A Novel Indolium-Based Fluorescent Probe for Fast Detection of Cyanide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Synthesis
3. Results
3.1. UV Absorption Spectroscopy Testing
3.2. Fluorescence Emission Spectroscopy Testing
3.3. Biocompatibility Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, Z.; Chen, X.; Kim, H.N.; Yoon, J.Y. Sensors for the optical detection of cyanide ion. Chem. Soc. Rev. 2010, 39, 127. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.B.; Li, W.T.; Li, Q.; Su, J.X.; Qu, W.J.; Lin, Q.; Yao, H.; Zhang, Y.M. A turn-on fluorescent chemosensor selectively detects cyanide in pure water and food sample. Tetrahedron Lett. 2016, 25, 2767. [Google Scholar] [CrossRef]
- Xie, Z.F.; Kong, X.G.; Feng, L.; Ma, J.C.; Li, Y.Q.; Wang, X.; Bao, W.R.; Shi, W.; Hui, Y.H. A novel highly selective probe with both aggregation-induced emission enhancement and intramolecular charge transfer characteristics for CN− detection. Sens. Actuators B-Chem. 2018, 257, 154. [Google Scholar] [CrossRef]
- Hundal, M.S. A chemodosimeter for ratiometric detection of cyanide in aqueous media and human blood serum. Chem. Commun. 2013, 49, 2667. [Google Scholar]
- Li, M.X.; Gao, Y.; Xu, K.; Zhang, Y.; Gong, S.; Yang, Y.; Xu, X.; Wang, Z.; Wang, S. Quantitatively analysis and detection of CN− in three food samples by a novel nopinone-based fluorescent probe. Food Chem. 2022, 379, 132153. [Google Scholar] [CrossRef]
- Patra, L.; Aich, K.; Gharami, S.; Mondal, T.K. A new carbazole-benzothiazole based chemodosimeter for chromogenic and fluorogenic detection of CN−. J. Lumin. 2018, 201, 419. [Google Scholar] [CrossRef]
- Suzuki, T.; Hiolki, A.; Kurahashi, M. Development of a method for estimating an accurate equivalence point in nickel titration of cyanide ions. Anal. Chim. Acta 2003, 476, 159. [Google Scholar] [CrossRef]
- Christison, T.T.; Rohrer, J.S. Direct determination of free cyanide in drinking water by ion chromatography with pulsed amperometric detection. J. Chromatogr. A 2007, 1155, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Vanita, V.; Walia, A.; Chae, P.S.; Kumar, S. Pyridoanthrone-based chromo-fluorogenic amphiphiles for selective CN− detection and their bioimaging application. Sens. Actuators B-Chem. 2020, 304, 127396. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, C.; Li, J.; Sun, J. A new phenothiazine-based fluorescent sensor for detection of cyanide. Biosensors 2024, 14, 51. [Google Scholar] [CrossRef]
- Bhalla, V.; Singh, H.; Kumar, M. Triphenylene based copper ensemble for the detection of cyanide ions. Dalton Trans. 2012, 41, 11413. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Kaushik, M.P.; Srivastava, A.K.; Pratap, A.; Thiruvenkatam, V.; Guru Row, T.N. Thiourea based novel chromogenic sensor for selective detection of fluoride and cyanide anions in organic and aqueous media. Anal. Chim. Acta 2010, 663, 77. [Google Scholar] [CrossRef]
- Yuan, L.; Lin, W.Y.; Yang, Y.T.; Song, J.Z.; Wang, J.L. Rational design of a highly reactive ratiometric fluorescent probe for cyanide. Org. Lett. 2011, 13, 3730. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Zhao, H.; Gabbaï, F.P. Sulfonium Boranes for the Selective Capture of Cyanide Ions in Water. Angew. Chem. Int. Ed. 2009, 48, 4957. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.B.; Zhang, P.; Wei, T.B.; Yao, H.; Lin, Q.; Zhang, Y.M. Highly selective fluorescent sensing for CN− in water: Utilization of the supramolecular self-assembly. Chem. Commun. 2013, 49, 7812. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, L.; Chen, X.Q.; Yoon, J.Y. Recent progress in the development of fluorometric and colorimetric chemosensors for detection of cyanide ions. Chem. Soc. Rev. 2014, 43, 4312. [Google Scholar] [CrossRef] [PubMed]
- Pati, P.B. Organic chemodosimeter for cyanide: A nucleophilic approach. Sens. Actuators B-Chem. 2016, 222, 374. [Google Scholar] [CrossRef]
- Saha, S.; Ghosh, A.; Mahato, P.; Mishra, S.; Mishra, S.K.; Suresh, E.; Das, S.; Das, A. Specific recognition and sensing of CN− in sodium cyanide solution. Org. Lett. 2010, 12, 3406–3409. [Google Scholar] [CrossRef] [PubMed]
- Odago, M.O.; Colabello, D.M.; Lees, A.J. A simple thiourea based colorimetric sensor for cyanide anion. Tetrahedron 2010, 66, 7465. [Google Scholar] [CrossRef]
- Ranolia, A.; Kiran; Sindhu, J.; Kumar, P.; Kumar, S. Divulging indolium inspired cyanide sensors: Did it win the throne? Coord. Chem. Rev. 2024, 498, 215463. [Google Scholar] [CrossRef]
- Sun, Y.; Fan, S.W.; Duan, L.; Li, R.F. A ratiometric fluorescent probe based on benzo [e] indolium for cyanide ion in water. Sens. Actuators B-Chem. 2013, 185, 638. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Awad, M.I.; Althagafi, I.I.; Altass, H.M.; Morad, M.; Alharbi, A.; Obaid, R.J. Newly synthesized indolium-based ionic liquids as unprecedented inhibitors for the corrosion of mild steel in acid medium. J. Mol. Liq. 2019, 291, 111356. [Google Scholar] [CrossRef]
- Sun, M.D.; Guo, J.; Yang, Q.B.; Xiao, N.; Li, Y.X. A new fluorescent and colorimetric sensor for hydrazine and its application in biological systems. J. Mater. Chem. B 2014, 2, 1846. [Google Scholar] [CrossRef] [PubMed]
- Bhalla, V.; Pramanik, S.; Kumar, M. Cyanide modulated fluorescent supramolecular assembly of a hexaphenylbenzene derivative for detection of trinitrotoluene at the attogram level. Chem. Commun. 2013, 49, 895. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Sun, M.D.; Yan, C.Q.; Yang, Q.B.; Li, Y.X.; Song, Y. A new colorimetric and fluorescent chemodosimeter for fast detection of cyanide. Sens. Actuators B-Chem. 2014, 203, 382. [Google Scholar] [CrossRef]
- Son, J.H.; Jang, G.; Lee, T.S. Synthesis of water-soluble, fluorescent, conjugated polybenzodiazaborole for detection of cyanide anion in water. Polymer 2013, 54, 3542. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, M.; Xiao, X.; Zhou, C.; Luo, M.; Sun, J. A Novel Indolium-Based Fluorescent Probe for Fast Detection of Cyanide. Biosensors 2024, 14, 244. https://doi.org/10.3390/bios14050244
Ding M, Xiao X, Zhou C, Luo M, Sun J. A Novel Indolium-Based Fluorescent Probe for Fast Detection of Cyanide. Biosensors. 2024; 14(5):244. https://doi.org/10.3390/bios14050244
Chicago/Turabian StyleDing, Mei, Xiao Xiao, Chen Zhou, Mingxin Luo, and Jing Sun. 2024. "A Novel Indolium-Based Fluorescent Probe for Fast Detection of Cyanide" Biosensors 14, no. 5: 244. https://doi.org/10.3390/bios14050244
APA StyleDing, M., Xiao, X., Zhou, C., Luo, M., & Sun, J. (2024). A Novel Indolium-Based Fluorescent Probe for Fast Detection of Cyanide. Biosensors, 14(5), 244. https://doi.org/10.3390/bios14050244