Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (20,071)

Search Parameters:
Keywords = behavior measurement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 28274 KiB  
Article
Long-Term Neuroprotective Effects of Hydrogen-Rich Water and Memantine in Chronic Radiation-Induced Brain Injury: Behavioral, Histological, and Molecular Insights
by Kai Xu, Huan Liu, Yinhui Wang, Yushan He, Mengya Liu, Haili Lu, Yuhao Wang, Piye Niu and Xiujun Qin
Antioxidants 2025, 14(8), 948; https://doi.org/10.3390/antiox14080948 (registering DOI) - 1 Aug 2025
Abstract
Hydrogen-rich water (HRW) has shown neuroprotective effects in acute brain injury, but its role in chronic radiation-induced brain injury (RIBI) remains unclear. This study investigated the long-term efficacy of HRW in mitigating cognitive impairment and neuronal damage caused by chronic RIBI. Fifty male [...] Read more.
Hydrogen-rich water (HRW) has shown neuroprotective effects in acute brain injury, but its role in chronic radiation-induced brain injury (RIBI) remains unclear. This study investigated the long-term efficacy of HRW in mitigating cognitive impairment and neuronal damage caused by chronic RIBI. Fifty male Sprague Dawley rats were randomly divided into five groups: control, irradiation (IR), IR with memantine, IR with HRW, and IR with combined treatment. All but the control group received 20 Gy whole-brain X-ray irradiation, followed by daily interventions for 60 days. Behavioral assessments, histopathological analyses, oxidative stress measurements, 18F-FDG PET/CT imaging, transcriptomic sequencing, RT-qPCR, Western blot, and serum ELISA were performed. HRW significantly improved anxiety-like behavior, memory, and learning performance compared to the IR group. Histological results revealed that HRW reduced neuronal swelling, degeneration, and loss and enhanced dendritic spine density and neurogenesis. PET/CT imaging showed increased hippocampal glucose uptake in the IR group, which was alleviated by HRW treatment. Transcriptomic and molecular analyses indicated that HRW modulated key genes and proteins, including CD44, CD74, SPP1, and Wnt1, potentially through the MIF, Wnt, and SPP1 signaling pathways. Serum CD44 levels were also lower in treated rats, suggesting its potential as a biomarker for chronic RIBI. These findings demonstrate that HRW can alleviate chronic RIBI by preserving neuronal structure, reducing inflammation, and enhancing neuroplasticity, supporting its potential as a therapeutic strategy for radiation-induced cognitive impairment. Full article
Show Figures

Graphical abstract

15 pages, 1591 KiB  
Article
Role of Cation Nature in FAU Zeolite in Both Liquid-Phase and Gas-Phase Adsorption
by Baylar Zarbaliyev, Nizami Israfilov, Shabnam Feyziyeva, Gaëtan Lutzweiler, Narmina Guliyeva and Benoît Louis
Catalysts 2025, 15(8), 734; https://doi.org/10.3390/catal15080734 (registering DOI) - 1 Aug 2025
Abstract
This study focuses on the exchange of mono- and divalent metal cations in FAU-type zeolite and their behavior in gas-phase CO2 adsorption measurements and liquid-phase methylene blue (MB) adsorption in the absence of oxidizing agents under dark conditions. Firstly, zeolites exchanged with [...] Read more.
This study focuses on the exchange of mono- and divalent metal cations in FAU-type zeolite and their behavior in gas-phase CO2 adsorption measurements and liquid-phase methylene blue (MB) adsorption in the absence of oxidizing agents under dark conditions. Firstly, zeolites exchanged with different cations were characterized by several techniques, such as XRD, SEM, XRF, XPS, and N2 adsorption–desorption, to reveal the impact of the cations on the zeolite texture and structure. The adsorption studies revealed a positive effect of cation exchange on the adsorption capacity of the zeolite, particularly for silver-loaded FAU zeolite. In liquid-phase experiments, Ag-Y zeolite also demonstrated the highest MB removal, with a value of 79 mg/g. Kinetic studies highlighted that Ag-Y could reach the MB adsorption equilibrium within 1 h, with its highest rate of adsorption occurring during the first 5 min. In gas-phase adsorption studies, the highest CO2 adsorption capacity was also achieved over Ag-Y, yielding 10.4 µmol/m2 of CO2 captured. Full article
Show Figures

Graphical abstract

32 pages, 444 KiB  
Article
Does Digital Literacy Increase Farmers’ Willingness to Adopt Livestock Manure Resource Utilization Modes: An Empirical Study from China
by Xuefeng Ma, Yahui Li, Minjuan Zhao and Wenxin Liu
Agriculture 2025, 15(15), 1661; https://doi.org/10.3390/agriculture15151661 - 1 Aug 2025
Abstract
Enhancing farmers’ digital literacy is both an inevitable requirement for adapting to the digital age and an important measure for promoting the sustainable development of livestock and poultry manure resource utilization. This study surveyed and obtained data from 1047 farm households in Ningxia [...] Read more.
Enhancing farmers’ digital literacy is both an inevitable requirement for adapting to the digital age and an important measure for promoting the sustainable development of livestock and poultry manure resource utilization. This study surveyed and obtained data from 1047 farm households in Ningxia and Gansu, two provinces in China that have long implemented livestock manure resource utilization policies, from December 2023 to January 2024, and employed the binary probit model to analyze how digital literacy influences farmers’ willingness to adopt two livestock manure resource utilization modes, as well as to analyze the moderating role of three policy regulations. This paper also explores the heterogeneous results in different village forms and income groups. The results are as follows: (1) Digital literacy significantly and positively impacts farmers’ willingness to adopt both the “household collection” mode and the “livestock community” mode. For every one-unit increase in a farmer’s digital literacy, the probability of farmers’ willingness to adopt the “household collection” mode rises by 22 percentage points, and the probability of farmers’ willingness to adopt the “livestock community” mode rises by 19.8 percentage points. After endogeneity tests and robustness checks, the conclusion still holds. (2) Mechanism analysis results indicate that guiding policy and incentive policy have a positive moderation effect on the link between digital literacy and the willingness to adopt the “household collection” mode. Meanwhile, incentive policy also positively moderates the relationship between digital literacy and the willingness to adopt the “livestock community” mode. (3) Heterogeneity analysis results show that the positive effect of digital literacy on farmers’ willingness to adopt two livestock manure resource utilization modes is stronger in “tight-knit society” rural areas and in low-income households. (4) In further discussion, we find that digital literacy removes the information barriers for farmers, facilitating the conversion of willingness into behavior. The value of this study is as follows: this paper provides new insights for the promotion of livestock and poultry manure resource utilization policies in countries and regions similar to the development process of northwest China. Therefore, enhancing farmers’ digital literacy in a targeted way, strengthening the promotion of grassroots policies on livestock manure resource utilization, formulating diversified ecological compensation schemes, and establishing limited supervision and penalty rules can boost farmers’ willingness to adopt manure resource utilization models. Full article
(This article belongs to the Special Issue Application of Biomass in Agricultural Circular Economy)
Show Figures

Figure 1

18 pages, 1458 KiB  
Article
Factors Influencing Willingness to Collaborate on Water Management: Insights from Grape Farming in Samarkand, Uzbekistan
by Sodikjon Avazalievich Mamasoliev, Motoi Kusadokoro, Takeshi Maru, Shavkat Hasanov and Yoshiko Kawabata
Sustainability 2025, 17(15), 6991; https://doi.org/10.3390/su17156991 (registering DOI) - 1 Aug 2025
Abstract
Water is essential for ecological balance, environmental sustainability, and food security, particularly in arid regions where effective water management increasingly depends on farmer cooperation. The Samarkand region of Uzbekistan, known for its favorable climate and leading role in grape production, is facing rising [...] Read more.
Water is essential for ecological balance, environmental sustainability, and food security, particularly in arid regions where effective water management increasingly depends on farmer cooperation. The Samarkand region of Uzbekistan, known for its favorable climate and leading role in grape production, is facing rising drought conditions. This study explores the factors influencing grape farmers’ willingness to collaborate on water management in the districts of Ishtikhan, Payarik, and Kushrabot, which together produce 75–80% of the region’s grapes. A quantitative survey of 384 grape-producing households was conducted across 19 county citizens’ gatherings (38.7% of such gatherings), and structural equation modeling was employed to analyze a framework consisting of four dimensions: norms, environmental concerns, economic barriers, and the intention to adopt sustainable practices. The results indicate that norms and environmental concerns positively influence collaboration, suggesting a collective orientation toward sustainability. In contrast, economic barriers such as high costs and limited financial capacity significantly hinder cooperative behavior. Furthermore, a strong individual intention to adopt sustainable practices was associated with a greater likelihood of collaboration. These findings highlight the critical drivers and constraints shaping collective water use in agriculture and suggest that targeted policy measures and community-led efforts are vital for promoting sustainable water governance in drought-prone regions. Full article
Show Figures

Figure 1

27 pages, 5832 KiB  
Article
Electrospinning Technology to Influence Hep-G2 Cell Growth on PVDF Fiber Mats as Medical Scaffolds: A New Perspective of Advanced Biomaterial
by Héctor Herrera Hernández, Carlos O. González Morán, Gemima Lara Hernández, Ilse Z. Ramírez-León, Citlalli J. Trujillo Romero, Juan A. Alcántara Cárdenas and Jose de Jesus Agustin Flores Cuautle
J. Compos. Sci. 2025, 9(8), 401; https://doi.org/10.3390/jcs9080401 (registering DOI) - 1 Aug 2025
Abstract
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes [...] Read more.
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes (fiber mats) made of polyvinylidene difluoride (PVDF) for possible use in cellular engineering. A standard culture medium was employed to support the proliferation of Hep-G2 cells under controlled conditions (37 °C, 4.8% CO2, and 100% relative humidity). Subsequently, after the incubation period, electrochemical impedance spectroscopy (EIS) assays were conducted in a physiological environment to characterize the electrical cellular response, providing insights into the biocompatibility of the material. Scanning electron microscopy (SEM) was employed to evaluate cell adhesion, morphology, and growth on the PVDF polymer membranes. The results suggest that PVDF polymer membranes can be successfully produced through electrospinning technology, resulting in the formation of a dipole structure, including the possible presence of a polar β-phase, contributing to piezoelectric activity. EIS measurements, based on Rct and Cdl values, are indicators of ion charge transfer and strong electrical interactions at the membrane interface. These findings suggest a favorable environment for cell proliferation, thereby enhancing cellular interactions at the fiber interface within the electrolyte. SEM observations displayed a consistent distribution of fibers with a distinctive spherical agglomeration on the entire PVDF surface. Finally, integrating piezoelectric properties into cell culture systems provides new opportunities for investigating the influence of electrical interactions on cellular behavior through electrochemical techniques. Based on the experimental results, this electrospun polymer demonstrates great potential as a promising candidate for next-generation biomaterials, with a probable application in tissue regeneration. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

13 pages, 1750 KiB  
Article
Mineral-Based Synthesis of CuFe2O4 Nanoparticles via Co-Precipitation and Microwave Techniques Using Leached Copper Solutions from Mined Minerals
by Carolina Venegas Abarzúa, Mauricio J. Morel, Gabriela Sandoval-Hevia, Thangavel Kavinkumar, Natarajan Chidhambaram, Sathish Kumar Kamaraj, Nagarajan Dineshbabu and Arun Thirumurugan
Minerals 2025, 15(8), 819; https://doi.org/10.3390/min15080819 (registering DOI) - 1 Aug 2025
Abstract
Environmental sustainability and responsible resource utilization are critical global challenges. In this work, we present a sustainable and circular-economy-based approach for synthesizing CuFe2O4 nanoparticles by directly utilizing copper oxide minerals sourced from Chilean mining operations. Copper sulfate (CuSO4) [...] Read more.
Environmental sustainability and responsible resource utilization are critical global challenges. In this work, we present a sustainable and circular-economy-based approach for synthesizing CuFe2O4 nanoparticles by directly utilizing copper oxide minerals sourced from Chilean mining operations. Copper sulfate (CuSO4) was extracted from these minerals through acid leaching and used as a precursor for nanoparticle synthesis via both chemical co-precipitation and microwave-assisted methods. The influence of different precipitating agents—NaOH, Na2CO3, and NaF—was systematically evaluated. XRD and FESEM analyses revealed that NaOH produced the most phase-pure and well-dispersed nanoparticles, while NaF resulted in secondary phase formation. The microwave-assisted method further improved particle uniformity and reduced agglomeration due to rapid and homogeneous heating. Electrochemical characterization was conducted to assess the suitability of the synthesized CuFe2O4 for supercapacitor applications. Cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) measurements confirmed pseudocapacitive behavior, with a specific capacitance of up to 1000 F/g at 2 A/g. These findings highlight the potential of CuFe2O4 as a low-cost, high-performance electrode material for energy storage. This study underscores the feasibility of converting primary mined minerals into functional nanomaterials while promoting sustainable mineral valorization. The approach can be extended to other critical metals and mineral residues, including tailings, supporting the broader goals of a circular economy and environmental remediation. Full article
Show Figures

Figure 1

20 pages, 4980 KiB  
Article
Quinoa Protein/Sodium Alginate Complex-Stabilized Pickering Emulsion for Sustained Release of Curcumin and Enhanced Anticancer Activity Against HeLa Cells
by Yiqun Zhu, Jianan Li, Shuhong Liu, Hongli Yang, Fei Lu and Minpeng Zhu
Foods 2025, 14(15), 2705; https://doi.org/10.3390/foods14152705 (registering DOI) - 1 Aug 2025
Abstract
Quinoa protein isolate (QPI) and sodium alginate (SA) have excellent biocompatibility and functional properties, making them promising candidates for food-grade delivery systems. In this study, we developed, for the first time, a QPI/SA complex-stabilized Pickering emulsion for curcumin encapsulation. The coacervation behavior of [...] Read more.
Quinoa protein isolate (QPI) and sodium alginate (SA) have excellent biocompatibility and functional properties, making them promising candidates for food-grade delivery systems. In this study, we developed, for the first time, a QPI/SA complex-stabilized Pickering emulsion for curcumin encapsulation. The coacervation behavior of QPI and SA was investigated from pH 1.6 to 7.5, and the structural and interfacial characteristics of the complexes were analyzed using zeta potential measurements, Fourier-transform infrared spectroscopy, scanning electron microscopy, and contact angle analysis. The results showed that the formation of QPI/SA complexes was primarily driven by electrostatic interactions, hydrogen bonding, and hydrophobic interactions, with enhanced amphiphilicity observed under optimal conditions (QPI/SA = 5:1, pH 5). The QPI/SA-stabilized Pickering emulsions demonstrated excellent emulsification performance and storage stability, maintaining an emulsification index above 90% after 7 d when prepared with 60% oil phase. In vitro digestion studies revealed stage-specific curcumin release, with sustained release in simulated gastric fluid (21.13%) and enhanced release in intestinal fluid (88.21%). Cytotoxicity assays using HeLa cells confirmed the biocompatibility of QPI/SA complexes (≤500 μg/mL), while curcumin-loaded emulsions exhibited dose-dependent anticancer activity. These findings suggest that QPI/SA holds significant potential for applications in functional foods and oral delivery systems. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

22 pages, 7609 KiB  
Article
Bidirectional Conservative–Dissipative Transitions in a Five-Dimensional Fractional Chaotic System
by Yiming Wang, Fengjiao Gao and Mingqing Zhu
Mathematics 2025, 13(15), 2477; https://doi.org/10.3390/math13152477 (registering DOI) - 1 Aug 2025
Abstract
This study investigates a modified five-dimensional chaotic system by incorporating structural term adjustments and Caputo fractional-order differential operators. The modified system exhibits significantly enriched dynamic behaviors, including offset boosting, phase trajectory rotation, phase trajectory reversal, and contraction phenomena. Additionally, the system exhibits bidirectional [...] Read more.
This study investigates a modified five-dimensional chaotic system by incorporating structural term adjustments and Caputo fractional-order differential operators. The modified system exhibits significantly enriched dynamic behaviors, including offset boosting, phase trajectory rotation, phase trajectory reversal, and contraction phenomena. Additionally, the system exhibits bidirectional transitions—conservative-to-dissipative transitions governed by initial conditions and dissipative-to-conservative transitions controlled by fractional order variations—along with a unique chaotic-to-quasiperiodic transition observed exclusively at low fractional orders. To validate the system’s physical realizability, a signal processing platform based on Digital Signal Processing (DSP) is implemented. Experimental measurements closely align with numerical simulations, confirming the system’s feasibility for practical applications. Full article
(This article belongs to the Special Issue Nonlinear Dynamics and Chaos Theory, 2nd Edition)
Show Figures

Figure 1

18 pages, 3979 KiB  
Article
Generation and Classification of Novel Segmented Control Charts (SCC) Based on Hu’s Invariant Moments and the K-Means Algorithm
by Roberto Baeza-Serrato
Appl. Sci. 2025, 15(15), 8550; https://doi.org/10.3390/app15158550 (registering DOI) - 1 Aug 2025
Abstract
Control charts (CCs) are one of the most important techniques in statistical process control (SPC) used to monitor the behavior of critical variables. SPC is based on the averages of the samples taken. In this way, not every measurement is observed, and errors [...] Read more.
Control charts (CCs) are one of the most important techniques in statistical process control (SPC) used to monitor the behavior of critical variables. SPC is based on the averages of the samples taken. In this way, not every measurement is observed, and errors in measurements or out-of-control behaviors that are not shown graphically can be hidden. This research proposes a novel segmented control chart (SCC) that considers each measurement of the samples, expressed in matrix form. The vision system technique is used to segment measurements by shading and segmenting into binary values based on the control limits of SPC. Once the matrix is segmented, the seven main features of the matrix are extracted using the translation-, scale-, and rotation-invariant Hu moments of the segmented matrices. Finally, a grouping is made to classify the samples in clear and simple language as excellent, good, or regular using the k-means algorithm. The results visually display the total pattern behavior of the samples and their interpretation when they are classified intelligently. The proposal can be replicated in any production sector and strengthen the control of the sampling process. Full article
Show Figures

Figure 1

15 pages, 619 KiB  
Article
Tell Me What You’ve Done, and I’ll Predict What You’ll Do: The Role of Motivation and Past Behavior in Exercise Adherence
by Luís Cid, Diogo Monteiro, Teresa Bento, Miguel Jacinto, Anabela Vitorino, Diogo S. Teixeira, Pedro Duarte-Mendes, Vasco Bastos and Nuno Couto
Healthcare 2025, 13(15), 1879; https://doi.org/10.3390/healthcare13151879 (registering DOI) - 1 Aug 2025
Abstract
Introduction: The main purpose of this study was to test a hierarchical model of motivation that integrates Achievement Goal Theory and Self-Determination Theory to explain and predict exercise adherence. Method: In total, 2180 exercisers (1020 female, 1160 male) aged between 18 and 60 [...] Read more.
Introduction: The main purpose of this study was to test a hierarchical model of motivation that integrates Achievement Goal Theory and Self-Determination Theory to explain and predict exercise adherence. Method: In total, 2180 exercisers (1020 female, 1160 male) aged between 18 and 60 years, from different gyms and health clubs, completed several scales validated in exercise settings, regarding perceived motivational climate, basic psychological need satisfaction, behavioral regulation, and exercise adherence. For the last measure, weekly computer access to a control system over a 6-month period before and after data collection was consulted. Results: Through structural equation models (SEM), it was verified that (1) task-involving climate positively predicted basic psychological needs. In turn, the satisfaction of these needs predicted autonomous motivation, which led to a positive prediction of adherence; (2) a small variation in exercise adherence was explained by the motivational model under analysis. Nevertheless, models significantly improved their analytical power when past adherence was inserted in the model increasing the explained variance in future behavior from 9.2% to 64%. Conclusions: In conclusion, autonomous motivation can predict people’s exercise adherence, and past behavior increases that predictive effect. The present study brings scientific evidence to the popular saying “tell me what you’ve done and, and I’ll predict what you’ll do”. Full article
Show Figures

Figure 1

21 pages, 1112 KiB  
Article
Associations Between Smoking, Stress, Quality of Life, and Oral Health Among Dental Students in Romania: A Cross-Sectional Study
by Adina Oana Armencia, Andrei Nicolau, Irina Bamboi, Bianca Toader, Anca Rapis, Tinela Panaite, Daniela Argatu and Carina Balcos
Medicina 2025, 61(8), 1394; https://doi.org/10.3390/medicina61081394 - 1 Aug 2025
Abstract
Students, particularly those in the medical field, are exposed to various stressors that can affect their health-related behaviors, including smoking habits, with implications for oral health and quality of life. Background and Objectives: to analyze the relationship between smoking, oral health, perceived [...] Read more.
Students, particularly those in the medical field, are exposed to various stressors that can affect their health-related behaviors, including smoking habits, with implications for oral health and quality of life. Background and Objectives: to analyze the relationship between smoking, oral health, perceived stress level, and self-assessed quality of life in a sample of dental students. Materials and Methods: The cross-sectional study included 338 students, who completed validated questionnaires and were clinically examined. Lifestyle was assessed using a smoking behavior questionnaire, stress levels were measured with the Student Stress Inventory (SSI), and quality of life was evaluated using the EQ-5D-5L instrument. The DMFT index was calculated to determine oral health status. Results: Among the 338 participating students, 53.8% were smokers. The lifestyle analysis revealed slightly higher average scores among non-smokers across all domains—social (3.26 vs. 3.09), attitudinal (2.75 vs. 2.97), and behavioral (3.82 vs. 3.49), but without statistically significant differences (p > 0.25). The mean DMFT score was 12.48, with no significant differences between smokers and non-smokers (p = 0.554). The SSI total score averaged 83.15, indicating a moderate level of perceived stress, again with no statistically significant differences between the groups (p > 0.05). However, slightly higher average stress scores among smokers may suggest the use of smoking as a coping mechanism. In contrast, quality of life as measured by EQ-5D-5L showed significantly worse outcomes for smokers across all five dimensions, including mobility (78.6% vs. 95.5%, p = 0.000) and self-care (93.4% vs. 100%, p = 0.001). Multivariable logistic regression identified smoking (OR = 1.935; p = 0.047) and moderate stress levels (OR = 0.258; p < 0.001) as independent predictors of oral health status. Conclusions: The results obtained suggest that smoking may function as a stress management strategy among students, supporting the relevance of integrating specific psychobehavioral interventions that address stress reduction and oral health promotion among student populations. Full article
Show Figures

Figure 1

27 pages, 2327 KiB  
Article
Experimental Study of Ambient Temperature Influence on Dimensional Measurement Using an Articulated Arm Coordinate Measuring Machine
by Vendula Samelova, Jana Pekarova, Frantisek Bradac, Jan Vetiska, Matej Samel and Robert Jankovych
Metrology 2025, 5(3), 45; https://doi.org/10.3390/metrology5030045 (registering DOI) - 1 Aug 2025
Abstract
Articulated arm coordinate measuring machines are designed for in situ use directly in manufacturing environments, enabling efficient dimensional control outside of climate-controlled laboratories. This study investigates the influence of ambient temperature variation on the accuracy of length measurements performed with the Hexagon Absolute [...] Read more.
Articulated arm coordinate measuring machines are designed for in situ use directly in manufacturing environments, enabling efficient dimensional control outside of climate-controlled laboratories. This study investigates the influence of ambient temperature variation on the accuracy of length measurements performed with the Hexagon Absolute Arm 8312. The experiment was carried out in a laboratory setting simulating typical shop floor conditions through controlled temperature changes in the range of approximately 20–31 °C. A calibrated steel gauge block was used as a reference standard, allowing separation of the influence of the measuring system from that of the measured object. The results showed that the gauge block length changed in line with the expected thermal expansion, while the articulated arm coordinate measuring machine exhibited only a minor residual thermal drift and stable performance. The experiment also revealed a constant measurement offset of approximately 22 µm, likely due to calibration deviation. As part of the study, an uncertainty budget was developed, taking into account all relevant sources of influence and enabling a more realistic estimation of accuracy under operational conditions. The study confirms that modern carbon composite articulated arm coordinate measuring machines with integrated compensation can maintain stable measurement behavior even under fluctuating temperatures in controlled environments. Full article
Show Figures

Figure 1

21 pages, 5466 KiB  
Article
Evaluation of Bending Stress and Shape Recovery Behavior Under Cyclic Loading in PLA 4D-Printed Lattice Structures
by Maria Pia Desole, Annamaria Gisario and Massimiliano Barletta
Appl. Sci. 2025, 15(15), 8540; https://doi.org/10.3390/app15158540 (registering DOI) - 31 Jul 2025
Abstract
This study aims to analyze the bending behavior of polylactic acid (PLA) structures made by fusion deposition modeling (FDM) technology. The investigation analyzed chiral structures such as lozenge and clepsydra, as well as geometries with wavy patterns such as roller and Es, in [...] Read more.
This study aims to analyze the bending behavior of polylactic acid (PLA) structures made by fusion deposition modeling (FDM) technology. The investigation analyzed chiral structures such as lozenge and clepsydra, as well as geometries with wavy patterns such as roller and Es, in addition to a honeycomb structure. All geometries have a relative density of 50%. After being subjected to three-point bending tests, the capacity to spring back with respect to the bending angle and the shape recovery of the structures were measured. The roller and lozenge structures demonstrated the best performance, with shape recovery assessed through three consecutive hot water immersion cycles. The lozenge structure exhibits 25% higher energy absorption than the roller, but the latter ensures better replicability and shape stability. Additionally, the roller absorbs 15% less energy than the lozenge, which experiences a 27% decrease in absorption between the first and second cycle. This work provides new insights into the bending-based energy absorption and recovery behavior of PLA metamaterials, relevant for applications in adaptive and energy-dissipating systems. Full article
Show Figures

Figure 1

23 pages, 5943 KiB  
Article
Investigation of Titanium Alloy Cutting Dynamics in Thin-Layer Machining
by Anna Zawada-Tomkiewicz, Emilia Zeuschner and Dariusz Tomkiewicz
Appl. Sci. 2025, 15(15), 8535; https://doi.org/10.3390/app15158535 (registering DOI) - 31 Jul 2025
Abstract
Manufacturing in modern industrial sectors involves the machining of components where the undeformed chip thickness inevitably decreases to values comparable to the tool edge radius. Under such conditions, the ploughing effect between the workpiece and the tool becomes dominant, followed by the noticeable [...] Read more.
Manufacturing in modern industrial sectors involves the machining of components where the undeformed chip thickness inevitably decreases to values comparable to the tool edge radius. Under such conditions, the ploughing effect between the workpiece and the tool becomes dominant, followed by the noticeable formation of a stagnation zone. This paper presents research focused on the analysis of the cutting process for small cross-sections of the removed layers, based on cutting force components. This study investigated the machining of two titanium alloy grades—Ti Grade 5 (Ti-6Al-4V) and Ti Grade 2—with the main focus on process stability. A material separation model was analyzed to demonstrate the mechanism of material flow within the cross-section of the machined layer. It was found that the material has a limited ability to flow sideways at the boundary of the chip thickness, thus determining the probable size of the stagnation zone in front of the cutting edge. Orthogonal cutting experiments enabled the determination of the minimum chip thickness coefficient for constant temperature conditions, independent of the tool edge radius, as hmin0= 0.313. In oblique cutting tests, the sensitivity of thin-layer machining was demonstrated for the determined values of minimum undeformed chip thickness. By applying the 0–1 test for chaos, the measurement time (parameter T·dt) was determined for both titanium alloys to determine the range of observable chaotic behavior. The analyses confirmed that Ti Grade 2 enters chaotic dynamics much more rapidly than Ti Grade 5 and displays local cutting instabilities independent of the uncut chip thickness. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

13 pages, 2575 KiB  
Article
Simulation of Propagation Characteristics and Field Distribution in Cylindrical Photonic Crystals Composed of Near-Zero Materials and Metal
by Zhihao Xu, Dan Zhang, Rongkang Xuan, Shenxiang Yang and Na Wang
J. Low Power Electron. Appl. 2025, 15(3), 44; https://doi.org/10.3390/jlpea15030044 (registering DOI) - 31 Jul 2025
Abstract
This study investigates the propagation characteristics and field distribution of photonic crystals composed of epsilon-near-zero (ENZ) materials and metal cylinders. The research reveals that the cutoff frequency of the photonic crystal formed by combining metal cylinders with an ENZ background is independent of [...] Read more.
This study investigates the propagation characteristics and field distribution of photonic crystals composed of epsilon-near-zero (ENZ) materials and metal cylinders. The research reveals that the cutoff frequency of the photonic crystal formed by combining metal cylinders with an ENZ background is independent of the volume fraction of the metal cylinders and exhibits a stop-band profile within the measured frequency range. This unique behavior is attributed to the scattering of long-wavelength light when the wavelength approaches the effective wavelength range of the ENZ material. Taking advantage of this feature, the study selectively filters specific wavelength ranges from the mid-frequency band by varying the ratio of cylinder radius to lattice constant (R/a). Decreasing the R/a ratio enables the design of waveguide devices that operate over a broader guided wavelength range within the intermediate-frequency band. The findings emphasize the importance of the interaction between light and ENZ materials in shaping the transmission characteristics of photonic crystal structures. Full article
Show Figures

Figure 1

Back to TopTop