 unique polymer combinations are generated. The optical properties of these polymers are predicted with high accuracy (R2 = 0.86) using a Gradient-Boosting Regression (GBR) model. The SHAP value-based feature importance analysis indicates that Chi0 is the most influential factor in predicting the absorption maxima (λmax) of polymers, followed by LabuteASA, Chi0V, Chi1, SlogP_VSA12, and other molecular descriptors. The robustness of the employed model is further validated through K-Fold cross-validation, with the highest mean squared error (MSE) observed at 2.02 in the fold-2 subset. The designed polymers exhibit λmax within the range of 400–750 nm, demonstrating their suitability for photodetector applications. Moreover, a Transformer-Assisted Orientation (TAO) approach is employed to optimize polymer design, successfully achieving bandgaps as low as 0.42 eV. This approach facilitates the rapid design and optimization of high-performance polymers with tailored electronic properties, effectively addressing the limitations of conventional trial-and-error methods. The current ML-assisted approach presents a promising strategy for expediting the development of high-performance photodetectors and other advanced optoelectronic devices. Full article
(This article belongs to the Special Issue Advances in Polymer Composites, Coatings and Adhesive Materials)
Show Figures

Figure 1

19 pages, 3280 KiB  
Article
Three Isomeric Dioctyl Derivatives of 2,7-Dithienyl[1]benzo-thieno[3,2-b][1]benzothiophene: Synthesis, Optical, Thermal, and Semiconductor Properties
by Lev L. Levkov, Nikolay M. Surin, Oleg V. Borshchev, Yaroslava O. Titova, Nikita O. Dubinets, Evgeniya A. Svidchenko, Polina A. Shaposhnik, Askold A. Trul, Akmal Z. Umarov, Denis V. Anokhin, Martin Rosenthal, Dimitri A. Ivanov, Victor V. Ivanov and Sergey A. Ponomarenko
Materials 2025, 18(4), 743; https://doi.org/10.3390/ma18040743 - 7 Feb 2025
Cited by 2 | Viewed by 1840
Abstract
Organic semiconductor materials are interesting due to their application in various organic electronics devices. [1]benzothieno[3,2-b][1]benzothiophene (BTBT) is a widely used building block for the creation of such materials. In this work, three novel solution-processable regioisomeric derivatives of BTBT—2,7-bis(3-octylthiophene-2-yl)BTBT (1), 2,7-bis(4-octylthiophene-2-yl)BTBT ( [...] Read more.
Organic semiconductor materials are interesting due to their application in various organic electronics devices. [1]benzothieno[3,2-b][1]benzothiophene (BTBT) is a widely used building block for the creation of such materials. In this work, three novel solution-processable regioisomeric derivatives of BTBT—2,7-bis(3-octylthiophene-2-yl)BTBT (1), 2,7-bis(4-octylthiophene-2-yl)BTBT (2), and 2,7-bis(5-octylthiophene-2-yl)BTBT (3)—were synthesized and investigated. Their optoelectronic properties were characterized experimentally by ultraviolet–visible and fluorescence spectroscopy, time-resolved fluorimetry, and cyclic voltammetry and studied theoretically by Time-Dependent Density Functional Theory calculations. Their thermal properties were investigated by a thermogravimetric analysis, differential scanning calorimetry, polarizing optical microscopy, and in situ small-/wide-angle X-ray scattering measurements. It was shown that the introduction of alkyl substituents at different positions (3, 4, or 5) of thiophene moieties attached to a BTBT fragment significantly influences the optoelectronic properties, thermal stability, and phase behavior of the materials. Thin films of each compound were obtained by drop-casting, spin-coating and doctor blade techniques and used as active layers for organic field-effect transistors. All the OFETs exhibited p-channel characteristics under ambient conditions, while compound 3 showed the best electrical performance with a charge carrier mobility up to 1.1 cm2·V−1s−1 and current on/off ratio above 107. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

12 pages, 5706 KiB  
Article
Identification of Benzothiophene-Derived Inhibitors of Flaviviruses by Targeting RNA-Dependent RNA Polymerase
by Leah Liu Wang, Shazeed-Ul Karim, Aidan Hand, Ryan Brunkhorst, Mackenna Petersen, Sarah Altman, Yi Liu, Luwen Zhang, Fengwei Bai and Shi-Hua Xiang
Viruses 2025, 17(2), 145; https://doi.org/10.3390/v17020145 - 23 Jan 2025
Cited by 1 | Viewed by 1157
Abstract
Flaviviruses such as Dengue, West Nile, and Zika viruses are mosquito-borne RNA viruses that can cause serious diseases in humans. To develop effective drugs for treating these viruses’ infections, we create a new approach for developing common or shared drugs that may work [...] Read more.
Flaviviruses such as Dengue, West Nile, and Zika viruses are mosquito-borne RNA viruses that can cause serious diseases in humans. To develop effective drugs for treating these viruses’ infections, we create a new approach for developing common or shared drugs that may work for several different viral species of flaviviruses. It is based on the conserved RNA-dependent RNA polymerase (RdRp), which is the key enzyme for viral replication. We built up a common structure of RdRps (POLcon) from their consensus sequence. A conserved Triple-D structural motif was identified at the active site of POLcon that has been used for virtual compound screening. We have identified three inhibitors that have potent activities against Dengue, West Nile, and Zika viruses. All these three inhibitors are Benzothiophene derivatives. This is the first report of Benzothiophene-derived compounds as inhibitors for flaviviruses. Furthermore, our approach has provided a proof-of-concept that it is feasible to identify shared drugs for several different viral species of flaviviruses. Full article
(This article belongs to the Special Issue Structure-Based Antiviral Drugs and Vaccine Design)
Show Figures

Figure 1

31 pages, 20583 KiB  
Review
Hybrid System of Polystyrene and Semiconductor for Organic Electronic Applications
by Zhengran He, Sheng Bi and Kyeiwaa Asare-Yeboah
Processes 2024, 12(9), 1944; https://doi.org/10.3390/pr12091944 - 10 Sep 2024
Cited by 4 | Viewed by 2136
Abstract
While organic semiconductors hold significant promise for the development of flexible, lightweight electronic devices such as organic thin-film transistors (OTFTs), photodetectors, and gas sensors, their widespread application is often limited by intrinsic challenges. In this article, we first review these challenges in organic [...] Read more.
While organic semiconductors hold significant promise for the development of flexible, lightweight electronic devices such as organic thin-film transistors (OTFTs), photodetectors, and gas sensors, their widespread application is often limited by intrinsic challenges. In this article, we first review these challenges in organic electronics, including low charge carrier mobility, susceptibility to environmental degradation, difficulties in achieving uniform film morphology and crystallinity, as well as issues related to poor interface quality, scalability, and reproducibility that further hinder their commercial viability. Next, we focus on reviewing the hybrid system comprising an organic semiconductor and polystyrene (PS) to address these challenges. By examining the interactions of PS as a polymer additive with several benchmark semiconductors such as pentacene, rubrene, 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene), 2,8-difluoro-5,11-bis(triethylsilylethynyl) anthradithiophene (diF-TES-ADT), and 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT), we showcase the versatility of PS in enhancing the crystallization, thin film morphology, phase segregation, and electrical performance of organic semiconductor devices. This review aims to highlight the potential of an organic semiconductor/PS hybrid system to overcome key challenges in organic electronics, thereby paving the way for the broader adoption of organic semiconductors in next-generation electronic devices. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

19 pages, 9295 KiB  
Article
A New Class of Benzo[b]thiophene-chalcones as Cholinesterase Inhibitors: Synthesis, Biological Evaluation, Molecular Docking and ADME Studies
by Giovanna Lucia Delogu, Michela Begala, Maria João Matos, Davide Crucitti, Valeria Sogos, Benedetta Era and Antonella Fais
Molecules 2024, 29(16), 3748; https://doi.org/10.3390/molecules29163748 - 7 Aug 2024
Cited by 2 | Viewed by 2810
Abstract
In this study, heterocyclic compounds containing a benzothiophene scaffold were designed and synthetized, and their inhibitory activity against cholinesterases (ChE) and the viability of SH-SY5Y cells have been evaluated. Benzothiophenes 4a4i and benzothiophene-chalcone hybrids 5a5i were tested against both [...] Read more.
In this study, heterocyclic compounds containing a benzothiophene scaffold were designed and synthetized, and their inhibitory activity against cholinesterases (ChE) and the viability of SH-SY5Y cells have been evaluated. Benzothiophenes 4a4i and benzothiophene-chalcone hybrids 5a5i were tested against both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), revealing interesting structure–activity relationships. In general, benzothiophene–chalcone hybrids from series 5 proved to be better inhibitors of both enzymes, with compound 5f being the best AChE inhibitor (IC50 = 62.10 μM) and compound 5h being the best BChE inhibitor (IC50 = 24.35 μM), the last one having an IC50 similar to that of galantamine (IC50 = 28.08 μM), the reference compound. The in silico ADME profile of the compounds was also studied. Molecular docking calculations were carried out to analyze the best binding scores and to elucidate enzyme–inhibitors’ interactions. Full article
(This article belongs to the Special Issue Featured Papers in Medicinal Chemistry II)
Show Figures

Graphical abstract

13 pages, 1767 KiB  
Article
Modulation of Properties in [1]Benzothieno[3,2-b][1]benzothiophene Derivatives through Sulfur Oxidation
by Aneta Rzewnicka, Rafał Dolot, Maciej Mikina, Jerzy Krysiak and Remigiusz Żurawiński
Molecules 2024, 29(15), 3575; https://doi.org/10.3390/molecules29153575 - 29 Jul 2024
Cited by 2 | Viewed by 2281
Abstract
This study explores the impact of sulfur oxidation on the structural, optical, and electronic properties of [1]benzothieno[3,2-b][1]benzothiophene (BTBT) derivatives, specifically focusing on 2,7-dibromo BTBT (2,7-diBr-BTBT) and its oxidized forms, 5,5-dioxide (2,7-diBr-BTBTDO) and 5,5,10,10–tetraoxide (2,7-diBr-BTBTTO [...] Read more.
This study explores the impact of sulfur oxidation on the structural, optical, and electronic properties of [1]benzothieno[3,2-b][1]benzothiophene (BTBT) derivatives, specifically focusing on 2,7-dibromo BTBT (2,7-diBr-BTBT) and its oxidized forms, 5,5-dioxide (2,7-diBr-BTBTDO) and 5,5,10,10–tetraoxide (2,7-diBr-BTBTTO). The bromination of BTBT followed by sequential oxidation with m-chloroperoxybenzoic acid yielded the target compounds in good yields. They were characterized using a wide array of analytical techniques including different spectroscopic methods, X-ray analysis, thermal analysis, and quantum chemical calculations. The results revealed that sulfur oxidation significantly alters the crystal packing, thermal stability, and optoelectronic properties of BTBT derivatives. Notably, the oxidized forms exhibited increased thermal stability and enhanced emission properties, with quantum yields exceeding 99%. These findings provide valuable insights for designing advanced organic semiconductors and fluorescent materials with tunable properties, based on the BTBT core. Full article
(This article belongs to the Special Issue Organosulfur and Organoselenium Chemistry)
Show Figures

Figure 1

10 pages, 5385 KiB  
Communication
A Novel Indolium-Based Fluorescent Probe for Fast Detection of Cyanide
by Mei Ding, Xiao Xiao, Chen Zhou, Mingxin Luo and Jing Sun
Biosensors 2024, 14(5), 244; https://doi.org/10.3390/bios14050244 - 13 May 2024
Cited by 4 | Viewed by 2076
Abstract
A novel indolium-based fluorescent probe for the detection of CN was developed based on the conjugation of 1, 2, 3, 3-Tetramethyl-3H-indolium iodide and 2-acetyl benzothiophene. The introduction of external CN caused a nucleophilic attack to the quaternary amine salt structure in [...] Read more.
A novel indolium-based fluorescent probe for the detection of CN was developed based on the conjugation of 1, 2, 3, 3-Tetramethyl-3H-indolium iodide and 2-acetyl benzothiophene. The introduction of external CN caused a nucleophilic attack to the quaternary amine salt structure in the probe and resulted in the departure of iodide ions and the steric rotation of the index salt group, which caused fluorescence quenching. The titration experiments showed that the probe had rapid qualitative and quantitative analysis capabilities for CN. Moreover, the relevant biocompatibility experiments also demonstrated the potential application value of the probe. Full article
(This article belongs to the Special Issue Nano-Biosensors for Detection and Monitoring (2nd Edition))
Show Figures

Figure 1

13 pages, 4005 KiB  
Article
Binuclear Dioxomolybdenum(VI) Complex Based on Bis(2-pyridinecarboxamide) Ligand as Effective Catalyst for Fuel Desulfurization
by Fátima Mirante, Catarina N. Dias, André Silva, Sandra Gago and Salete S. Balula
Catalysts 2024, 14(5), 305; https://doi.org/10.3390/catal14050305 - 4 May 2024
Viewed by 1595
Abstract
A binuclear dioxomolybdenum catalyst [(MoO2Cl2)2(L)] (1) (with L (1S,2S)-N,N′-bis(2-pyridinecarboxamide)-1,2-cyclohexane) was prepared and used as catalyst for the desulfurization of a multicomponent model fuel containing the most refractory [...] Read more.
A binuclear dioxomolybdenum catalyst [(MoO2Cl2)2(L)] (1) (with L (1S,2S)-N,N′-bis(2-pyridinecarboxamide)-1,2-cyclohexane) was prepared and used as catalyst for the desulfurization of a multicomponent model fuel containing the most refractory sulfur compounds in real fuels. This complex was shown to have a high efficiency to oxidize the aromatic benzothiophene derivative compounds present in fuels, mainly using a biphasic 1:1 model fuel/MeOH system. This process conciliates catalytic oxidative and extractive desulfurization, resulting in the oxidation of the sulfur compounds in the polar organic solvent. The oxidative catalytic performance of (1) was shown to be influenced by the presence of water in the system. Using 50% aq. H2O2, it was possible to reuse the catalyst and the extraction solvent, MeOH, during ten consecutive cycles without loss of desulfurization efficiency. Full article
Show Figures

Figure 1

15 pages, 4521 KiB  
Article
High-Performance Organic Field-Effect Transistors of Liquid Crystalline Organic Semiconductor by Laser Mapping Annealing
by Luying Huang, Fenghua Liu, Jiachen Bao, Xiaoman Li and Weiping Wu
Materials 2024, 17(6), 1395; https://doi.org/10.3390/ma17061395 - 19 Mar 2024
Cited by 4 | Viewed by 2284
Abstract
Organic semiconductors (OSCs), especially small molecule semiconductors, have received increasing attention due to their good designability and variability. Phase transitions and interfacial properties have a decisive influence on device performance. Here, 2-Dodecyl-7-phenyl[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-12) devices are treated with low-power laser annealing, which [...] Read more.
Organic semiconductors (OSCs), especially small molecule semiconductors, have received increasing attention due to their good designability and variability. Phase transitions and interfacial properties have a decisive influence on device performance. Here, 2-Dodecyl-7-phenyl[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-12) devices are treated with low-power laser annealing, which is able to avoid the influence of the dewetting effect on the hole mobility of organic semiconductor materials. Ultraviolet ozone treatment and self-assembled monolayer treatment can improve the performance and stability of the device. Moreover, after low-temperature thermal annealing, the hole mobility of the device can even reach as high as 4.80 cm2 V−1 s−1, and we tested the optical response of the device to the ultraviolet wavelength and found that its maximum optical responsivity was 8.2 AW−1. Full article
(This article belongs to the Special Issue Influence of Laser Processing on Materials Properties)
Show Figures

Figure 1

12 pages, 2488 KiB  
Article
Ligand-Enhanced Neodymium Doping of Perovskite Quantum Dots for Superior Exciton Confinement
by Xianghua Wang, Lin Zhou, Xudong Zhao, Wenlong Ma and Xinjun Wang
Materials 2023, 16(24), 7585; https://doi.org/10.3390/ma16247585 - 10 Dec 2023
Cited by 2 | Viewed by 1633
Abstract
In this study, all-inorganic perovskite quantum dots (QDs) for pure blue emission are explored for full-color displays. We prepared CsPbBr3 and Cs3NdCl6 QDs via hot injection methods and mixed in various ratios at room temperature for color blending. Nd-doped [...] Read more.
In this study, all-inorganic perovskite quantum dots (QDs) for pure blue emission are explored for full-color displays. We prepared CsPbBr3 and Cs3NdCl6 QDs via hot injection methods and mixed in various ratios at room temperature for color blending. Nd-doped CsPb(Cl/Br)3 QDs showed a blueshift in emission, and the photoluminescence quantum yields (PLQY, ΦPL) were lower in the 460–470 nm range due to surface halogen and Cs vacancies. To address this, we introduced a silane molecule, APTMS, via a ligand exchange process, effectively repairing these vacancies and enhancing Nd doping into the lattice. This modification promotes the PLQY to 94% at 466 nm. Furthermore, combining these QDs with [1]Benzothieno[3,2-b][1]benzothiophene (BTBT), a conjugated small-molecule semiconductor, in a composite film reduced PLQY loss caused by FRET in solid-state QD films. This approach achieved a wide color gamut of 124% National Television System Committee (NTSC), using a UV LED backlight and RGB perovskite QDs in a BTBT-based organic matrix as the color conversion layer. Significantly, the photostability of this composite was enhanced when used as a color conversion layer (CCL) under blue-LED excitation. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

28 pages, 12195 KiB  
Article
Discovery, Structure–Activity Relationship and In Vitro Anticancer Activity of Small-Molecule Inhibitors of the Protein–Protein Interactions between AF9/ENL and AF4 or DOT1L
by Xin Li, Xiaowei Wu, Shenyou Nie, Jidong Zhao, Yuan Yao, Fangrui Wu, Chandra Bhushan Mishra, Md Ashraf-Uz-Zaman, Bala Krishna Moku and Yongcheng Song
Cancers 2023, 15(21), 5283; https://doi.org/10.3390/cancers15215283 - 3 Nov 2023
Viewed by 1938
Abstract
Chromosomal translocations involving the mixed lineage leukemia (MLL) gene cause 5–10% acute leukemias with poor clinical outcomes. Protein–protein interactions (PPI) between the most frequent MLL fusion partner proteins AF9/ENL and AF4 or histone methyltransferase DOT1L are drug targets for MLL-rearranged (MLL-r) leukemia. Several [...] Read more.
Chromosomal translocations involving the mixed lineage leukemia (MLL) gene cause 5–10% acute leukemias with poor clinical outcomes. Protein–protein interactions (PPI) between the most frequent MLL fusion partner proteins AF9/ENL and AF4 or histone methyltransferase DOT1L are drug targets for MLL-rearranged (MLL-r) leukemia. Several benzothiophene-carboxamide compounds were identified as novel inhibitors of these PPIs with IC50 values as low as 1.6 μM. Structure–activity relationship studies of 77 benzothiophene and related indole and benzofuran compounds show that a 4-piperidin-1-ylphenyl or 4-pyrrolidin-1-ylphenyl substituent is essential for the activity. The inhibitors suppressed expression of MLL target genes HoxA9, Meis1 and Myc, and selectively inhibited proliferation of MLL-r and other acute myeloid leukemia cells with EC50 values as low as 4.7 μM. These inhibitors are useful chemical probes for biological studies of AF9/ENL, as well as pharmacological leads for further drug development against MLL-r and other leukemias. Full article
(This article belongs to the Special Issue Advances in Anticancer Drugs and Pharmacotherapy of Cancer)
Show Figures

Figure 1

16 pages, 2819 KiB  
Article
Reductive Transformation of O-, N-, S-Containing Aromatic Compounds under Hydrogen Transfer Conditions: Effect of the Process on the Ni-Based Catalyst
by Nikolai S. Nesterov, Vera P. Pakharukova, Alexey A. Philippov, Igor P. Prosvirin, Anton S. Shalygin and Oleg N. Martyanov
Molecules 2023, 28(20), 7041; https://doi.org/10.3390/molecules28207041 - 12 Oct 2023
Cited by 3 | Viewed by 1644
Abstract
The influence of the reaction medium on the surface structure and properties of a Ni-based catalyst used for the reductive transformations of O-, N-, and S-containing aromatic substrates under hydrogen transfer conditions has been studied. The catalysts were characterized by XRD, XPS, and [...] Read more.
The influence of the reaction medium on the surface structure and properties of a Ni-based catalyst used for the reductive transformations of O-, N-, and S-containing aromatic substrates under hydrogen transfer conditions has been studied. The catalysts were characterized by XRD, XPS, and IR spectroscopy and TEM methods before and after the reductive reaction. It has been shown that the conversion of 1-benzothiophene causes irreversible poisoning of the catalyst surface with the formation of the Ni2S3 phase, whereas the conversion of naphthalene, 1-benzofuran, and indole does not cause any phase change of the catalyst at 250 °C. However, after the indole conversion, the catalyst surface remains enriched with N-containing compounds, which are evenly distributed over the surface. Full article
(This article belongs to the Special Issue Research on Heterogeneous Catalysis)
Show Figures

Graphical abstract

Back to TopTop