Modulation of Properties in [1]Benzothieno[3,2-b][1]benzothiophene Derivatives through Sulfur Oxidation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of 2,7-diBr-BTBT S-oxides
2.2. Structural Analysis
2.3. Physical and Optical Properties
2.4. Computational Analysis
3. Materials and Methods
3.1. Synthesis of Materials
3.1.1. General Remarks
3.1.2. Synthetic Procedures
3.2. X-ray Analysis
3.3. Optical Characterization
3.4. Thermal Properties
3.5. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Katz, H.E.; Bao, Z.; Gilat, S.L. Synthetic Chemistry for Ultrapure, Processable, and High-Mobility Organic Transistor Semiconductors. Acc. Chem. Res. 2001, 34, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Li, Y.; Wang, Z. Heteroarenes as high performance organic semiconductors. Chem. Soc. Rev. 2013, 42, 6113–6127. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Li, W.; Tian, H.; Wang, H.; Yan, D.; Zhang, J.; Geng, Y.; Wang, F. Benzothienobenzothiophene-Based Conjugated Oligomers as Semiconductors for Stable Organic Thin-Film Transistors. ACS Appl. Mater. Interfaces 2014, 6, 5255–5262. [Google Scholar] [CrossRef] [PubMed]
- Niebel, C.; Kim, Y.; Ruzié, C.; Karpinska, J.; Chattopadhyay, B.; Schweicher, G.; Richard, A.; Lemaur, V.; Olivier, Y.; Cornil, J.; et al. Thienoacene dimers based on the thieno[3,2-b]thiophene moiety: Synthesis, characterization and electronic properties. J. Mater. Chem. C 2015, 3, 674–685. [Google Scholar] [CrossRef]
- Mori, T.; Nishimura, T.; Yamamoto, T.; Doi, I.; Miyazaki, E.; Osaka, I.; Takimiya, K. Consecutive Thiophene-Annulation Approach to π-Extended Thienoacene-Based Organic Semiconductors with [1]Benzothieno[3,2-b][1]benzothiophene (BTBT) Substructure. J. Am. Chem. Soc. 2013, 135, 13900–13913. [Google Scholar] [CrossRef] [PubMed]
- Izawa, T.; Mori, H.; Shinmura, Y.; Iwatani, M.; Miyazaki, E.; Takimiya, K.; Hung, H.-W.; Yahiro, M.; Adachi, C. Molecular Modification of 2,7-Diphenyl[1]benzothieno[3,2-b]benzothiophene (DPh-BTBT) with Diarylamino Substituents: From Crystalline Order to Amorphous State in Evaporated Thin Films. Chem. Lett. 2009, 38, 420–421. [Google Scholar] [CrossRef]
- Keum, C.-M.; Liu, S.; Al-Shadeedi, A.; Kaphle, V.; Callens, M.K.; Han, L.; Neyts, K.; Zhao, H.; Gather, M.C.; Bunge, S.D.; et al. Tuning charge carrier transport and optical birefringence in liquid-crystalline thin films: A new design space for organic light-emitting diodes. Sci. Rep. 2018, 8, 699. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, T.; Sasabe, H.; Watanabe, Y.; Kamata, T.; Katagiri, H.; Kido, J. A Novel Series of Thermally and Electrically Stable Hole-transporters End-capped by [1]Benzothieno[3,2-b][1]benzothiophenes for Organic Light-emitting Devices. Chem. Lett. 2019, 48, 219–222. [Google Scholar] [CrossRef]
- Saito, D.; Sasabe, H.; Kikuchi, T.; Ito, T.; Tsuneyama, H.; Kido, J. Improved operational lifetime of deep-red phosphorescent organic light-emitting diodes using a benzothienobenzothiophene (BTBT)-based p-type host material. J. Mater. Chem. C 2021, 9, 1215–1220. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, C.; Zheng, X.; Wu, L.; Xu, J.; Zhou, L.; Wong, P.K.J.; Zhang, W.; He, Y. A study on the luminescence properties of high-performance benzothieno[3,2-b][1]benzothiophene based organic semiconductors. Dyes Pigm. 2023, 216, 111359. [Google Scholar] [CrossRef]
- Takimiya, K.; Ebata, H.; Sakamoto, K.; Izawa, T.; Otsubo, T.; Kunugi, Y. 2,7-Diphenyl[1]benzothieno[3,2-b]benzothiophene, A New Organic Semiconductor for Air-Stable Organic Field-Effect Transistors with Mobilities up to 2.0 cm2 V−1 s−1. J. Am. Chem. Soc. 2006, 128, 12604–12605. [Google Scholar] [CrossRef] [PubMed]
- Amin, A.Y.; Khassanov, A.; Reuter, K.; Meyer-Friedrichsen, T.; Halik, M. Low-Voltage Organic Field Effect Transistors with a 2-Tridecyl[1]benzothieno[3,2-b][1]benzothiophene Semiconductor Layer. J. Am. Chem. Soc. 2012, 134, 16548–16550. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.R.; Kim, H.; Kim, C.; Seo, S. 2-Thiopene[1]benzothieno[3,2-b]benzothiophene derivatives as solution-processable organic semiconductors for organic thin-film transistors. Synth. Met. 2018, 235, 153–159. [Google Scholar] [CrossRef]
- Iino, H.; Usui, T.; Hanna, J.-i. Liquid crystals for organic thin-film transistors. Nat. Commun. 2015, 6, 6828. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Rajeshkumar Reddy, M.; Kwon, G.; Choi, D.; Kim, C.; Seo, S. Synthesis and characterization of 2,7-diethynyl-benzo[b]benzo[4,5]thieno[2,3-d]thiophene derivative as organic semiconductors for organic thin-film transistors. Synth. Met. 2016, 220, 599–605. [Google Scholar] [CrossRef]
- Yao, C.; Chen, X.; He, Y.; Guo, Y.; Murtaza, I.; Meng, H. Design and characterization of methoxy modified organic semiconductors based on phenyl[1]benzothieno[3,2-b][1]benzothiophene. RSC Adv. 2017, 7, 5514–5518. [Google Scholar] [CrossRef]
- Yamamoto, T.; Takimiya, K. Facile synthesis of highly pi-extended heteroarenes, dinaphtho[2,3-b:2′,3′-f]chalcogenopheno[3,2-b]chalcogenophenes, and their application to field-effect transistors. J. Am. Chem. Soc. 2007, 129, 2224–2225. [Google Scholar] [CrossRef] [PubMed]
- Kano, M.; Minari, T.; Tsukagoshi, K. All-Solution-Processed Selective Assembly of Flexible Organic Field-Effect Transistor Arrays. Appl. Phys. Express 2010, 3, 051601. [Google Scholar] [CrossRef]
- Uemura, T.; Hirose, Y.; Uno, M.; Takimiya, K.; Takeya, J. Very High Mobility in Solution-Processed Organic Thin-Film Transistors of Highly Ordered [1]Benzothieno[3,2-b]benzothiophene Derivatives. Appl. Phys. Express 2009, 2, 111501. [Google Scholar] [CrossRef]
- Ebata, H.; Izawa, T.; Miyazaki, E.; Takimiya, K.; Ikeda, M.; Kuwabara, H.; Yui, T. Highly Soluble [1]Benzothieno[3,2-b]benzothiophene (BTBT) Derivatives for High-Performance, Solution-Processed Organic Field-Effect Transistors. J. Am. Chem. Soc. 2007, 129, 15732–15733. [Google Scholar] [CrossRef] [PubMed]
- Haase, K.; Teixeira da Rocha, C.; Hauenstein, C.; Zheng, Y.; Hambsch, M.; Mannsfeld, S.C.B. High-Mobility, Solution-Processed Organic Field-Effect Transistors from C8-BTBT:Polystyrene Blends. Adv. Electron. Mater. 2018, 4, 1800076. [Google Scholar] [CrossRef]
- Liu, C.; Minari, T.; Lu, X.; Kumatani, A.; Takimiya, K.; Tsukagoshi, K. Solution-Processable Organic Single Crystals with Bandlike Transport in Field-Effect Transistors. Adv. Mater. 2011, 23, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Izawa, T.; Miyazaki, E.; Takimiya, K. Molecular Ordering of High-Performance Soluble Molecular Semiconductors and Re-evaluation of Their Field-Effect Transistor Characteristics. Adv. Mater. 2008, 20, 3388–3392. [Google Scholar] [CrossRef]
- Qi, M.; Zhang, D.; Zhu, Y.; Zhao, C.; Li, A.; Huang, F.; He, Y.; Meng, H. Anthracene-[1]benzothieno[3,2-b][1]benzothiophene (BTBT) dyad and triads as p-type semiconductors for organic field-effect transistors and phototransistors. J. Mater. Chem. C 2024, 12, 6578–6587. [Google Scholar] [CrossRef]
- Ryu, S.; Yun, C.; Ryu, S.; Ahn, J.; Kim, C.; Seo, S. Characterization of [1]Benzothieno[3,2-b]benzothiophene (BTBT) Derivatives with End-Capping Groups as Solution-Processable Organic Semiconductors for Organic Field-Effect Transistors. Coatings 2023, 13, 181. [Google Scholar] [CrossRef]
- Tisovský, P.; Gáplovský, A.; Gmucová, K.; Novota, M.; Pavúk, M.; Weis, M. Synthesis and characterization of new [1]benzothieno[3,2-b]benzothiophene derivatives with alkyl-thiophene core for application in organic field-effect transistors. Org. Electron. 2019, 68, 121–128. [Google Scholar] [CrossRef]
- Tayu, M.; Rahmanudin, A.; Perry, G.J.P.; Khan, R.U.; Tate, D.J.; Marcial-Hernandez, R.; Shen, Y.; Dierking, I.; Janpatompong, Y.; Aphichatpanichakul, S.; et al. Modular synthesis of unsymmetrical [1]benzothieno[3,2-b][1]benzothiophene molecular semiconductors for organic transistors. Chem. Sci. 2022, 13, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Qu, G.; Mohammadi, E.; Mei, J.; Diao, Y. Solution-Processed Nanoporous Organic Semiconductor Thin Films: Toward Health and Environmental Monitoring of Volatile Markers. Adv. Funct. Mater. 2017, 27, 1701117. [Google Scholar] [CrossRef]
- Trul, A.A.; Sizov, A.S.; Chekusova, V.P.; Borshchev, O.V.; Agina, E.V.; Shcherbina, M.A.; Bakirov, A.V.; Chvalun, S.N.; Ponomarenko, S.A. Organosilicon dimer of BTBT as a perspective semiconductor material for toxic gas detection with monolayer organic field-effect transistors. J. Mater. Chem. C 2018, 6, 9649–9659. [Google Scholar] [CrossRef]
- Pan, J.; Wu, Y.; Zhang, X.; Chen, J.; Wang, J.; Cheng, S.; Wu, X.; Zhang, X.; Jie, J. Anisotropic charge trapping in phototransistors unlocks ultrasensitive polarimetry for bionic navigation. Nat. Commun. 2022, 13, 6629. [Google Scholar] [CrossRef] [PubMed]
- Turetta, N.; Stoeckel, M.-A.; Furlan de Oliveira, R.; Devaux, F.; Greco, A.; Cendra, C.; Gullace, S.; Gicevičius, M.; Chattopadhyay, B.; Liu, J.; et al. High-Performance Humidity Sensing in π-Conjugated Molecular Assemblies through the Engineering of Electron/Proton Transport and Device Interfaces. J. Am. Chem. Soc. 2022, 144, 2546–2555. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Sun, Y.; Liu, J.; Shi, X.; Li, H.; Zhang, J.; Li, C.; Yi, Y.; Mo, S.; Fan, L.; et al. Thermally Stable Organic Field-Effect Transistors Based on Asymmetric BTBT Derivatives for High Performance Solar-Blind Photodetectors. Adv. Sci. 2022, 9, 2106085. [Google Scholar] [CrossRef] [PubMed]
- Takimiya, K.; Bulgarevich, K.; Kawabata, K. Crystal-Structure Control of Molecular Semiconductors by Methylthiolation: Toward Ultrahigh Mobility. Acc. Chem. Res. 2024, 57, 884–894. [Google Scholar] [CrossRef] [PubMed]
- Antolini, L.; Tedesco, E.; Barbarella, G.; Favaretto, L.; Sotgiu, G.; Zambianchi, M.; Casarini, D.; Gigli, G.; Cingolani, R. Molecular Packing and Photoluminescence Efficiency in Odd-Membered Oligothiophene S,S-Dioxides. J. Am. Chem. Soc. 2000, 122, 9006–9013. [Google Scholar] [CrossRef]
- Barbarella, G.; Pudova, O.; Arbizzani, C.; Mastragostino, M.; Bongini, A. Oligothiophene-S,S-dioxides: a New Class of Thiophene-based Materials. J. Org. Chem. 1998, 63, 1742–1745. [Google Scholar] [CrossRef]
- Li, P.; Cui, Y.; Song, C.; Zhang, H. Effects of Sulfur Oxidation on the Electronic and Charge Transport Properties of Fused Oligothiophene Derivatives. J. Phys. Chem. C 2016, 120, 14484–14494. [Google Scholar] [CrossRef]
- Barbarella, G.; Favaretto, L.; Sotgiu, G.; Zambianchi, M.; Fattori, V.; Cocchi, M.; Cacialli, F.; Gigli, G.; Cingolani, R. Modified Oligothiophenes with High Photo- and Electroluminescence Efficiencies. Adv. Mater. 1999, 11, 1375–1379. [Google Scholar] [CrossRef]
- Camaioni, N.; Ridolfi, G.; Fattori, V.; Favaretto, L.; Barbarella, G. Oligothiophene-S,S-dioxides as a class of electron-acceptor materials for organic photovoltaics. Appl. Phys. Lett. 2004, 84, 1901–1903. [Google Scholar] [CrossRef]
- Gigli, G.; Inganäs, O.; Anni, M.; De Vittorio, M.; Cingolani, R.; Barbarella, G.; Favaretto, L. Multicolor oligothiophene-based light-emitting diodes. Appl. Phys. Lett. 2001, 78, 1493–1495. [Google Scholar] [CrossRef]
- Varathan, E.; Subramanian, V. The role of sulfur oxidation in controlling the electronic properties of sulfur-containing host molecules for phosphorescent organic light-emitting diodes. Phys. Chem. Chem. Phys. 2017, 19, 12002–12012. [Google Scholar] [CrossRef] [PubMed]
- Miguel, L.S.; Matzger, A.J. Regiochemical Effects of Sulfur Oxidation on the Electronic and Solid-State Properties of Planarized Oligothiophenes Containing Thieno[3,2-b]thiophene Units. J. Org. Chem. 2008, 73, 7882–7888. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Okamoto, T.; Wakamiya, A.; Yamaguchi, S. Electronic Modulation of Fused Oligothiophenes by Chemical Oxidation. Org. Lett. 2008, 10, 3393–3396. [Google Scholar] [CrossRef]
- Zherdeva, S.Y.; Zheltov, A.Y.; Kozik, T.A.; Stepanov, B.I. Investigation of the Products from the Reduction of 2,2′-Stilbenedisulfonyl Chloride by Hydriodic Acid. J. Org. Chem. USSR (Eng. Transl.) 1980, 16, 379–383. [Google Scholar]
- Udre, V.E.; Lukevits, E.Y.; Kemme, A.A.; Bleidelis, Y.Y. New Reaction of Benzothieno[3,2-b]benzothiophene Disulfone. Chem. Heterocycl. Compd. 1980, 16, 234–237. [Google Scholar] [CrossRef]
- Taki, M.; Kajiwara, K.; Yamaguchi, E.; Sato, Y.; Yamaguchi, S. Fused Thiophene-S,S-dioxide-Based Super-Photostable Fluorescent Marker for Lipid Droplets. ACS Mater. Lett. 2021, 3, 42–49. [Google Scholar] [CrossRef]
- Saito, M.; Osaka, I.; Miyazaki, E.; Takimiya, K.; Kuwabara, H.; Ikeda, M. One-step synthesis of [1]benzothieno[3,2-b][1]benzothiophene from o-chlorobenzaldehyde. Tetrahedron Lett. 2011, 52, 285–288. [Google Scholar] [CrossRef]
- Vyas, V.S.; Gutzler, R.; Nuss, J.; Kern, K.; Lotsch, B.V. Optical gap in herringbone and π-stacked crystals of [1]benzothieno[3,2-b]benzothiophene and its brominated derivative. CrystEngComm 2014, 16, 7389–7392. [Google Scholar] [CrossRef]
- Tang, M.L.; Bao, Z. Halogenated Materials as Organic Semiconductors. Chem. Mater. 2011, 23, 446–455. [Google Scholar] [CrossRef]
- Ikeda, T.; Tahara, K.; Ishimatsu, R.; Ono, T.; Cui, L.; Maeda, M.; Ozawa, Y.; Abe, M. Lewis-Pairing-Induced Electrochemiluminescence Enhancement from Electron Donor-Acceptor Diads Decorated with Tris(pentafluorophenyl)borane as an Electrochemical Protector. Angew. Chem. Int. Ed. 2023, 62, e202301109. [Google Scholar] [CrossRef] [PubMed]
- Foley, S.; Berberan-Santos, M.N.; Fedorov, A.; Bensasson, R.V.; Leach, S.; Gigante, B. Effect of halogenated compounds on the photophysics of C70 and a monoadduct of C70: Some implications on optical limiting behaviour. Chem. Phys. 2001, 263, 437–447. [Google Scholar] [CrossRef]
- Zakavi, S.; Naderloo, M.; Heydari-turkmani, A.; Alghooneh, L.; Eskandari, M. Effects of β-bromine substitution and core protonation on photosensitizing properties of porphyrins: Long wavelength photosensitizers. J. Catal. 2019, 380, 236–246. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cancès, E. The IEF version of the PCM solvation method: An overview of a new method addressed to study molecular solutes at the QM ab initio level. J. Mol. Struct. THEOCHEM 1999, 464, 211–226. [Google Scholar] [CrossRef]
- Mennucci, B.; Cancès, E.; Tomasi, J. Evaluation of Solvent Effects in Isotropic and Anisotropic Dielectrics and in Ionic Solutions with a Unified Integral Equation Method: Theoretical Bases, Computational Implementation, and Numerical Applications. J. Phys. Chem. B 1997, 101, 10506–10517. [Google Scholar] [CrossRef]
- Cancès, E.; Mennucci, B.; Tomasi, J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997, 107, 3032–3041. [Google Scholar] [CrossRef]
- Santato, C.; Favaretto, L.; Melucci, M.; Zanelli, A.; Gazzano, M.; Monari, M.; Isik, D.; Banville, D.; Bertolazzi, S.; Loranger, S.; et al. Influence of the oxidation level on the electronic, morphological and charge transport properties of novel dithienothiophene S-oxide and S,S-dioxide inner core oligomers. J. Mater. Chem. 2010, 20, 669–676. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, T.; Chen, Q. An sp-hybridized all-carboatomic ring, cyclo[18]carbon: Electronic structure, electronic spectrum, and optical nonlinearity. Carbon 2020, 165, 461–467. [Google Scholar] [CrossRef]
- Sheldrick, G. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Bourhis, L.J.; Dolomanov, O.V.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment—Olex2 dissected. Acta Crystallogr. Sect. A 2015, 71, 59–75. [Google Scholar] [CrossRef]
- Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef] [PubMed]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Rappoport, D.; Furche, F. Property-optimized Gaussian basis sets for molecular response calculations. J. Chem. Phys. 2010, 133, 134105. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, B.P.; Altarawy, D.; Didier, B.; Gibson, T.D.; Windus, T.L. New Basis Set Exchange: An Open, Up-to-Date Resource for the Molecular Sciences Community. J. Chem. Inf. Model. 2019, 59, 4814–4820. [Google Scholar] [CrossRef] [PubMed]
Compound | DCM | Solid | ||||
---|---|---|---|---|---|---|
λabs [nm] | λem [nm] | Stokes Shift [nm] (cm−1) | Ф | λem [nm] | Td [°C] 1 | |
2,7-diBr-BTBT | 337 | 362 | 25 (2049) | <1 | 399 | 256.4 |
2,7-diBr-BTBTDO | 356 | 435 | 79 (5101) | >99 | 459 | 296.2 |
2,7-diBr-BTBTTO | 396 | 486 | 90 (4676) | >99 | 495 | 314.5 |
Compound | EHOMO [eV] | ELUMO [eV] | Energy Gap [eV] | Excited State | Eex 1 [eV] | λex 2 [nm] | Oscillator Strength | Major Transitions [%] |
---|---|---|---|---|---|---|---|---|
2,7-diBr-BTBT | –6.230 | –1.734 | 4.496 | S1 | 3.762 | 329.6 | 0.765 | H⟶L (97.4) |
2,7-diBr-BTBTDO | –6.672 | –2.447 | 4.225 | S1 | 3.422 | 362.3 | 0.605 | H⟶L (97.8) |
2,7-diBr-BTBTTO | –7.048 | –3.218 | 3.830 | S1 | 2.990 | 414.6 | 0.560 | H⟶L (98.7) |
Compound | IP [eV] | EA [eV] | λh [eV] | λe [eV] | λ [eV] |
---|---|---|---|---|---|
2,7-diBr-BTBT | 7.69 | 0.70 | 0.302 | 0.328 | 0.630 |
2,7-diBr-BTBTDO | 8.17 | 1.41 | 0.390 | 0.319 | 0.719 |
2,7-diBr-BTBTTO | 8.73 | 2.42 | 0.328 | 0.591 | 0.919 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rzewnicka, A.; Dolot, R.; Mikina, M.; Krysiak, J.; Żurawiński, R. Modulation of Properties in [1]Benzothieno[3,2-b][1]benzothiophene Derivatives through Sulfur Oxidation. Molecules 2024, 29, 3575. https://doi.org/10.3390/molecules29153575
Rzewnicka A, Dolot R, Mikina M, Krysiak J, Żurawiński R. Modulation of Properties in [1]Benzothieno[3,2-b][1]benzothiophene Derivatives through Sulfur Oxidation. Molecules. 2024; 29(15):3575. https://doi.org/10.3390/molecules29153575
Chicago/Turabian StyleRzewnicka, Aneta, Rafał Dolot, Maciej Mikina, Jerzy Krysiak, and Remigiusz Żurawiński. 2024. "Modulation of Properties in [1]Benzothieno[3,2-b][1]benzothiophene Derivatives through Sulfur Oxidation" Molecules 29, no. 15: 3575. https://doi.org/10.3390/molecules29153575
APA StyleRzewnicka, A., Dolot, R., Mikina, M., Krysiak, J., & Żurawiński, R. (2024). Modulation of Properties in [1]Benzothieno[3,2-b][1]benzothiophene Derivatives through Sulfur Oxidation. Molecules, 29(15), 3575. https://doi.org/10.3390/molecules29153575