Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,295)

Search Parameters:
Keywords = battery energy management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2129 KiB  
Review
Advances in Thermal Management of Lithium-Ion Batteries: Causes of Thermal Runaway and Mitigation Strategies
by Tiansi Wang, Haoran Liu, Wanlin Wang, Weiran Jiang, Yixiang Xu, Simeng Zhu and Qingliang Sheng
Processes 2025, 13(8), 2499; https://doi.org/10.3390/pr13082499 (registering DOI) - 7 Aug 2025
Abstract
With the widespread use of lithium-ion batteries in electric vehicles, energy storage systems, and portable electronic devices, concerns regarding their thermal runaway have escalated, raising significant safety issues. Despite advances in existing thermal management technologies, challenges remain in addressing the complexity and variability [...] Read more.
With the widespread use of lithium-ion batteries in electric vehicles, energy storage systems, and portable electronic devices, concerns regarding their thermal runaway have escalated, raising significant safety issues. Despite advances in existing thermal management technologies, challenges remain in addressing the complexity and variability of battery thermal runaway. These challenges include the limited heat dissipation capability of passive thermal management, the high energy consumption of active thermal management, and the ongoing optimization of material improvement methods. This paper systematically examines the mechanisms through which three main triggers—mechanical abuse, thermal abuse, and electrical abuse—affect the thermal runaway of lithium-ion batteries. It also reviews the advantages and limitations of passive and active thermal management techniques, battery management systems, and material improvement strategies for enhancing the thermal stability of batteries. Additionally, a comparison of the principles, characteristics, and innovative examples of various thermal management technologies is provided in tabular form. The study aims to offer a theoretical foundation and practical guidance for optimizing lithium-ion battery thermal management technologies, thereby promoting their development for high-safety and high-reliability applications. Full article
(This article belongs to the Section Energy Systems)
28 pages, 3533 KiB  
Article
Sustainable Integration of Prosumers’ Battery Energy Storage Systems’ Optimal Operation with Reduction in Grid Losses
by Tomislav Markotić, Damir Šljivac, Predrag Marić and Matej Žnidarec
Sustainability 2025, 17(15), 7165; https://doi.org/10.3390/su17157165 (registering DOI) - 7 Aug 2025
Abstract
Driven by the need for sustainable and efficient energy systems, the optimal management of distributed generation, including photovoltaic systems and battery energy storage systems within prosumer households, is of crucial importance. This requires a comprehensive cost–benefit analysis to assess their viability. In this [...] Read more.
Driven by the need for sustainable and efficient energy systems, the optimal management of distributed generation, including photovoltaic systems and battery energy storage systems within prosumer households, is of crucial importance. This requires a comprehensive cost–benefit analysis to assess their viability. In this study, an optimization model formulated as a mixed-integer linear programming problem is proposed to evaluate the integration of battery storage systems for 10 prosumers on the radial feeder in Croatia and to quantify the benefits both from the prosumers’ perspective and that of the reduction in grid losses. The results show significant annual cost reductions for prosumers, totaling EUR 1798.78 for the observed feeder, with some achieving a net profit. Grid losses are significantly reduced by 1172.52 kWh, resulting in an annual saving of EUR 216.25 for the distribution system operator. However, under the current Croatian market conditions, the integration of battery storage systems is not profitable over the entire lifetime due to the high initial investment costs of EUR 720/kWh. The break-even analysis reveals that investment cost needs to decrease by 52.78%, or an inflation rate of 4.87% is required, to reach prosumer profitability. This highlights the current financial barriers to the widespread adoption of battery storage systems and emphasizes the need for significant cost reductions or targeted incentives. Full article
14 pages, 3207 KiB  
Article
Grid-Tied PV Power Smoothing Using an Energy Storage System: Gaussian Tuning
by Ahmad I. Alyan, Nasrudin Abd Rahim and Jeyraj Selvaraj
Energies 2025, 18(15), 4206; https://doi.org/10.3390/en18154206 (registering DOI) - 7 Aug 2025
Abstract
The use of power smoothing for renewable energy resources is attracting increasing attention. One widely used resource that could benefit from this technique is the grid-tied photovoltaic (PV) system. Solar energy production typically follows a Gaussian bell curve, with peaks at midday. This [...] Read more.
The use of power smoothing for renewable energy resources is attracting increasing attention. One widely used resource that could benefit from this technique is the grid-tied photovoltaic (PV) system. Solar energy production typically follows a Gaussian bell curve, with peaks at midday. This paper confirms this pattern by using the bell curve as a reference; however, climate variations can significantly alter this pattern. Therefore, this study aimed to smooth the power supplied to the grid by a PV system. The proposed controller manages the charge and discharge processes of the energy storage system (ESS) to ensure a smooth Gaussian bell curve output. It adjusts the parameters of this curve to closely match the generated energy, absorbing or supplying fluctuations to maintain the desired profile. This system also aims to provide accurate predictions of the power that should be supplied to the grid by the PV system, based on the capabilities of the ESS and the overall system performance. Although experimental results were not included in this analysis, the system was implemented in SIMULINK using real-world data. The controller utilizes a hybrid ESS comprising a vanadium redox battery (VRB) and supercapacitors (SCs). The design and operation of the controller, including curve tuning and ESS charge–discharge management, are detailed. The simulation results demonstrate excellent performance and are thoroughly discussed. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

19 pages, 6784 KiB  
Article
Surface Temperature Assisted State of Charge Estimation for Retired Power Batteries
by Liangyu Xu, Wenxuan Han, Jiawei Dong, Ke Chen, Yuchen Li and Guangchao Geng
Sensors 2025, 25(15), 4863; https://doi.org/10.3390/s25154863 - 7 Aug 2025
Abstract
Accurate State of Charge (SOC) estimation for retired power batteries remains a critical challenge due to their degraded electrochemical properties and heterogeneous aging mechanisms. Traditional methods relying solely on electrical parameters (e.g., voltage and current) exhibit significant errors, as aged batteries experience altered [...] Read more.
Accurate State of Charge (SOC) estimation for retired power batteries remains a critical challenge due to their degraded electrochemical properties and heterogeneous aging mechanisms. Traditional methods relying solely on electrical parameters (e.g., voltage and current) exhibit significant errors, as aged batteries experience altered internal resistance, capacity fade, and uneven heat generation, which distort the relationship between electrical signals and actual SOC. To address these limitations, this study proposes a surface temperature-assisted SOC estimation method, leveraging the distinct thermal characteristics of retired batteries. By employing infrared thermal imaging, key temperature feature regions—the positive/negative tabs and central area—are identified, which exhibit strong correlations with SOC dynamics under varying operational conditions. A Gated Recurrent Unit (GRU) neural network is developed to integrate multi-region temperature data with electrical parameters, capturing spatial–temporal thermal–electrical interactions unique to retired batteries. The model is trained and validated using experimental data collected under constant current discharge conditions, demonstrating superior accuracy compared to conventional methods. Specifically, our method achieves 64.3–68.1% lower RMSE than traditional electrical-parameter-only approaches (V-I inputs) across 0.5 C–2 C discharge rates. Results show that the proposed method reduces SOC estimation errors compared to traditional voltage-based models, achieving RMSE values below 1.04 across all tested rates. This improvement stems from the model’s ability to decode localized heating patterns and their hysteresis effects, which are particularly pronounced in aged batteries. The method’s robustness under high-rate operations highlights its potential for enhancing the reliability of retired battery management systems in secondary applications such as energy storage. Full article
Show Figures

Figure 1

37 pages, 13501 KiB  
Review
Research Progress on Risk Prevention and Control Technology for Lithium-Ion Battery Energy Storage Power Stations: A Review
by Weihang Pan
Batteries 2025, 11(8), 301; https://doi.org/10.3390/batteries11080301 - 6 Aug 2025
Abstract
Amidst the background of accelerated global energy transition, the safety risk of lithium-ion battery energy storage systems, especially the fire hazard, has become a key bottleneck hindering their large-scale application, and there is an urgent need to build a systematic prevention and control [...] Read more.
Amidst the background of accelerated global energy transition, the safety risk of lithium-ion battery energy storage systems, especially the fire hazard, has become a key bottleneck hindering their large-scale application, and there is an urgent need to build a systematic prevention and control program. This paper focuses on the fire characteristics and thermal runaway mechanism of lithium-ion battery energy storage power stations, analyzing the current situation of their risk prevention and control technology across the dimensions of monitoring and early warning technology, thermal management technology, and fire protection technology, and comparing and analyzing the characteristics of each technology from multiple angles. Building on this analysis, this paper summarizes the limitations of the existing technologies and puts forward prospective development paths, including the development of multi-parameter coupled monitoring and warning technology, integrated and intelligent thermal management technology, clean and efficient extinguishing agents, and dynamic fire suppression strategies, aiming to provide solid theoretical support and technical guidance for the precise risk prevention and control of lithium-ion battery storage power stations. Full article
(This article belongs to the Special Issue Advanced Battery Safety Technologies: From Materials to Systems)
Show Figures

Graphical abstract

25 pages, 77176 KiB  
Article
Advancing Energy Management Strategies for Hybrid Fuel Cell Vehicles: A Comparative Study of Deterministic and Fuzzy Logic Approaches
by Mohammed Essoufi, Mohammed Benzaouia, Bekkay Hajji, Abdelhamid Rabhi and Michele Calì
World Electr. Veh. J. 2025, 16(8), 444; https://doi.org/10.3390/wevj16080444 - 6 Aug 2025
Abstract
The increasing depletion of fossil fuels and their environmental impact have led to the development of fuel cell hybrid electric vehicles. By combining fuel cells with batteries, these vehicles offer greater efficiency and zero emissions. However, their energy management remains a challenge requiring [...] Read more.
The increasing depletion of fossil fuels and their environmental impact have led to the development of fuel cell hybrid electric vehicles. By combining fuel cells with batteries, these vehicles offer greater efficiency and zero emissions. However, their energy management remains a challenge requiring advanced strategies. This paper presents a comparative study of two developed energy management strategies: a deterministic rule-based approach and a fuzzy logic approach. The proposed system consists of a proton exchange membrane fuel cell (PEMFC) as the primary energy source and a lithium-ion battery as the secondary source. A comprehensive model of the hybrid powertrain is developed to evaluate energy distribution and system behaviour. The control system includes a model predictive control (MPC) method for fuel cell current regulation and a PI controller to maintain DC bus voltage stability. The proposed strategies are evaluated under standard driving cycles (UDDS and NEDC) using a simulation in MATLAB/Simulink. Key performance indicators such as fuel efficiency, hydrogen consumption, battery state-of-charge, and voltage stability are examined to assess the effectiveness of each approach. Simulation results demonstrate that the deterministic strategy offers a structured and computationally efficient solution, while the fuzzy logic approach provides greater adaptability to dynamic driving conditions, leading to improved overall energy efficiency. These findings highlight the critical role of advanced control strategies in improving FCHEV performance and offer valuable insights for future developments in hybrid-vehicle energy management. Full article
(This article belongs to the Special Issue Power and Energy Systems for E-Mobility, 2nd Edition)
Show Figures

Figure 1

28 pages, 3960 KiB  
Article
Electric Bus Battery Energy Consumption Estimation and Influencing Features Analysis Using a Two-Layer Stacking Framework with SHAP-Based Interpretation
by Runze Liu, Jianming Cai, Lipeng Hu, Benxiao Lou and Jinjun Tang
Sustainability 2025, 17(15), 7105; https://doi.org/10.3390/su17157105 - 5 Aug 2025
Abstract
The widespread adoption of electric buses represents a major step forward in sustainable transportation, but also brings new operational challenges, particularly in terms of improving their efficiency and controlling costs. Therefore, battery energy consumption management is a key approach for addressing these issues. [...] Read more.
The widespread adoption of electric buses represents a major step forward in sustainable transportation, but also brings new operational challenges, particularly in terms of improving their efficiency and controlling costs. Therefore, battery energy consumption management is a key approach for addressing these issues. Accurate prediction of energy consumption and interpretation of the influencing factors are essential for improving operational efficiency, optimizing energy use, and reducing operating costs. Although existing studies have made progress in battery energy consumption prediction, challenges remain in achieving high-precision modeling and conducting a comprehensive analysis of the influencing features. To address these gaps, this study proposes a two-layer stacking framework for estimating the energy consumption of electric buses. The first layer integrates the strengths of three nonlinear regression models—RF (Random Forest), GBDT (Gradient Boosted Decision Trees), and CatBoost (Categorical Boosting)—to enhance the modeling capacity for complex feature relationships. The second layer employs a Linear Regression model as a meta-learner to aggregate the predictions from the base models and improve the overall predictive performance. The framework is trained on 2023 operational data from two electric bus routes (NO. 355 and NO. W188) in Changsha, China, incorporating battery system parameters, driving characteristics, and environmental variables as independent variables for model training and analysis. Comparative experiments with various ensemble models demonstrate that the proposed stacking framework exhibits superior performance in data fitting. Furthermore, XGBoost (Extreme Gradient Boosting, version 2.1.4) is introduced as a surrogate model to approximate the decision logic of the stacking framework, enabling SHAP (SHapley Additive exPlanations) analysis to quantify the contribution and marginal effects of influencing features. The proposed stacked and surrogate models achieved superior battery energy consumption prediction accuracy (lowest MSE, RMSE, and MAE), significantly outperforming benchmark models on real-world datasets. SHAP analysis quantified the overall contributions of feature categories (battery operation parameters: 56.5%; driving characteristics: 42.3%; environmental data: 1.2%), further revealing the specific contributions and nonlinear influence mechanisms of individual features. These quantitative findings offer specific guidance for optimizing battery system control and driving behavior. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

51 pages, 4099 KiB  
Review
Artificial Intelligence and Digital Twin Technologies for Intelligent Lithium-Ion Battery Management Systems: A Comprehensive Review of State Estimation, Lifecycle Optimization, and Cloud-Edge Integration
by Seyed Saeed Madani, Yasmin Shabeer, Michael Fowler, Satyam Panchal, Hicham Chaoui, Saad Mekhilef, Shi Xue Dou and Khay See
Batteries 2025, 11(8), 298; https://doi.org/10.3390/batteries11080298 - 5 Aug 2025
Abstract
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery [...] Read more.
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery Management Systems (BMS). This review paper explores how artificial intelligence (AI) and digital twin (DT) technologies can be integrated to enable the intelligent BMS of the future. It investigates how powerful data approaches such as deep learning, ensembles, and models that rely on physics improve the accuracy of predicting state of charge (SOC), state of health (SOH), and remaining useful life (RUL). Additionally, the paper reviews progress in AI features for cooling, fast charging, fault detection, and intelligible AI models. Working together, cloud and edge computing technology with DTs means better diagnostics, predictive support, and improved management for any use of EVs, stored energy, and recycling. The review underlines recent successes in AI-driven material research, renewable battery production, and plans for used systems, along with new problems in cybersecurity, combining data and mass rollout. We spotlight important research themes, existing problems, and future drawbacks following careful analysis of different up-to-date approaches and systems. Uniting physical modeling with AI-based analytics on cloud-edge-DT platforms supports the development of tough, intelligent, and ecologically responsible batteries that line up with future mobility and wider use of renewable energy. Full article
Show Figures

Figure 1

50 pages, 11711 KiB  
Article
Heat Pipe Integrated Cooling System of 4680 Lithium–Ion Battery for Electric Vehicles
by Yong-Jun Lee, Tae-Gue Park, Chan-Ho Park, Su-Jong Kim, Ji-Su Lee and Seok-Ho Rhi
Energies 2025, 18(15), 4132; https://doi.org/10.3390/en18154132 (registering DOI) - 4 Aug 2025
Viewed by 213
Abstract
This study investigates a novel heat pipe integrated cooling system designed for thermal management of Tesla’s 4680 cylindrical lithium–ion batteries in electric vehicles (EVs). Through a comprehensive approach combining experimental analysis, 1-D AMESim simulations, and 3-D Computational Fluid Dynamics (CFD) modeling, the thermal [...] Read more.
This study investigates a novel heat pipe integrated cooling system designed for thermal management of Tesla’s 4680 cylindrical lithium–ion batteries in electric vehicles (EVs). Through a comprehensive approach combining experimental analysis, 1-D AMESim simulations, and 3-D Computational Fluid Dynamics (CFD) modeling, the thermal performance of various wick structures and working fluid filling ratios was evaluated. The experimental setup utilized a triangular prism chamber housing three surrogate heater blocks to replicate the heat generation of 4680 cells under 1C, 2C, and 3C discharge rates. Results demonstrated that a blended fabric wick with a crown-shaped design (Wick 5) at a 30–40% filling ratio achieved the lowest maximum temperature (Tmax of 47.0 °C), minimal surface temperature deviation (ΔTsurface of 2.8 °C), and optimal thermal resistance (Rth of 0.27 °C/W) under 85 W heat input. CFD simulations validated experimental findings, confirming stable evaporation–condensation circulation at a 40% filling ratio, while identifying thermal limits at high heat loads (155 W). The proposed hybrid battery thermal management system (BTMS) offers significant potential for enhancing the performance and safety of high-energy density EV batteries. This research provides a foundation for optimizing thermal management in next-generation electric vehicles. Full article
(This article belongs to the Special Issue Optimized Energy Management Technology for Electric Vehicle)
Show Figures

Graphical abstract

16 pages, 5548 KiB  
Article
A State-of-Charge-Frequency Control Strategy for Grid-Forming Battery Energy Storage Systems in Black Start
by Yunuo Yuan and Yongheng Yang
Batteries 2025, 11(8), 296; https://doi.org/10.3390/batteries11080296 - 4 Aug 2025
Viewed by 166
Abstract
As the penetration of intermittent renewable energy sources continues to increase, ensuring reliable power system and frequency stability is of importance. Battery energy storage systems (BESSs) have emerged as an important solution to mitigate these challenges by providing essential grid support services. In [...] Read more.
As the penetration of intermittent renewable energy sources continues to increase, ensuring reliable power system and frequency stability is of importance. Battery energy storage systems (BESSs) have emerged as an important solution to mitigate these challenges by providing essential grid support services. In this context, a state-of-charge (SOC)-frequency control strategy for grid-forming BESSs is proposed to enhance their role in stabilizing grid frequency and improving overall system performance. In the system, the DC-link capacitor is regulated to maintain the angular frequency through a matching control scheme, emulating the characteristics of the rotor dynamics of a synchronous generator (SG). Thereby, the active power control is implemented in the control of the DC/DC converter to further regulate the grid frequency. More specifically, the relationship between the active power and the frequency is established through the SOC of the battery. In addition, owing to the inevitable presence of differential operators in the control loop, a high-gain observer (HGO) is employed, and the corresponding parameter design of the proposed method is elaborated. The proposed strategy simultaneously achieves frequency regulation and implicit energy management by autonomously balancing power output with available battery capacity, demonstrating a novel dual benefit for sustainable grid operation. To verify the effectiveness of the proposed control strategy, a 0.5-Hz frequency change and a 10% power change are carried out through simulations and also on a hardware-in-the-loop (HIL) platform. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

23 pages, 4451 KiB  
Article
Energy Management and Power Distribution for Battery/Ultracapacitor Hybrid Energy Storage System in Electric Vehicles with Regenerative Braking Control
by Abdelsalam A. Ahmed, Young Il Lee, Saleh Al Dawsari, Ahmed A. Zaki Diab and Abdelsalam A. Ezzat
Math. Comput. Appl. 2025, 30(4), 82; https://doi.org/10.3390/mca30040082 - 3 Aug 2025
Viewed by 262
Abstract
This paper presents an advanced energy management system (EMS) for optimizing power distribution in a battery/ultracapacitor (UC) hybrid energy storage system (HESS) for electric vehicles (EVs). The proposed EMS accounts for all energy flow scenarios within a practical driving cycle. A regenerative braking [...] Read more.
This paper presents an advanced energy management system (EMS) for optimizing power distribution in a battery/ultracapacitor (UC) hybrid energy storage system (HESS) for electric vehicles (EVs). The proposed EMS accounts for all energy flow scenarios within a practical driving cycle. A regenerative braking control strategy is developed to maximize kinetic energy recovery using an induction motor, efficiently distributing the recovered energy between the UC and battery. Additionally, a power flow management approach is introduced for both motoring (discharge) and braking (charge) operations via bidirectional buck–boost DC-DC converters. In discharge mode, an optimal distribution factor is dynamically adjusted to balance power delivery between the battery and UC, maximizing efficiency. During charging, a DC link voltage control mechanism prioritizes UC charging over the battery, reducing stress and enhancing energy recovery efficiency. The proposed EMS is validated through simulations and experiments, demonstrating significant improvements in vehicle acceleration, energy efficiency, and battery lifespan. Full article
(This article belongs to the Special Issue Applied Optimization in Automatic Control and Systems Engineering)
Show Figures

Figure 1

19 pages, 3154 KiB  
Article
Optimizing the Operation of Local Energy Communities Based on Two-Stage Scheduling
by Ping He, Lei Zhou, Jingwen Wang, Zhuo Yang, Guozhao Lv, Can Cai and Hongbo Zou
Processes 2025, 13(8), 2449; https://doi.org/10.3390/pr13082449 - 2 Aug 2025
Viewed by 262
Abstract
Flexible energy sources such as electric vehicles and the battery energy storage systems of intelligent distribution systems can provide system-wide auxiliary services such as frequency regulation for power systems. This paper proposes an optimal method for operating the local energy community that is [...] Read more.
Flexible energy sources such as electric vehicles and the battery energy storage systems of intelligent distribution systems can provide system-wide auxiliary services such as frequency regulation for power systems. This paper proposes an optimal method for operating the local energy community that is based on two-stage scheduling. Firstly, the basic concepts of the local energy community and flexible service are introduced in detail. Taking LEC as the reserve unit of artificial frequency recovery, an energy information interaction model among LEC, balance service providers, and the power grid is established. Then, a two-stage scheduling framework is proposed to ensure the rationality and economy of community energy scheduling. In the first stage, day-ahead scheduling uses the energy community management center to predict the up/down flexibility capacity that LEC can provide by adjusting the BESS control parameters. In the second stage, real-time scheduling aims at maximizing community profits and scheduling LEC based on the allocation and activation of standby flexibility determined in real time. Finally, the correctness of the two-stage scheduling framework is verified through a case study. The results show that the control parameters used in the day-ahead stage can significantly affect the real-time profitability of LEC, and that LEC benefits more in the case of low BESS utilization than in the case of high BESS utilization and non-participation in frequency recovery reserve. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

25 pages, 2661 KiB  
Article
Fuzzy Logic-Based Energy Management Strategy for Hybrid Renewable System with Dual Storage Dedicated to Railway Application
by Ismail Hacini, Sofia Lalouni Belaid, Kassa Idjdarene, Hammoudi Abderazek and Kahina Berabez
Technologies 2025, 13(8), 334; https://doi.org/10.3390/technologies13080334 - 1 Aug 2025
Viewed by 229
Abstract
Railway systems occupy a predominant role in urban transport, providing efficient, high-capacity mobility. Progress in rail transport allows fast traveling, whilst environmental concerns and CO2 emissions are on the rise. The integration of railway systems with renewable energy source (RES)-based stations presents [...] Read more.
Railway systems occupy a predominant role in urban transport, providing efficient, high-capacity mobility. Progress in rail transport allows fast traveling, whilst environmental concerns and CO2 emissions are on the rise. The integration of railway systems with renewable energy source (RES)-based stations presents a promising avenue to improve the sustainability, reliability, and efficiency of urban transport networks. A storage system is needed to both ensure a continuous power supply and meet train demand at the station. Batteries (BTs) offer high energy density, while supercapacitors (SCs) offer both a large number of charge and discharge cycles, and high-power density. This paper proposes a hybrid RES (photovoltaic and wind), combined with batteries and supercapacitors constituting the hybrid energy storage system (HESS). One major drawback of trains is the long charging time required in stations, so they have been fitted with SCs to allow them to charge up quickly. A new fuzzy energy management strategy (F-EMS) is proposed. This supervision strategy optimizes the power flow between renewable energy sources, HESS, and trains. DC bus voltage regulation is involved, maintaining BT and SC charging levels within acceptable ranges. The simulation results, carried out using MATLAB/Simulink, demonstrate the effectiveness of the suggested fuzzy energy management strategy for various production conditions and train demand. Full article
Show Figures

Figure 1

30 pages, 866 KiB  
Article
Balancing Profitability and Sustainability in Electric Vehicles Insurance: Underwriting Strategies for Affordable and Premium Models
by Xiaodan Lin, Fenqiang Chen, Haigang Zhuang, Chen-Ying Lee and Chiang-Ku Fan
World Electr. Veh. J. 2025, 16(8), 430; https://doi.org/10.3390/wevj16080430 - 1 Aug 2025
Viewed by 221
Abstract
This study aims to develop an optimal underwriting strategy for affordable (H1 and M1) and premium (L1 and M2) electric vehicles (EVs), balancing financial risk and sustainability commitments. The research is motivated by regulatory pressures, risk management needs, and sustainability goals, necessitating an [...] Read more.
This study aims to develop an optimal underwriting strategy for affordable (H1 and M1) and premium (L1 and M2) electric vehicles (EVs), balancing financial risk and sustainability commitments. The research is motivated by regulatory pressures, risk management needs, and sustainability goals, necessitating an adaptation of traditional underwriting models. The study employs a modified Delphi method with industry experts to identify key risk factors, including accident risk, repair costs, battery safety, driver behavior, and PCAF carbon impact. A sensitivity analysis was conducted to examine premium adjustments under different risk scenarios, categorizing EVs into four risk segments: Low-Risk, Low-Carbon (L1); Medium-Risk, Low-Carbon (M1); Medium-Risk, High-Carbon (M2); and High-Risk, High-Carbon (H1). Findings indicate that premium EVs (L1 and M2) exhibit lower volatility in underwriting costs, benefiting from advanced safety features, lower accident rates, and reduced carbon attribution penalties. Conversely, budget EVs (H1 and M1) experience higher premium fluctuations due to greater accident risks, costly repairs, and higher carbon costs under PCAF implementation. The worst-case scenario showed a 14.5% premium increase, while the best-case scenario led to a 10.5% premium reduction. The study recommends prioritizing premium EVs for insurance coverage due to their lower underwriting risks and carbon efficiency. For budget EVs, insurers should implement selective underwriting based on safety features, driver risk profiling, and energy efficiency. Additionally, incentive-based pricing such as telematics discounts, green repair incentives, and low-carbon charging rewards can mitigate financial risks and align with net-zero insurance commitments. This research provides a structured framework for insurers to optimize EV underwriting while ensuring long-term profitability and regulatory compliance. Full article
Show Figures

Figure 1

40 pages, 4775 KiB  
Article
Optimal Sizing of Battery Energy Storage System for Implicit Flexibility in Multi-Energy Microgrids
by Andrea Scrocca, Maurizio Delfanti and Filippo Bovera
Appl. Sci. 2025, 15(15), 8529; https://doi.org/10.3390/app15158529 - 31 Jul 2025
Viewed by 185
Abstract
In the context of urban decarbonization, multi-energy microgrids (MEMGs) are gaining increasing relevance due to their ability to enhance synergies across multiple energy vectors. This study presents a block-based MILP framework developed to optimize the operations of a real MEMG, with a particular [...] Read more.
In the context of urban decarbonization, multi-energy microgrids (MEMGs) are gaining increasing relevance due to their ability to enhance synergies across multiple energy vectors. This study presents a block-based MILP framework developed to optimize the operations of a real MEMG, with a particular focus on accurately modeling the structure of electricity and natural gas bills. The objective is to assess the added economic value of integrating a battery energy storage system (BESS) under the assumption it is employed to provide implicit flexibility—namely, bill management, energy arbitrage, and peak shaving. Results show that under assumed market conditions, tariff schemes, and BESS costs, none of the analyzed BESS configurations achieve a positive net present value. However, a 2 MW/4 MWh BESS yields a 3.8% reduction in annual operating costs compared to the base case without storage, driven by increased self-consumption (+2.8%), reduced thermal energy waste (–6.4%), and a substantial decrease in power-based electricity charges (–77.9%). The performed sensitivity analyses indicate that even with a significantly higher day-ahead market price spread, the BESS is not sufficiently incentivized to perform pure energy arbitrage and that the effectiveness of a time-of-use power-based tariff depends not only on the level of price differentiation but also on the BESS size. Overall, this study provides insights into the role of BESS in MEMGs and highlights the need for electricity bill designs that better reward the provision of implicit flexibility by storage systems. Full article
(This article belongs to the Special Issue Innovative Approaches to Optimize Future Multi-Energy Systems)
Show Figures

Figure 1

Back to TopTop