Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (456)

Search Parameters:
Keywords = battery state of health (SOH)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
51 pages, 4099 KiB  
Review
Artificial Intelligence and Digital Twin Technologies for Intelligent Lithium-Ion Battery Management Systems: A Comprehensive Review of State Estimation, Lifecycle Optimization, and Cloud-Edge Integration
by Seyed Saeed Madani, Yasmin Shabeer, Michael Fowler, Satyam Panchal, Hicham Chaoui, Saad Mekhilef, Shi Xue Dou and Khay See
Batteries 2025, 11(8), 298; https://doi.org/10.3390/batteries11080298 - 5 Aug 2025
Abstract
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery [...] Read more.
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery Management Systems (BMS). This review paper explores how artificial intelligence (AI) and digital twin (DT) technologies can be integrated to enable the intelligent BMS of the future. It investigates how powerful data approaches such as deep learning, ensembles, and models that rely on physics improve the accuracy of predicting state of charge (SOC), state of health (SOH), and remaining useful life (RUL). Additionally, the paper reviews progress in AI features for cooling, fast charging, fault detection, and intelligible AI models. Working together, cloud and edge computing technology with DTs means better diagnostics, predictive support, and improved management for any use of EVs, stored energy, and recycling. The review underlines recent successes in AI-driven material research, renewable battery production, and plans for used systems, along with new problems in cybersecurity, combining data and mass rollout. We spotlight important research themes, existing problems, and future drawbacks following careful analysis of different up-to-date approaches and systems. Uniting physical modeling with AI-based analytics on cloud-edge-DT platforms supports the development of tough, intelligent, and ecologically responsible batteries that line up with future mobility and wider use of renewable energy. Full article
Show Figures

Figure 1

30 pages, 2537 KiB  
Review
The State of Health Estimation of Lithium-Ion Batteries: A Review of Health Indicators, Estimation Methods, Development Trends and Challenges
by Kang Tang, Bingbing Luo, Dian Chen, Chengshuo Wang, Long Chen, Feiliang Li, Yuan Cao and Chunsheng Wang
World Electr. Veh. J. 2025, 16(8), 429; https://doi.org/10.3390/wevj16080429 - 1 Aug 2025
Viewed by 298
Abstract
The estimation of the state of health (SOH) of lithium-ion batteries is a critical technology for enhancing battery lifespan and safety. When estimating SOH, it is essential to select representative features, commonly referred to as health indicators (HIs). Most existing studies primarily focus [...] Read more.
The estimation of the state of health (SOH) of lithium-ion batteries is a critical technology for enhancing battery lifespan and safety. When estimating SOH, it is essential to select representative features, commonly referred to as health indicators (HIs). Most existing studies primarily focus on HIs related to capacity degradation and internal resistance increase. However, due to the complexity of lithium-ion battery degradation mechanisms, the relationships between these mechanisms and health indicators remain insufficiently explored. This paper provides a comprehensive review of core methodologies for SOH estimation, with a particular emphasis on the classification and extraction of health indicators, direct measurement techniques, model-based and data-driven SOH estimation approaches, and emerging trends in battery management system applications. The findings indicate that capacity, internal resistance, and temperature-related indicators significantly impact SOH estimation accuracy, while machine learning models demonstrate advantages in multi-source data fusion. Future research should further explore composite health indicators and aging mechanisms of novel battery materials, and improve the interpretability of predictive models. This study offers theoretical support for the intelligent management and lifespan optimization of lithium-ion batteries. Full article
Show Figures

Figure 1

25 pages, 2863 KiB  
Article
Battery SOH Estimation Based on Dual-View Voltage Signal Features and Enhanced LSTM
by Shunchang Wang, Yaolong He and Hongjiu Hu
Energies 2025, 18(15), 4016; https://doi.org/10.3390/en18154016 - 28 Jul 2025
Viewed by 267
Abstract
Accurate assessment of the state of health (SOH) of lithium-ion batteries (LIBs) is fundamental to ensuring safe operation. However, due to the complex electrochemical processes during battery operation and the limited availability of training data, accurate estimation of the state of health remains [...] Read more.
Accurate assessment of the state of health (SOH) of lithium-ion batteries (LIBs) is fundamental to ensuring safe operation. However, due to the complex electrochemical processes during battery operation and the limited availability of training data, accurate estimation of the state of health remains challenging. To address this, this paper proposes a prediction framework based on dual-view voltage signal features and an improved Long Short-Term Memory (LSTM) neural network. By relying solely on readily obtainable voltage signals, the data requirement is greatly reduced; dual-view features, comprising kinetic and aggregated aspects, are extracted based on the underlying reaction mechanisms. To fully leverage the extracted feature information, Scaled Dot-Product Attention (SDPA) is employed to dynamically score all hidden states of the long short-term memory network, adaptively capturing key temporal information. The experimental results based on the NASA PCoE battery dataset indicate that, under various operating conditions, the proposed method achieves an average absolute error below 0.51% and a root mean square error not exceeding 0.58% in state-of-health estimation, demonstrating high predictive accuracy. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

16 pages, 3383 KiB  
Article
Thermal and Electrical Design Considerations for a Flexible Energy Storage System Utilizing Second-Life Electric Vehicle Batteries
by Rouven Christen, Simon Nigsch, Clemens Mathis and Martin Stöck
Batteries 2025, 11(8), 287; https://doi.org/10.3390/batteries11080287 - 26 Jul 2025
Viewed by 313
Abstract
The transition to electric mobility has significantly increased the demand for lithium-ion batteries, raising concerns about their end-of-life management. Therefore, this study presents the design, development and first implementation steps of a stationary energy storage system utilizing second-life electric vehicle (EV) batteries. These [...] Read more.
The transition to electric mobility has significantly increased the demand for lithium-ion batteries, raising concerns about their end-of-life management. Therefore, this study presents the design, development and first implementation steps of a stationary energy storage system utilizing second-life electric vehicle (EV) batteries. These batteries, no longer suitable for traction applications due to a reduced state of health (SoH) below 80%, retain sufficient capacity for less demanding stationary applications. The proposed system is designed to be flexible and scalable, serving both research and commercial purposes. Key challenges include heterogeneous battery characteristics, safety considerations due to increased internal resistance and battery aging, and the need for flexible power electronics. An optimized dual active bridge (DAB) converter topology is introduced to connect several batteries in parallel and to ensure efficient bidirectional power flow over a wide voltage range. A first prototype, rated at 50 kW, has been built and tested in the laboratory. This study contributes to sustainable energy storage solutions by extending battery life cycles, reducing waste, and promoting economic viability for industrial partners. Full article
Show Figures

Figure 1

23 pages, 13580 KiB  
Article
Enabling Smart Grid Resilience with Deep Learning-Based Battery Health Prediction in EV Fleets
by Muhammed Cavus and Margaret Bell
Batteries 2025, 11(8), 283; https://doi.org/10.3390/batteries11080283 - 24 Jul 2025
Viewed by 294
Abstract
The widespread integration of electric vehicles (EVs) into smart grid infrastructures necessitates intelligent and robust battery health diagnostics to ensure system resilience and performance longevity. While numerous studies have addressed the estimation of State of Health (SOH) and the prediction of remaining useful [...] Read more.
The widespread integration of electric vehicles (EVs) into smart grid infrastructures necessitates intelligent and robust battery health diagnostics to ensure system resilience and performance longevity. While numerous studies have addressed the estimation of State of Health (SOH) and the prediction of remaining useful life (RUL) using machine and deep learning, most existing models fail to capture both short-term degradation trends and long-range contextual dependencies jointly. In this study, we introduce V2G-HealthNet, a novel hybrid deep learning framework that uniquely combines Long Short-Term Memory (LSTM) networks with Transformer-based attention mechanisms to model battery degradation under dynamic vehicle-to-grid (V2G) scenarios. Unlike prior approaches that treat SOH estimation in isolation, our method directly links health prediction to operational decisions by enabling SOH-informed adaptive load scheduling and predictive maintenance across EV fleets. Trained on over 3400 proxy charge-discharge cycles derived from 1 million telemetry samples, V2G-HealthNet achieved state-of-the-art performance (SOH RMSE: 0.015, MAE: 0.012, R2: 0.97), outperforming leading baselines including XGBoost and Random Forest. For RUL prediction, the model maintained an MAE of 0.42 cycles over a five-cycle horizon. Importantly, deployment simulations revealed that V2G-HealthNet triggered maintenance alerts at least three cycles ahead of critical degradation thresholds and redistributed high-load tasks away from ageing batteries—capabilities not demonstrated in previous works. These findings establish V2G-HealthNet as a deployable, health-aware control layer for smart city electrification strategies. Full article
Show Figures

Figure 1

21 pages, 3722 KiB  
Article
State of Health Estimation for Lithium-Ion Batteries Based on TCN-RVM
by Yu Zhao, Yonghong Xu, Yidi Wei, Liang Tong, Yiyang Li, Minghui Gong, Hongguang Zhang, Baoying Peng and Yinlian Yan
Appl. Sci. 2025, 15(15), 8213; https://doi.org/10.3390/app15158213 - 23 Jul 2025
Viewed by 269
Abstract
A State of Health (SOH) estimation of lithium-ion batteries is a core function of battery management systems, directly affecting the safe operation, lifetime prediction, and economic efficiency of batteries. However, existing methods still face challenges in balancing feature robustness and model generalization ability; [...] Read more.
A State of Health (SOH) estimation of lithium-ion batteries is a core function of battery management systems, directly affecting the safe operation, lifetime prediction, and economic efficiency of batteries. However, existing methods still face challenges in balancing feature robustness and model generalization ability; for instance, some studies rely on features whose physical correlation with SOH lacks strict verification, or the models struggle to simultaneously capture the temporal dynamics of health factors and nonlinear mapping relationships. To address this, this paper proposes an SOH estimation method based on incremental capacity (IC) curves and a Temporal Convolutional Network—Relevance Vector Machine (TCN-RVM) model, with core innovations reflected in two aspects. Firstly, five health factors are extracted from IC curves, and the strong correlation between these features and SOH is verified using both Pearson and Spearman coefficients, ensuring the physical rationality and statistical significance of feature selection. Secondly, the TCN-RVM model is constructed to achieve complementary advantages. The dilated causal convolution of TCN is used to extract temporal local features of health factors, addressing the insufficient capture of long-range dependencies in traditional models; meanwhile, the Bayesian inference framework of RVM is integrated to enhance the nonlinear mapping capability and small-sample generalization, avoiding the overfitting tendency of complex models. Experimental validation is conducted using the lithium-ion battery dataset from the University of Maryland. The results show that the mean absolute error of the SOH estimation using the proposed method does not exceed 0.72%, which is significantly superior to comparative models such as CNN-GRU, KELM, and SVM, demonstrating higher accuracy and reliability compared with other models. Full article
Show Figures

Figure 1

17 pages, 2719 KiB  
Article
State of Health Prediction for Lithium-Ion Batteries Based on Gated Temporal Network Assisted by Improved Grasshopper Optimization
by Xiankun Wei, Silun Peng and Mingli Mo
Energies 2025, 18(14), 3856; https://doi.org/10.3390/en18143856 - 20 Jul 2025
Viewed by 320
Abstract
Accurate SOH prediction provides a reliable reference for lithium-ion battery maintenance. However, novel algorithms are still needed because few studies have considered the correlations between monitored parameters in Euclidean space and non-Euclidean space at different time points. To address this challenge, a novel [...] Read more.
Accurate SOH prediction provides a reliable reference for lithium-ion battery maintenance. However, novel algorithms are still needed because few studies have considered the correlations between monitored parameters in Euclidean space and non-Euclidean space at different time points. To address this challenge, a novel gated-temporal network assisted by improved grasshopper optimization (IGOA-GGNN-TCN) is developed. In this model, features obtained from lithium-ion batteries are used to construct graph data based on cosine similarity. On this basis, the GGNN-TCN is employed to obtain the potential correlations between monitored parameters in Euclidean and non-Euclidean spaces. Furthermore, IGOA is introduced to overcome the issue of hyperparameter optimization for GGNN-TCN, improving the convergence speed and the local optimal problem. Competitive results on the Oxford dataset indicate that the SOH prediction performance of proposed IGOA-GGNN-TCN surpasses conventional methods, such as convolutional neural networks (CNNs) and gate recurrent unit (GRUs), achieving an R2 value greater than 0.99. The experimental results demonstrate that the proposed IGOA-GGNN-TCN framework offers a novel and effective approach for state-of-health (SOH) estimation in lithium-ion batteries. By integrating improved grasshopper optimization (IGOA) with hybrid graph-temporal modeling, the method achieves superior prediction accuracy compared to conventional techniques, providing a promising tool for battery management systems in real-world applications. Full article
(This article belongs to the Special Issue AI Solutions for Energy Management: Smart Grids and EV Charging)
Show Figures

Figure 1

23 pages, 2233 KiB  
Article
A Novel Back Propagation Neural Network Based on the Harris Hawks Optimization Algorithm for the Remaining Useful Life Prediction of Lithium-Ion Batteries
by Yuyang Zhou, Zijian Shao, Huanhuan Li, Jing Chen, Haohan Sun, Yaping Wang, Nan Wang, Lei Pei, Zhen Wang, Houzhong Zhang and Chaochun Yuan
Energies 2025, 18(14), 3842; https://doi.org/10.3390/en18143842 - 19 Jul 2025
Viewed by 282
Abstract
Remaining useful life (RUL) serves as a pivotal metric for quantifying lithium-ion batteries’ state of health (SOH) in electric vehicles and plays a crucial role in ensuring their safety and reliability. In order to achieve accurate and reliable RUL prediction, a novel RUL [...] Read more.
Remaining useful life (RUL) serves as a pivotal metric for quantifying lithium-ion batteries’ state of health (SOH) in electric vehicles and plays a crucial role in ensuring their safety and reliability. In order to achieve accurate and reliable RUL prediction, a novel RUL prediction method which employs a back propagation (BP) neural network based on the Harris Hawks optimization (HHO) algorithm is proposed. This method optimizes the BP parameters using the improved HHO algorithm. At first, the circle chaotic mapping method is utilized to solve the problem of the initial value. Considering the problem of local convergence, Gaussian mutation is introduced to improve the search ability of the algorithm. Subsequently, two key health factors are selected as input features for the model, including the constant-current charging isovoltage rise time and constant-current discharging isovoltage drop time. The model is validated using aging data from commercial lithium iron phosphate (LiFePO4) batteries. Finally, the model is thoroughly verified under an aging test. Experimental validation using training sets comprising 50%, 60%, and 70% of the cycle data demonstrates superior predictive performance, with mean absolute error (MAE) values below 0.012, root mean square error (RMSE) values below 0.017 and mean absolute percentage error (MAPE) within 0.95%. The results indicate that the model significantly improves prediction accuracy, robustness and searchability. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Graphical abstract

20 pages, 2207 KiB  
Review
A Critical Review of the State Estimation Methods of Power Batteries for Electric Vehicles
by Qi Zhang, Hailin Rong, Daduan Zhao, Menglu Pei and Xing Dong
Energies 2025, 18(14), 3834; https://doi.org/10.3390/en18143834 - 18 Jul 2025
Viewed by 337
Abstract
Power batteries and their management technology are crucial for the safe and efficient operation of electric vehicles (EVs). The life and safety issues of power batteries have always plagued the EV industry. To achieve an intelligent battery management system (BMS), it is crucial [...] Read more.
Power batteries and their management technology are crucial for the safe and efficient operation of electric vehicles (EVs). The life and safety issues of power batteries have always plagued the EV industry. To achieve an intelligent battery management system (BMS), it is crucial to accurately estimate the internal state of the power battery. The purpose of this review is to analyze the current status of research on multi-state estimation of power batteries, which mainly focuses on the estimation of state of charge (SOC), state of energy (SOE), state of health (SOH), state of power (SOP), state of temperature (SOT), and state of safety (SOS). Moreover, it also analyzes and prospects the research hotspots, development trends, and future challenges of battery state estimation. It is a significant guide for designing BMSs for EVs, as well as for achieving intelligent safety management and efficient power battery use. Full article
Show Figures

Figure 1

30 pages, 4926 KiB  
Article
Impact Testing of Aging Li-Ion Batteries from Light Electric Vehicles (LEVs)
by Miguel Antonio Cardoso-Palomares, Juan Carlos Paredes-Rojas, Juan Alejandro Flores-Campos, Armando Oropeza-Osornio and Christopher René Torres-SanMiguel
Batteries 2025, 11(7), 263; https://doi.org/10.3390/batteries11070263 - 13 Jul 2025
Viewed by 397
Abstract
The increasing adoption of Light Electric Vehicles (LEVs) in urban areas, driven by the micromobility wave, raises significant safety concerns, particularly regarding battery fire incidents. This research investigates the electromechanical performance of aged 18650 lithium-ion batteries (LIBs) from LEVs under mechanical impact conditions. [...] Read more.
The increasing adoption of Light Electric Vehicles (LEVs) in urban areas, driven by the micromobility wave, raises significant safety concerns, particularly regarding battery fire incidents. This research investigates the electromechanical performance of aged 18650 lithium-ion batteries (LIBs) from LEVs under mechanical impact conditions. For this study, a battery module from a used e-scooter was disassembled, and its constituent cells were reconfigured into compact modules for testing. To characterize their initial condition, the cells underwent cycling tests to evaluate their state of health (SOH). Although a slight majority of the cells retained an SOH greater than 80%, a notable increase in their internal resistance (IR) was also observed, indicating degradation due to aging. The mechanical impact tests were conducted in adherence to the UL 2271:2018 standard, employing a semi-sinusoidal acceleration pulse. During these tests, linear kinematics were analyzed using videogrammetry, while key electrical and thermal parameters were monitored. Additionally, strain gauges were installed on the central cells to measure stress and deformation. The results from the mechanical shock tests revealed characteristic acceleration and velocity patterns. These findings clarify the electromechanical behavior of aged LIBs under impact, providing critical data to enhance the safety and reliability of these vehicles. Full article
Show Figures

Figure 1

23 pages, 5716 KiB  
Article
Transfer Learning-Based LRCNN for Lithium Battery State of Health Estimation with Small Samples
by Yuchao Xiong, Tiangang Lv, Liya Gao, Jingtian Hu, Zhe Zhang and Haoming Liu
Processes 2025, 13(7), 2223; https://doi.org/10.3390/pr13072223 - 11 Jul 2025
Viewed by 306
Abstract
Traditional data-driven approaches to lithium battery state of health (SOH) estimation face the challenges of difficult feature extraction, insufficient prediction accuracy and weak generalization. To address these issues, this study proposes a novel prediction framework with transfer learning-based linear regression (LR) and a [...] Read more.
Traditional data-driven approaches to lithium battery state of health (SOH) estimation face the challenges of difficult feature extraction, insufficient prediction accuracy and weak generalization. To address these issues, this study proposes a novel prediction framework with transfer learning-based linear regression (LR) and a convolutional neural network (CNN) under limited data. In this framework, first, variable inertia weight-based improved particle swarm optimization for variational mode decomposition (VIW-PSO-VMD) is proposed to mitigate the volatility of the “capacity resurgence point” and extract its time-series features. Then, the T-Pearson correlation analysis is introduced to comprehensively analyze the correlations between multivariate features and lithium battery SOH data and accurately extract strongly correlated features to learn the common features of lithium batteries. On this basis, a combination model is proposed, applying LR to extract the trend features and combining them with the multivariate strongly correlated features via a CNN. Transfer learning based on temporal feature analysis is used to improve the cross-domain learning capabilities of the model. We conduct case studies on a NASA dataset and the University of Maryland dataset. The results show that the proposed method is effective in improving the lithium battery SOH estimation accuracy under limited data. Full article
(This article belongs to the Special Issue Transfer Learning Methods in Equipment Reliability Management)
Show Figures

Figure 1

23 pages, 1388 KiB  
Article
Machine Learning-Based State-of-Health Estimation of Battery Management Systems Using Experimental and Simulation Data
by Anas Al-Rahamneh, Irene Izco, Adrian Serrano-Hernandez and Javier Faulin
Mathematics 2025, 13(14), 2247; https://doi.org/10.3390/math13142247 - 11 Jul 2025
Viewed by 512
Abstract
In pursuit of zero-emission targets, increasing sustainability concerns have prompted urban centers to adopt more environmentally friendly modes of transportation, notably through the deployment of electric vehicles (EVs). A prominent manifestation of this shift is the transition from conventional fuel-powered buses to electric [...] Read more.
In pursuit of zero-emission targets, increasing sustainability concerns have prompted urban centers to adopt more environmentally friendly modes of transportation, notably through the deployment of electric vehicles (EVs). A prominent manifestation of this shift is the transition from conventional fuel-powered buses to electric buses (e-buses), which, despite their environmental benefits, introduce significant operational challenges—chief among them, the management of battery systems, the most critical and complex component of e-buses. The development of efficient and reliable Battery Management Systems (BMSs) is thus central to ensuring battery longevity, operational safety, and overall vehicle performance. This study examines the potential of intelligent BMSs to improve battery health diagnostics, extend service life, and optimize system performance through the integration of simulation, real-time analytics, and advanced deep learning techniques. Particular emphasis is placed on the estimation of battery state of health (SoH), a key metric for predictive maintenance and operational planning. Two widely recognized deep learning models—Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM)—are evaluated for their efficacy in predicting SoH. These models are embedded within a unified framework that combines synthetic data generated by a physics-informed battery simulation model with empirical measurements obtained from real-world battery aging datasets. The proposed approach demonstrates a viable pathway for enhancing SoH prediction by leveraging both simulation-based data augmentation and deep learning. Experimental evaluations confirm the effectiveness of the framework in handling diverse data inputs, thereby supporting more robust and scalable battery management solutions for next-generation electric urban transportation systems. Full article
(This article belongs to the Special Issue Operations Research and Intelligent Computing for System Optimization)
Show Figures

Figure 1

20 pages, 30273 KiB  
Article
Integrated Framework of LSTM and Physical-Informed Neural Network for Lithium-Ion Battery Degradation Modeling and Prediction
by Yan Ding, Jinqi Zhu, Yang Liu, Dan Ning and Mingyue Qin
AI 2025, 6(7), 149; https://doi.org/10.3390/ai6070149 - 7 Jul 2025
Viewed by 734
Abstract
Accurate prediction of the State of Health (SOH) of lithium-ion batteries is essential for ensuring their safe and reliable operation. However, traditional deep learning approaches often suffer from challenges such as overfitting, limited generalization capability, and suboptimal prediction accuracy. To address these issues, [...] Read more.
Accurate prediction of the State of Health (SOH) of lithium-ion batteries is essential for ensuring their safe and reliable operation. However, traditional deep learning approaches often suffer from challenges such as overfitting, limited generalization capability, and suboptimal prediction accuracy. To address these issues, this paper proposes a novel framework that combines a Long Short-Term Memory (LSTM) network with a Physics-Informed Neural Network (PINN), referred to as LSTM-PINN, for high-precision SOH estimation. The proposed framework models battery degradation using state-space equations and extracts latent temporal features. These features are further integrated into a Deep Hidden Temporal Physical Module (DeepHTPM), which incorporates physical prior knowledge into the learning process. This integration significantly enhances the model’s ability to accurately capture the complex dynamics of battery degradation. The effectiveness of LSTM-PINN is validated using two publicly available datasets based on graphite cathode materials (NASA and CACLE). Extensive experimental results demonstrate the superior predictive performance of the proposed model, achieving Mean Absolute Errors (MAEs) of just 0.594% and 0.746% and Root Mean Square Errors (RMSEs) of 0.791% and 0.897% on the respective datasets. Our proposed LSTM-PINN framework enables accurate battery aging modeling, advancing lithium-ion battery SOH prediction for industrial applications. Full article
Show Figures

Figure 1

32 pages, 8765 KiB  
Article
Hybrid Efficient Fast Charging Strategy for WPT Systems: Memetic-Optimized Control with Pulsed/Multi-Stage Current Modes and Neural Network SOC Estimation
by Marouane El Ancary, Abdellah Lassioui, Hassan El Fadil, Yassine El Asri, Anwar Hasni, Abdelhafid Yahya and Mohammed Chiheb
World Electr. Veh. J. 2025, 16(7), 379; https://doi.org/10.3390/wevj16070379 - 6 Jul 2025
Viewed by 446
Abstract
This paper presents a hybrid fast charging strategy for static wireless power transfer (WPT) systems that synergistically combines pulsed current and multi-stage current (MCM) modes to enable rapid yet battery-health-conscious electric vehicle (EV) charging, thereby promoting sustainable transportation. The proposed approach employs a [...] Read more.
This paper presents a hybrid fast charging strategy for static wireless power transfer (WPT) systems that synergistically combines pulsed current and multi-stage current (MCM) modes to enable rapid yet battery-health-conscious electric vehicle (EV) charging, thereby promoting sustainable transportation. The proposed approach employs a memetic algorithm (MA) to dynamically optimize the charging parameters, achieving an optimal balance between speed and battery longevity while maintaining 90.78% system efficiency at the SAE J2954-standard 85 kHz operating frequency. A neural-network-based state of charge (SOC) estimator provides accurate real-time monitoring, complemented by MA-tuned PI control for enhanced resonance stability and adaptive pulsed current–MCM profiles for the optimal energy transfer. Simulations and experimental validation demonstrate faster charging compared to that using the conventional constant current–constant voltage (CC-CV) methods while effectively preserving the battery’s state of health (SOH)—a critical advantage that reduces the environmental impact of frequent battery replacements and minimizes the carbon footprint associated with raw material extraction and battery manufacturing. By addressing both the technical challenges of high-power WPT systems and the ecological imperative of battery preservation, this research bridges the gap between fast charging requirements and sustainable EV adoption, offering a practical solution that aligns with global decarbonization goals through optimized resource utilization and an extended battery service life. Full article
Show Figures

Graphical abstract

25 pages, 4568 KiB  
Article
Lithium-Ion Battery State of Health Estimation Based on CNN-LSTM-Attention-FVIM Algorithm and Fusion of Multiple Health Features
by Guoju Liu, Zhihui Deng, Yonghong Xu, Lianfeng Lai, Guoqing Gong, Liang Tong, Hongguang Zhang, Yiyang Li, Minghui Gong, Mengxiang Yan and Zheng Ye
Appl. Sci. 2025, 15(13), 7555; https://doi.org/10.3390/app15137555 - 5 Jul 2025
Viewed by 532
Abstract
Lithium-ion batteries play a vital role in human society. Therefore, it is of critical significance to reliably predict the evolution of State of Health (SOH) degradation patterns in order to improve the high accuracy and stability of lithium-ion battery SOH prediction. This paper [...] Read more.
Lithium-ion batteries play a vital role in human society. Therefore, it is of critical significance to reliably predict the evolution of State of Health (SOH) degradation patterns in order to improve the high accuracy and stability of lithium-ion battery SOH prediction. This paper proposes a novel SOH predication method by combing the four-vector intelligent metaheuristic (FVIM) with the CNN-LSTM-Attention basic model. The model adopts the collaborative architecture of a convolutional neural network and time series module, strengthens the cross-level feature interaction by introducing a multi-level attention mechanism, then uses the FVIM optimization algorithm to optimize the key parameters to realize the overall model architecture. By analyzing the charging voltage curve of lithium-ion batteries, the health factors with high correlation are extracted, and the correlation between the health factors and battery capacity is verified using two correlation coefficients. After the model is verified on a single NASA battery aging dataset, the model is compared with other models under the same relevant parameters and environmental settings to verify the high-precision prediction of the model. During the analysis and comparison process, CNN-LSTM-Attention-FVIM achieved a high fitting ability for battery SOH prediction estimation, with the mean absolute error (MAE) and root mean square error (RMSE) within 0.99% and 1.33%, respectively, reflecting the model’s high generalization ability and high prediction performance. Full article
Show Figures

Figure 1

Back to TopTop