Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,252)

Search Parameters:
Keywords = behavioral decision making

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
45 pages, 5594 KiB  
Article
Integrated Medical and Digital Approaches to Enhance Post-Bariatric Surgery Care: A Prototype-Based Evaluation of the NutriMonitCare System in a Controlled Setting
by Ruxandra-Cristina Marin, Marilena Ianculescu, Mihnea Costescu, Veronica Mocanu, Alina-Georgiana Mihăescu, Ion Fulga and Oana-Andreia Coman
Nutrients 2025, 17(15), 2542; https://doi.org/10.3390/nu17152542 (registering DOI) - 2 Aug 2025
Abstract
Introduction/Objective: Post-bariatric surgery patients require long-term, coordinated care to address complex nutritional, physiological, and behavioral challenges. Personalized smart nutrition, combining individualized dietary strategies with targeted monitoring, has emerged as a valuable direction for optimizing recovery and long-term outcomes. This article examines how traditional [...] Read more.
Introduction/Objective: Post-bariatric surgery patients require long-term, coordinated care to address complex nutritional, physiological, and behavioral challenges. Personalized smart nutrition, combining individualized dietary strategies with targeted monitoring, has emerged as a valuable direction for optimizing recovery and long-term outcomes. This article examines how traditional medical protocols can be enhanced by digital solutions in a multidisciplinary framework. Methods: The study analyzes current clinical practices, including personalized meal planning, physical rehabilitation, biochemical marker monitoring, and psychological counseling, as applied in post-bariatric care. These established approaches are then analyzed in relation to the NutriMonitCare system, a digital health system developed and tested in a laboratory environment. Used here as an illustrative example, the NutriMonitCare system demonstrates the potential of digital tools to support clinicians through real-time monitoring of dietary intake, activity levels, and physiological parameters. Results: Findings emphasize that medical protocols remain the cornerstone of post-surgical management, while digital tools may provide added value by enhancing data availability, supporting individualized decision making, and reinforcing patient adherence. Systems like the NutriMonitCare system could be integrated into interdisciplinary care models to refine nutrition-focused interventions and improve communication across care teams. However, their clinical utility remains theoretical at this stage and requires further validation. Conclusions: In conclusion, the integration of digital health tools with conventional post-operative care has the potential to advance personalized smart nutrition. Future research should focus on clinical evaluation, real-world testing, and ethical implementation of such technologies into established medical workflows to ensure both efficacy and patient safety. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

22 pages, 29737 KiB  
Article
A Comparative Investigation of CFD Approaches for Oil–Air Two-Phase Flow in High-Speed Lubricated Rolling Bearings
by Ruifeng Zhao, Pengfei Zhou, Jianfeng Zhong, Duan Yang and Jie Ling
Machines 2025, 13(8), 678; https://doi.org/10.3390/machines13080678 (registering DOI) - 1 Aug 2025
Abstract
Analyzing the two-phase flow behavior in bearing lubrication is crucial for understanding friction and wear mechanisms, optimizing lubrication design, and improving bearing operational efficiency and reliability. However, the complexity of oil–air two-phase flow in high-speed bearings poses significant research challenges. Currently, there is [...] Read more.
Analyzing the two-phase flow behavior in bearing lubrication is crucial for understanding friction and wear mechanisms, optimizing lubrication design, and improving bearing operational efficiency and reliability. However, the complexity of oil–air two-phase flow in high-speed bearings poses significant research challenges. Currently, there is a lack of comparative studies employing different simulation strategies to address this issue, leaving a gap in evidence-based guidance for selecting appropriate simulation approaches in practical applications. This study begins with a comparative analysis between experimental and simulation results to validate the reliability of the adopted simulation approach. Subsequently, a comparative evaluation of different simulation methods is conducted to provide a scientific basis for relevant decision-making. Evaluated from three dimensions—adaptability to rotational speed conditions, research focuses (oil distribution and power loss), and computational economy—the findings reveal that FVM excels at medium-to-high speeds, accurately predicting continuous oil film distribution and power loss, while MPS, leveraging its meshless Lagrangian characteristics, demonstrates superior capability in describing physical phenomena under extreme conditions, albeit with higher computational costs. Economically, FVM, supported by mature software ecosystems and parallel computing optimization, is more suitable for industrial design applications, whereas MPS, being more reliant on high-performance hardware, is better suited for academic research and customized scenarios. The study further proposes that future research could adopt an FVM-MPS coupled approach to balance efficiency and precision, offering a new paradigm for multi-scale lubrication analysis in bearings. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

26 pages, 5263 KiB  
Article
A System Dynamics-Based Hybrid Digital Twin Model for Driving Green Manufacturing
by Sucheng Fan, Huagang Tong and Song Wang
Systems 2025, 13(8), 651; https://doi.org/10.3390/systems13080651 (registering DOI) - 1 Aug 2025
Abstract
Green manufacturing has emerged as a critical objective in the evolution of advanced production systems. Although digital twin technology is widely recognized for enhancing efficiency and promoting sustainability, the majority of existing research focuses exclusively on physical systems. They neglect the impact of [...] Read more.
Green manufacturing has emerged as a critical objective in the evolution of advanced production systems. Although digital twin technology is widely recognized for enhancing efficiency and promoting sustainability, the majority of existing research focuses exclusively on physical systems. They neglect the impact of soft systems, including human behavior, decision-making, and operational strategies. To address this limitation, the present study introduces an innovative hybrid digital twin model that integrates both physical and soft systems to support green manufacturing initiatives comprehensively. The primary contributions of this work are threefold. First, a novel hybrid architecture is developed by coupling real-time physical data with virtual soft system components that simulate factory operations. Second, lean production principles are systematically incorporated into the soft system, thereby facilitating reduced energy consumption and minimizing environmental impact. Third, a parameter-driven programming model is formulated to correlate critical variables with green performance metrics, and a genetic algorithm is utilized to optimize these variables, ultimately enhancing sustainability outcomes. This integrated approach not only expands the applicability of digital twin technology but also offers a data-driven decision-support tool for the advancement of green manufacturing practices. Full article
(This article belongs to the Section Systems Engineering)
Show Figures

Figure 1

25 pages, 953 KiB  
Article
Command Redefined: Neural-Adaptive Leadership in the Age of Autonomous Intelligence
by Raul Ionuț Riti, Claudiu Ioan Abrudan, Laura Bacali and Nicolae Bâlc
AI 2025, 6(8), 176; https://doi.org/10.3390/ai6080176 (registering DOI) - 1 Aug 2025
Abstract
Artificial intelligence has taken a seat at the executive table and is threatening the fact that human beings are the only ones who should be in a position of power. This article gives conjectures on the future of leadership in which managers will [...] Read more.
Artificial intelligence has taken a seat at the executive table and is threatening the fact that human beings are the only ones who should be in a position of power. This article gives conjectures on the future of leadership in which managers will collaborate with learning algorithms in the Neural Adaptive Artificial Intelligence Leadership Model, which is informed by the transformational literature on leadership and socio-technical systems, as well as the literature on algorithmic governance. We assessed the model with thirty in-depth interviews, system-level traces of behavior, and a verified survey, and we explored six hypotheses that relate to algorithmic delegation and ethical oversight, as well as human judgment versus machine insight in terms of agility and performance. We discovered that decisions are made quicker, change is more effective, and interaction is more vivid where agile practices and good digital understanding exist, and statistical tests propose that human flexibility and definite governance augment those benefits as well. It is single-industry research that contains self-reported measures, which causes research to be limited to other industries that contain more objective measures. Practitioners are provided with a practical playbook on how to make algorithmic jobs meaningful, introduce moral fail-safes, and build learning feedback to ensure people and machines are kept in line. Socially, the practice is capable of minimizing bias and establishing inclusion by visualizing accountability in the code and practice. Filling the gap between the theory of leadership and the reality of algorithms, the study provides a model of intelligent systems leading in organizations that can be reproduced. Full article
(This article belongs to the Section AI Systems: Theory and Applications)
42 pages, 2867 KiB  
Article
A Heuristic Approach to Competitive Facility Location via Multi-View K-Means Clustering with Co-Regularization and Customer Behavior
by Thanathorn Phoka, Praeploy Poonprapan and Pornpimon Boriwan
Mathematics 2025, 13(15), 2481; https://doi.org/10.3390/math13152481 (registering DOI) - 1 Aug 2025
Abstract
Solving competitive facility location problems can optimize market share or operational efficiency in environments where multiple firms compete for customer attention. In such contexts, facility attractiveness is shaped not only by geographic proximity but also by customer preference characteristics. This study presents a [...] Read more.
Solving competitive facility location problems can optimize market share or operational efficiency in environments where multiple firms compete for customer attention. In such contexts, facility attractiveness is shaped not only by geographic proximity but also by customer preference characteristics. This study presents a novel heuristic framework that integrates multi-view K-means clustering with customer behavior modeling reinforced by a co-regularization mechanism to align clustering results across heterogeneous data views. By jointly exploiting spatial and behavioral information, the framework clusters customers and facilities into meaningful market segments. Within each segment, a bilevel optimization model is applied to represent the sequential decision-making of competing entities—where a leader first selects facility locations, followed by a reactive follower. An empirical evaluation on a real-world dataset from San Francisco demonstrates that the proposed approach, using optimal co-regularization parameters, achieves a total runtime of approximately 4.00 s—representing a 99.34% reduction compared to the full CFLBP-CB model (608.58 s) and a 99.32% reduction compared to a genetic algorithm (585.20 s). Concurrently, it yields an overall profit of 16,104.17, which is an approximate 0.72% increase over the Direct CFLBP-CB profit of 15,988.27 and is only 0.21% lower than the genetic algorithm’s highest profit of 16,137.75. Moreover, comparative analysis reveals that the proposed multi-view clustering with co-regularization outperforms all single-view baselines, including K-means, spectral, and hierarchical methods. This superiority is evidenced by an approximate 5.21% increase in overall profit and a simultaneous reduction in optimization time, thereby demonstrating its effectiveness in capturing complementary spatial and behavioral structures for competitive facility location. Notably, the proposed two-stage approach achieves high-quality solutions with significantly shorter computation times, making it suitable for large-scale or time-sensitive competitive facility planning tasks. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

24 pages, 668 KiB  
Article
Empowered to Detect: How Vigilance and Financial Literacy Shield Us from the Rising Tide of Financial Frauds
by Rizky Yusviento Pelawi, Eduardus Tandelilin, I Wayan Nuka Lantara and Eddy Junarsin
J. Risk Financial Manag. 2025, 18(8), 425; https://doi.org/10.3390/jrfm18080425 (registering DOI) - 1 Aug 2025
Abstract
According to the literature, the advancement of information and communication technology (ICT) has increased individual exposure to scams, turning fraud victimization into a significant concern. While prior research has primarily focused on socio-demographic predictors of fraud victimization, this study adopts a behavioral perspective [...] Read more.
According to the literature, the advancement of information and communication technology (ICT) has increased individual exposure to scams, turning fraud victimization into a significant concern. While prior research has primarily focused on socio-demographic predictors of fraud victimization, this study adopts a behavioral perspective that is grounded in the Signal Detection Theory (SDT) to investigate the likelihood determinants of individuals becoming fraud victims. Using survey data of 671 Indonesian respondents analyzed with the Partial Least Squares Structural Equation Modeling (PLS-SEM), we explored the roles of vigilance and financial literacy in moderating the relationship between fraud exposure and victimization. Our findings substantiate the notion that higher exposure to fraudulent activity significantly increases the likelihood of victimization. The results also show that vigilance negatively moderates the relationship between fraud exposure and fraud victimization, suggesting that individuals with higher vigilance are better at identifying scams, thereby decreasing their likelihood of becoming fraud victims. Furthermore, financial literacy is positively related to vigilance, indicating that financially literate individuals are more aware of potential scams. However, the predictive power of financial literacy on vigilance is relatively low. Hence, while literacy helps a person sharpen their indicators for detecting fraud, psychological, behavioral, and contextual factors may also affect their vigilance and decision-making. Full article
(This article belongs to the Section Risk)
Show Figures

Figure 1

30 pages, 8037 KiB  
Review
A Review of Multiscale Interaction Mechanisms of Wind–Leaf–Droplet Systems in Orchard Spraying
by Yunfei Wang, Zhenlei Zhang, Ruohan Shi, Shiqun Dai, Weidong Jia, Mingxiong Ou, Xiang Dong and Mingde Yan
Sensors 2025, 25(15), 4729; https://doi.org/10.3390/s25154729 (registering DOI) - 31 Jul 2025
Viewed by 20
Abstract
The multiscale interactive system composed of wind, leaves, and droplets serves as a critical dynamic unit in precision orchard spraying. Its coupling mechanisms fundamentally influence pesticide transport pathways, deposition patterns, and drift behavior within crop canopies, forming the foundational basis for achieving intelligent [...] Read more.
The multiscale interactive system composed of wind, leaves, and droplets serves as a critical dynamic unit in precision orchard spraying. Its coupling mechanisms fundamentally influence pesticide transport pathways, deposition patterns, and drift behavior within crop canopies, forming the foundational basis for achieving intelligent and site-specific spraying operations. This review systematically examines the synergistic dynamics across three hierarchical scales: Droplet–leaf surface wetting and adhesion at the microscale; leaf cluster motion responses at the mesoscale; and the modulation of airflow and spray plume diffusion by canopy architecture at the macroscale. Key variables affecting spray performance—such as wind speed and turbulence structure, leaf biomechanical properties, droplet size and electrostatic characteristics, and spatial canopy heterogeneity—are identified and analyzed. Furthermore, current advances in multiscale modeling approaches and their corresponding experimental validation techniques are critically evaluated, along with their practical boundaries of applicability. Results indicate that while substantial progress has been made at individual scales, significant bottlenecks remain in the integration of cross-scale models, real-time acquisition of critical parameters, and the establishment of high-fidelity experimental platforms. Future research should prioritize the development of unified coupling frameworks, the integration of physics-based and data-driven modeling strategies, and the deployment of multimodal sensing technologies for real-time intelligent spray decision-making. These efforts are expected to provide both theoretical foundations and technological support for advancing precision and intelligent orchard spraying systems. Full article
(This article belongs to the Special Issue Application of Sensors Technologies in Agricultural Engineering)
Show Figures

Figure 1

14 pages, 355 KiB  
Article
Driver Behavior-Driven Evacuation Strategy with Dynamic Risk Propagation Modeling for Road Disruption Incidents
by Yanbin Hu, Wenhui Zhou and Hongzhi Miao
Eng 2025, 6(8), 173; https://doi.org/10.3390/eng6080173 - 31 Jul 2025
Viewed by 44
Abstract
When emergency incidents, such as bridge damage, abruptly occur on highways and lead to traffic disruptions, the multidimensionality and complexity of driver behaviors present significant challenges to the design of effective emergency response mechanisms. This study introduces a multi-level collaborative emergency mechanism grounded [...] Read more.
When emergency incidents, such as bridge damage, abruptly occur on highways and lead to traffic disruptions, the multidimensionality and complexity of driver behaviors present significant challenges to the design of effective emergency response mechanisms. This study introduces a multi-level collaborative emergency mechanism grounded in driver behavior characteristics, aiming to enhance both traffic safety and emergency response efficiency through hierarchical collaboration and dynamic optimization strategies. By capitalizing on human drivers’ perception and decision-making attributes, a driver behavior classification model is developed to quantitatively assess the risk response capabilities of distinct behavioral patterns (conservative, risk-taking, and conformist) under emergency scenarios. A multi-tiered collaborative framework, comprising an early warning layer, a guidance layer, and an interception layer, is devised to implement tailored emergency strategies. Additionally, a rear-end collision risk propagation model is constructed by integrating the risk field model with probabilistic risk assessment, enabling dynamic adjustments to interception range thresholds for precise and real-time emergency management. The efficacy of this mechanism is substantiated through empirical case studies, which underscore its capacity to substantially reduce the occurrence of secondary accidents and furnish scientific evidence and technical underpinnings for emergency management pertaining to highway bridge damage. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

15 pages, 5904 KiB  
Study Protocol
Protocol for the Digital, Individualized, and Collaborative Treatment of Type 2 Diabetes in General Practice Based on Decision Aid (DICTA)—A Randomized Controlled Trial
by Sofie Frigaard Kristoffersen, Jeanette Reffstrup Christensen, Louise Munk Ramo Jeremiassen, Lea Bolette Kylkjær, Nanna Reffstrup Christensen, Sally Wullf Jørgensen, Jette Kolding Kristensen, Sonja Wehberg, Ilan Esra Raymond, Dorte E. Jarbøl, Jesper Bo Nielsen, Jens Søndergaard, Michael Hecht Olsen, Jens Steen Nielsen and Carl J. Brandt
Nutrients 2025, 17(15), 2494; https://doi.org/10.3390/nu17152494 - 30 Jul 2025
Viewed by 152
Abstract
Background: Despite significant advancements in diabetes care, many individuals with type 2 diabetes (T2D) do not receive optimal care and treatment. Digital interventions promoting behavioral changes have shown promising long-term results in supporting healthier lifestyles but are not implemented in most healthcare [...] Read more.
Background: Despite significant advancements in diabetes care, many individuals with type 2 diabetes (T2D) do not receive optimal care and treatment. Digital interventions promoting behavioral changes have shown promising long-term results in supporting healthier lifestyles but are not implemented in most healthcare offerings, maybe due to lack of general practice support and collaboration. This study evaluates the efficacy of the Digital, Individualized, and Collaborative Treatment of T2D in General Practice Based on Decision Aid (DICTA), a randomized controlled trial integrating a patient-centered smartphone application for lifestyle support in conjunction with a clinical decision support (CDS) tool to assist general practitioners (GPs) in optimizing antidiabetic treatment. Methods: The present randomized controlled trial aims to recruit 400 individuals with T2D from approximately 70 GP clinics (GPCs) in Denmark. The GPCs will be cluster-randomized in a 2:3 ratio to intervention or control groups. The intervention group will receive one year of individualized eHealth lifestyle coaching via a smartphone application, guided by patient-reported outcomes (PROs). Alongside this, the GPCs will have access to the CDS tool to optimize pharmacological decision-making through electronic health records. The control group will receive usual care for one year, followed by the same intervention in the second year. Results: The primary outcome is the one-year change in estimated ten-year cardiovascular risk, assessed by SCORE2-Diabetes calculated from age, smoking status, systolic blood pressure, total and high-density lipoprotein cholesterol, age at diabetes diagnosis, HbA1c, and eGFR. Conclusions: If effective, DICTA could offer a scalable, digital-first approach for improving T2D management in primary care by combining patient-centered lifestyle coaching with real-time pharmacological clinical decision support. Full article
(This article belongs to the Section Nutrition and Diabetes)
Show Figures

Figure 1

17 pages, 539 KiB  
Article
Modeling AI Adoption in SMEs for Sustainable Innovation: A PLS-SEM Approach Integrating TAM, UTAUT2, and Contextual Drivers
by Raluca-Giorgiana (Chivu) Popa, Ionuț-Claudiu Popa, David-Florin Ciocodeică and Horia Mihălcescu
Sustainability 2025, 17(15), 6901; https://doi.org/10.3390/su17156901 - 29 Jul 2025
Viewed by 238
Abstract
Despite growing interest in AI technologies, there is a lack of integrated models explaining AI adoption in SMEs from a consumer perspective. This study addresses this gap. Although artificial intelligence (AI) has gained traction in digital innovation strategies, especially among SMEs, existing research [...] Read more.
Despite growing interest in AI technologies, there is a lack of integrated models explaining AI adoption in SMEs from a consumer perspective. This study addresses this gap. Although artificial intelligence (AI) has gained traction in digital innovation strategies, especially among SMEs, existing research lacks integrative models that address cognitive, contextual, and emotional factors driving AI adoption. This study addresses this gap by developing a theoretical model based on TAM and UTAUT2, enhanced with passion, workplace integration, and trust. Drawing on the Technology Acceptance Model and consumer trust theories, the study provides empirical insights into how these factors shape behavioral intentions to adopt AI technologies. The findings aim to inform both theory and practice by highlighting how emerging digital tools affect consumer decision making and engagement across personal and professional contexts. The study contributes to both theory and practice by offering empirical evidence on the drivers of AI adoption and by providing managerial recommendations for SMEs to implement AI-driven personalization responsibly. Full article
(This article belongs to the Special Issue Advancing Innovation and Sustainability in SMEs: Insights and Trends)
Show Figures

Figure 1

25 pages, 2064 KiB  
Systematic Review
The Cognitive Cost of Motor Control: A Systematic Review and Meta-Analysis of Parkinson’s Disease Treatments and Financial Decision-Making
by Nektaria Kandylaki, Panayiotis Patrikelis, Spiros Konitsiotis, Lambros Messinis and Vasiliki Folia
Healthcare 2025, 13(15), 1850; https://doi.org/10.3390/healthcare13151850 - 29 Jul 2025
Viewed by 151
Abstract
Background: Despite growing interest in the literature on Parkinson’s disease (PD) on cognitive functioning, financial incompetence—a crucial aspect of daily living—and its modulation susceptibility by PD treatment regimens remains relatively understudied. Objective: This systematic review and meta-analysis aimed to synthesize existing evidence on [...] Read more.
Background: Despite growing interest in the literature on Parkinson’s disease (PD) on cognitive functioning, financial incompetence—a crucial aspect of daily living—and its modulation susceptibility by PD treatment regimens remains relatively understudied. Objective: This systematic review and meta-analysis aimed to synthesize existing evidence on how PD treatments affect financial capacity, assessing both direct financial competence and cognitive or behavioral proxies of financial decision-making. Methods: A comprehensive literature search according to PRISMA protocol was conducted across major biomedical databases, supplemented by gray literature and manual reference list checks. Eligible studies assessed financial capacity directly or indirectly through cognitive proxies (e.g., executive function, decision-making) or financial risk behaviors (e.g., impulse control disorders). Two separate meta-analyses were performed. Heterogeneity (I2), publication bias (Egger’s test), and sensitivity analyses were conducted to assess robustness. Results: Twenty-three studies met inclusion criteria. One study directly measured financial capacity and was analyzed narratively, reporting diminished competence in patients on levodopa therapy. A meta-analysis of cognitive proxies (10 studies) showed a moderate effect size (Hedges’ g = 0.70, 95% CI [0.45, 0.92], p < 0.001), indicating that PD treatments negatively affect executive function and financial decision-making. A second meta-analysis of impulse control and financial risk behaviors (12 studies) revealed a larger effect size (Hedges’ g = 0.98, 95% CI [0.75, 1.22], p < 0.001), strongly linking dopamine agonists to increased financial risk-taking. Moderate heterogeneity (I2 = 45.8–60.5%) and potential publication bias (Egger’s test p = 0.027) were noted. Conclusions: These findings suggest that PD treatments negatively impact financial decision-making both directly and indirectly through cognitive and behavioral pathways. Integrating financial decision-making assessments into PD care, particularly for patients on dopamine agonists, is recommended. Future research should prioritize longitudinal studies and standardized neuropsychological measures to guide clinical practice and optimize patient outcomes. Full article
Show Figures

Figure 1

24 pages, 1681 KiB  
Review
Molecular Insight into the Role of HLA Genotypes in Immunogenicity and Secondary Refractoriness to Anti-TNF Therapy in IBD Patients
by Mladen Maksic, Irfan Corovic, Tijana Maksic, Jelena Zivic, Milos Zivic, Natasa Zdravkovic, Aleksa Begovic, Marija Medovic, Djordje Kralj, Zeljko Todorovic, Milica Cekerevac, Rasa Medovic and Milos Nikolic
Int. J. Mol. Sci. 2025, 26(15), 7274; https://doi.org/10.3390/ijms26157274 - 28 Jul 2025
Viewed by 220
Abstract
The emergence of anti-TNF agents has revolutionized the management of inflammatory bowel disease, yet a significant proportion of patients experience primary non-response or secondary loss of response due to immunogenicity. As the field of precision medicine advances, genetic predictors such as human leukocyte [...] Read more.
The emergence of anti-TNF agents has revolutionized the management of inflammatory bowel disease, yet a significant proportion of patients experience primary non-response or secondary loss of response due to immunogenicity. As the field of precision medicine advances, genetic predictors such as human leukocyte antigen (HLA) variants are gaining increasing attention. This review provides a comprehensive synthesis of current evidence on the role of HLA genotypes in inflammatory bowel disease susceptibility and disease behavior, with a focus on their mechanistic and clinical relevance in anti-TNF therapy. Special emphasis is placed on HLA-DQA1*05, a validated predictor of anti-drug antibody formation and reduced therapeutic durability. We explore the immunological basis of HLA-mediated immunogenicity, summarize pharmacogenetic and biomarker findings, and discuss how HLA typing may be integrated into treatment algorithms to improve patient stratification and long-term outcomes. As immunogenetics continues to inform clinical decision-making, understanding the interplay between HLA polymorphisms and therapeutic response offers new opportunities for biomarker-guided, personalized care in inflammatory bowel disease. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

54 pages, 5068 KiB  
Review
Application of Machine Learning Models in Optimizing Wastewater Treatment Processes: A Review
by Florin-Stefan Zamfir, Madalina Carbureanu and Sanda Florentina Mihalache
Appl. Sci. 2025, 15(15), 8360; https://doi.org/10.3390/app15158360 - 27 Jul 2025
Viewed by 544
Abstract
The treatment processes from a wastewater treatment plant (WWTP) are known for their complexity and highly nonlinear behavior, which makes them challenging to analyze, model, and especially, to control. This research studies how machine learning (ML) with a focus on deep learning (DL) [...] Read more.
The treatment processes from a wastewater treatment plant (WWTP) are known for their complexity and highly nonlinear behavior, which makes them challenging to analyze, model, and especially, to control. This research studies how machine learning (ML) with a focus on deep learning (DL) techniques can be applied to optimize the treatment processes of WWTPs, highlighting those case studies that propose ML and DL methods that directly address this issue. This research aims to study the ML and DL systematic applications in optimizing the wastewater treatment processes from an industrial plant, such as the modeling of complex physical–chemical processes, real-time monitoring and prediction of critical wastewater quality indicators, chemical reactants consumption reduction, minimization of plant energy consumption, plant effluent quality prediction, development of data-driven type models as support in the decision-making process, etc. To perform a detailed analysis, 87 articles were included from an initial set of 324, using criteria such as wastewater combined with ML, DL, and artificial intelligence (AI), for articles from 2010 or newer. From the initial set of 324 scientific articles, 300 were identified using Litmaps, obtained from five important scientific databases, all focusing on addressing the specific problem proposed for investigation. Thus, this paper identifies gaps in the current research, discusses ML and DL algorithms in the context of optimizing wastewater treatment processes, and identifies future directions for optimizing these processes through data-driven methods. As opposed to traditional models, IA models (ML, DL, hybrid and ensemble models, digital twin, IoT, etc.) demonstrated significant advantages in wastewater quality indicator prediction and forecasting, in energy consumption forecasting, in temporal pattern recognition, and in optimal interpretability for normative compliance. Integrating advanced ML and DL technologies into the various processes involved in wastewater treatment improves the plant systems’ predictive capabilities and ensures a higher level of compliance with environmental standards. Full article
Show Figures

Figure 1

20 pages, 1676 KiB  
Article
Data-Driven Distributionally Robust Optimization for Solar-Powered EV Charging Under Spatiotemporal Uncertainty in Urban Distribution Networks
by Tianhao Wang, Xuejiao Zhang, Xiaolin Zheng, Jian Wang, Shiqian Ma, Jian Chen, Mengyu Liu and Wei Wei
Energies 2025, 18(15), 4001; https://doi.org/10.3390/en18154001 - 27 Jul 2025
Viewed by 320
Abstract
The rapid electrification of transportation and the proliferation of rooftop solar photovoltaics (PVs) in urban environments are reshaping the operational dynamics of power distribution networks. However, the inherent uncertainty in electric vehicle (EV) behavior—including arrival times, charging preferences, and state-of-charge—as well as spatially [...] Read more.
The rapid electrification of transportation and the proliferation of rooftop solar photovoltaics (PVs) in urban environments are reshaping the operational dynamics of power distribution networks. However, the inherent uncertainty in electric vehicle (EV) behavior—including arrival times, charging preferences, and state-of-charge—as well as spatially and temporally variable solar generation, presents a profound challenge to existing scheduling frameworks. This paper proposes a novel data-driven distributionally robust optimization (DDRO) framework for solar-powered EV charging coordination under spatiotemporal uncertainty. Leveraging empirical datasets of EV usage and solar irradiance from a smart city deployment, the framework constructs Wasserstein ambiguity sets around historical distributions, enabling worst-case-aware decision-making without requiring the assumption of probability laws. The problem is formulated as a two-stage optimization model. The first stage determines day-ahead charging schedules, solar utilization levels, and grid allocations across an urban-scale distribution feeder. The second stage models real-time recourse actions—such as dynamic curtailment or demand reshaping—after uncertainties are realized. Physical grid constraints are modeled using convexified LinDistFlow equations, while EV behavior is segmented into user classes with individualized uncertainty structures. The model is evaluated on a modified IEEE 123-bus feeder with 52 EV-PV nodes, using 15 min resolution over a 24 h horizon and 12 months of real-world data. Comparative results demonstrate that the proposed DDRO method reduces total operational costs by up to 15%, eliminates voltage violations entirely, and improves EV service satisfaction by more than 30% relative to deterministic and stochastic baselines. This work makes three primary contributions: it introduces a robust, tractable optimization architecture that captures spatiotemporal uncertainty using empirical Wasserstein sets; it integrates behavioral and physical modeling within a unified dispatch framework for urban energy-mobility systems; and it demonstrates the value of robust coordination in simultaneously improving grid resilience, renewable utilization, and EV user satisfaction. The results offer practical insights for city-scale planners seeking to enable the reliable and efficient electrification of mobility infrastructure under uncertainty. Full article
Show Figures

Figure 1

39 pages, 3221 KiB  
Article
Balancing Multi-Source Heterogeneous User Requirement Information in Complex Product Design
by Cengjuan Wu, Tianlu Zhu, Yajun Li, Zhizheng Zhang and Tianyu Wu
Symmetry 2025, 17(8), 1192; https://doi.org/10.3390/sym17081192 - 25 Jul 2025
Viewed by 153
Abstract
User requirements are the core driving force behind the iterative development of complex products. Their comprehensive collection, accurate interpretation, and effective integration directly affect design outcomes. However, current practices often depend heavily on single-source data and designer intuition, resulting in incomplete, biased, and [...] Read more.
User requirements are the core driving force behind the iterative development of complex products. Their comprehensive collection, accurate interpretation, and effective integration directly affect design outcomes. However, current practices often depend heavily on single-source data and designer intuition, resulting in incomplete, biased, and fragile design decisions. Moreover, multi-source heterogeneous user requirements often exhibit inherent asymmetry and imbalance in both structure and contribution. To address these issues, this study proposes a symmetric and balanced optimization method for multi-source heterogeneous user requirements in complex product design. Multiple acquisition and analysis approaches are integrated to mitigate the limitations of single-source data by fusing complementary information and enabling balanced decision-making. Firstly, unstructured text data from online reviews are used to extract initial user requirements, and a topic analysis method is applied for modeling and clustering. Secondly, user interviews are analyzed using a fuzzy satisfaction analysis, while eye-tracking experiments capture physiological behavior to support correlation analysis between internal preferences and external behavior. Finally, a cooperative game-based model is introduced to optimize conflicts among data sources, ensuring fairness in decision-making. The method was validated using a case study of oxygen concentrators. The findings demonstrate improvements in both decision robustness and requirement representation. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

Back to TopTop