Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (845)

Search Parameters:
Keywords = baseline distance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 692 KiB  
Article
Contrast Sensitivity Comparison of Daily Simultaneous-Vision Center-Near Multifocal Contact Lenses: A Pilot Study
by David P. Piñero, Ainhoa Molina-Martín, Elena Martínez-Plaza, Kevin J. Mena-Guevara, Violeta Gómez-Vicente and Dolores de Fez
Vision 2025, 9(3), 67; https://doi.org/10.3390/vision9030067 (registering DOI) - 1 Aug 2025
Abstract
Our purpose is to evaluate the binocular contrast sensitivity function (CSF) in a presbyopic population and compare the results obtained with four different simultaneous-vision center-near multifocal contact lens (MCL) designs for distance vision under two illumination conditions. Additionally, chromatic CSF (red-green and blue-yellow) [...] Read more.
Our purpose is to evaluate the binocular contrast sensitivity function (CSF) in a presbyopic population and compare the results obtained with four different simultaneous-vision center-near multifocal contact lens (MCL) designs for distance vision under two illumination conditions. Additionally, chromatic CSF (red-green and blue-yellow) was evaluated. A randomized crossover pilot study was conducted. Four daily disposable lens designs, based on simultaneous-vision and center-near correction, were compared. The achromatic contrast sensitivity function (CSF) was measured binocularly using the CSV1000e test under two lighting conditions: room light on and off. Chromatic CSF was measured using the OptoPad-CSF test. Comparison of achromatic results with room lighting showed a statistically significant difference only for 3 cpd (p = 0.03) between the baseline visit (with spectacles) and all MCLs. Comparison of achromatic results without room lighting showed no statistically significant differences between the baseline and all MCLs for any spatial frequency (p > 0.05 in all cases). Comparison of CSF-T results showed a statistically significant difference only for 4 cpd (p = 0.002). Comparison of CSF-D results showed no statistically significant difference for all frequencies (p > 0.05 in all cases). The MCL designs analyzed provided satisfactory achromatic contrast sensitivity results for distance vision, similar to those obtained with spectacles, with no remarkable differences between designs. Chromatic contrast sensitivity for the red-green and blue-yellow mechanisms revealed some differences from the baseline that should be further investigated in future studies. Full article
Show Figures

Figure 1

28 pages, 746 KiB  
Article
Comparing Microprocessor-Controlled and Non-Microprocessor-Controlled Prosthetic Knees Across All Classified Domains of the ICF Model: A Pragmatic Clinical Trial
by Charlotte E. Bosman, Bregje L. Seves, Jan H. B. Geertzen, Behrouz Fard, Irene E. Newsum, Marieke A. Paping, Aline H. Vrieling and Corry K. van der Sluis
Prosthesis 2025, 7(4), 89; https://doi.org/10.3390/prosthesis7040089 (registering DOI) - 1 Aug 2025
Abstract
Background: The use of lower limb prosthesis can impact all aspects of daily life, activities and participation. Various studies have compared the microprocessor-controlled knee (MPK) to the non-microprocessor-controlled knee (NMPK) using a variety of different outcome measures, but results are inconsistent and raise [...] Read more.
Background: The use of lower limb prosthesis can impact all aspects of daily life, activities and participation. Various studies have compared the microprocessor-controlled knee (MPK) to the non-microprocessor-controlled knee (NMPK) using a variety of different outcome measures, but results are inconsistent and raise the question of which type of knee is most effective. Therefore, we aimed to assess the effect of MPKs compared to NMPKs across all classified ICF domains in adult prosthesis users. Methods: Participants performed baseline measurements with the NMPK (T0). One week later, they started a four-to-six-week trial period with the MPK. Afterward, measurements were repeated with the MPK (T1). Functional tests (6MWT, TUG-test and activity monitor) and questionnaires (ABC, SQUASH, USER-P and PEQ) were used. For statistical analyses, paired t-tests, Wilcoxon signed-rank tests and Chi2 test were applied. The Benjamini–Hochberg procedure was applied to correct for multiple testing. Results: Twenty-five participants were included. Using an MPK compared to an NMPK significantly resulted in improvements in balance and walking confidence, safety, walking distance and self-reported walking ability, as well as a decrease in number of stumbles and falls. Additionally, participants using an MPK were significantly more satisfied with their participation, experienced fewer restrictions, reported greater satisfaction with the appearance and utility of the MPK, experienced less social burden and reported better well-being, compared to using an NMPK. Conclusions: Using an MPK instead of an NMPK can lead to significant improvements in all classified ICF domains, such as improved walking ability, confidence and satisfaction and reduced fall risk. Full article
(This article belongs to the Section Orthopedics and Rehabilitation)
Show Figures

Figure 1

17 pages, 3101 KiB  
Article
Comparison of Zeiss MEL90 and Alcon WaveLight EX500 Excimer Lasers in FDA Premarket Approval Trials for the Treatment of Myopia, Hyperopia, and Mixed Astigmatism
by Traeson M. Brandenburg, Mina M. Sitto, Phillip C. Hoopes and Majid Moshirfar
J. Clin. Med. 2025, 14(15), 5403; https://doi.org/10.3390/jcm14155403 (registering DOI) - 31 Jul 2025
Abstract
Background/Objectives: Although both the MEL90 (Carl Zeiss Meditec AG, Jena, Germany) and WaveLight EX500 (Alcon Laboratories, Inc., Fort Worth, TX, USA) are two widely used excimer lasers, comparisons between the two remain limited. This study evaluates visual and refractive outcomes from the [...] Read more.
Background/Objectives: Although both the MEL90 (Carl Zeiss Meditec AG, Jena, Germany) and WaveLight EX500 (Alcon Laboratories, Inc., Fort Worth, TX, USA) are two widely used excimer lasers, comparisons between the two remain limited. This study evaluates visual and refractive outcomes from the U.S. Food and Drug Administration (FDA) premarket approval trials of these platforms in the treatment of myopia with and without astigmatism, hyperopia with and without astigmatism, and mixed astigmatism. Methods: Clinical outcomes from FDA premarket approval trials were compared between the recently approved MEL90 and the WaveLight (now termed EX500) excimer lasers. Results: A total of 714 eyes (358 patients) from MEL90 and 1353 eyes (706 patients) from EX500 were analyzed up to 6 months postoperatively. In the hyperopia/hyperopic astigmatism cohort, the EX500 demonstrated greater efficacy relative to MEL90, with more eyes achieving a postoperative uncorrected distance visual acuity (UDVA) of 20/20 or better (48.6% vs. 68.7%, respectively; p < 0.001). In both the MEL90 and EX500, at least 85% of eyes with myopia/myopic astigmatism and 68% with mixed astigmatism achieved a postoperative UDVA of 20/20 or better. For all refractive cohorts, more than 95% of eyes achieved a UDVA of 20/40 or better at 6 months (all p > 0.05). The EX500 was more likely to demonstrate an improvement of more than two lines of UDVA compared to baseline CDVA (all p < 0.05). In contrast, the MEL90 showed greater predictability of spherical equivalent within ±0.50 D and ±1.00 D for the hyperopia/hyperopic astigmatism cohort (both p = 0.007), as well as within ±0.50 D for the myopia/myopic astigmatism cohort (p < 0.001). Postoperatively, both platforms were associated with decreased glare and halos, although findings were variable in the EX500 mixed astigmatism cohort. Conclusions: Both excimer lasers demonstrated safe and effective outcomes that exceed the threshold set by the FDA. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

21 pages, 16422 KiB  
Article
DCE-Net: An Improved Method for Sonar Small-Target Detection Based on YOLOv8
by Lijun Cao, Zhiyuan Ma, Qiuyue Hu, Zhongya Xia and Meng Zhao
J. Mar. Sci. Eng. 2025, 13(8), 1478; https://doi.org/10.3390/jmse13081478 - 31 Jul 2025
Abstract
Sonar is the primary tool used for detecting small targets at long distances underwater. Due to the influence of the underwater environment and imaging mechanisms, sonar images face challenges such as a small number of target pixels, insufficient data samples, and uneven category [...] Read more.
Sonar is the primary tool used for detecting small targets at long distances underwater. Due to the influence of the underwater environment and imaging mechanisms, sonar images face challenges such as a small number of target pixels, insufficient data samples, and uneven category distribution. Existing target detection methods are unable to effectively extract features from sonar images, leading to high false positive rates and affecting the accuracy of target detection models. To counter these challenges, this paper presents a novel sonar small-target detection framework named DCE-Net that refines the YOLOv8 architecture. The Detail Enhancement Attention Block (DEAB) utilizes multi-scale residual structures and channel attention mechanism (AM) to achieve image defogging and small-target structure completion. The lightweight spatial variation convolution module (CoordGate) reduces false detections in complex backgrounds through dynamic position-aware convolution kernels. The improved efficient multi-scale AM (MH-EMA) performs scale-adaptive feature reweighting and combines cross-dimensional interaction strategies to enhance pixel-level feature representation. Experiments on a self-built sonar small-target detection dataset show that DCE-Net achieves an mAP@0.5 of 87.3% and an mAP@0.5:0.95 of 41.6%, representing improvements of 5.5% and 7.7%, respectively, over the baseline YOLOv8. This demonstrates that DCE-Net provides an efficient solution for underwater detection tasks. Full article
(This article belongs to the Special Issue Artificial Intelligence Applications in Underwater Sonar Images)
Show Figures

Graphical abstract

23 pages, 2253 KiB  
Article
Robust Underwater Vehicle Pose Estimation via Convex Optimization Using Range-Only Remote Sensing Data
by Sai Krishna Kanth Hari, Kaarthik Sundar, José Braga, João Teixeira, Swaroop Darbha and João Sousa
Remote Sens. 2025, 17(15), 2637; https://doi.org/10.3390/rs17152637 - 29 Jul 2025
Viewed by 166
Abstract
Accurate localization plays a critical role in enabling underwater vehicle autonomy. In this work, we develop a robust infrastructure-based localization framework that estimates the position and orientation of underwater vehicles using only range measurements from long baseline (LBL) acoustic beacons to multiple on-board [...] Read more.
Accurate localization plays a critical role in enabling underwater vehicle autonomy. In this work, we develop a robust infrastructure-based localization framework that estimates the position and orientation of underwater vehicles using only range measurements from long baseline (LBL) acoustic beacons to multiple on-board receivers. The proposed framework integrates three key components, each formulated as a convex optimization problem. First, we introduce a robust calibration function that unifies multiple sources of measurement error—such as range-dependent degradation, variable sound speed, and latency—by modeling them through a monotonic function. This function bounds the true distance and defines a convex feasible set for each receiver location. Next, we estimate the receiver positions as the center of this feasible region, using two notions of centrality: the Chebyshev center and the maximum volume inscribed ellipsoid (MVE), both formulated as convex programs. Finally, we recover the vehicle’s full 6-DOF pose by enforcing rigid-body constraints on the estimated receiver positions. To do this, we leverage the known geometric configuration of the receivers in the vehicle and solve the Orthogonal Procrustes Problem to compute the rotation matrix that best aligns the estimated and known configurations, thereby correcting the position estimates and determining the vehicle orientation. We evaluate the proposed method through both numerical simulations and field experiments. To further enhance robustness under real-world conditions, we model beacon-location uncertainty—due to mooring slack and water currents—as bounded spherical regions around nominal beacon positions. We then mitigate the uncertainty by integrating the modified range constraints into the MVE position estimation formulation, ensuring reliable localization even under infrastructure drift. Full article
Show Figures

Figure 1

25 pages, 17505 KiB  
Article
A Hybrid Spatio-Temporal Graph Attention (ST D-GAT Framework) for Imputing Missing SBAS-InSAR Deformation Values to Strengthen Landslide Monitoring
by Hilal Ahmad, Yinghua Zhang, Hafeezur Rehman, Mehtab Alam, Zia Ullah, Muhammad Asfandyar Shahid, Majid Khan and Aboubakar Siddique
Remote Sens. 2025, 17(15), 2613; https://doi.org/10.3390/rs17152613 - 28 Jul 2025
Viewed by 285
Abstract
Reservoir-induced landslides threaten infrastructures and downstream communities, making continuous deformation monitoring vital. Time-series InSAR, notably the SBAS algorithm, provides high-precision surface-displacement mapping but suffers from voids due to layover/shadow effects and temporal decorrelation. Existing deep-learning approaches often operate on fixed-size patches or ignore [...] Read more.
Reservoir-induced landslides threaten infrastructures and downstream communities, making continuous deformation monitoring vital. Time-series InSAR, notably the SBAS algorithm, provides high-precision surface-displacement mapping but suffers from voids due to layover/shadow effects and temporal decorrelation. Existing deep-learning approaches often operate on fixed-size patches or ignore irregular spatio-temporal dependencies, limiting their ability to recover missing pixels. With this objective, a hybrid spatio-temporal Graph Attention (ST-GAT) framework was developed and trained on SBAS-InSAR values using 24 influential features. A unified spatio-temporal graph is constructed, where each node represents a pixel at a specific acquisition time. The nodes are connected via inverse distance spatial edges to their K-nearest neighbors, and they have bidirectional temporal edges to themselves in adjacent acquisitions. The two spatial GAT layers capture terrain-driven influences, while the two temporal GAT layers model annual deformation trends. A compact MLP with per-map bias converts the fused node embeddings into normalized LOS estimates. The SBAS-InSAR results reveal LOS deformation, with 48% of missing pixels and 20% located near the Dasu dam. ST D-GAT reconstructed fully continuous spatio-temporal displacement fields, filling voids at critical sites. The model was validated and achieved an overall R2 (0.907), ρ (0.947), per-map R2 ≥ 0.807 with RMSE ≤ 9.99, and a ROC-AUC of 0.91. It also outperformed the six compared baseline models (IDW, KNN, RF, XGBoost, MLP, simple-NN) in both RMSE and R2. By combining observed LOS values with 24 covariates in the proposed model, it delivers physically consistent gap-filling and enables continuous, high-resolution landslide monitoring in radar-challenged mountainous terrain. Full article
Show Figures

Figure 1

13 pages, 2541 KiB  
Article
Multiantenna Synthetic Interference Technology Using Phase Comparison Method
by Xin Zhou, Mengxia Yu and Maoyan Wang
Aerospace 2025, 12(8), 671; https://doi.org/10.3390/aerospace12080671 - 27 Jul 2025
Viewed by 298
Abstract
Based on the theoretical framework of the phase comparison method and the computational analysis of the interference model calculation analysis, this paper designs, implements, establishes, calibrates, and verifies an interference experimental platform. The proposed methodology validates the effectiveness and practical feasibility of multiantenna [...] Read more.
Based on the theoretical framework of the phase comparison method and the computational analysis of the interference model calculation analysis, this paper designs, implements, establishes, calibrates, and verifies an interference experimental platform. The proposed methodology validates the effectiveness and practical feasibility of multiantenna synthetic interference technology in real-world applications. Experimental results demonstrate that the developed system can achieve flexible and arbitrary interference angles with desired distortion characteristics through precise amplitude–phase modulation, enabling dynamic manipulation of phase plane angles. Furthermore, the system successfully synthesizes false target positions at distances exceeding five times the baseline length from the jamming platform center. Both mathematical computations and experimental validations confirm that this multiantenna synthetic interference technology represents an advanced electromagnetic countermeasure characterized by two-dimensional planar interference coverage and robust phase parameter tolerance, while also enabling artificial angular glint generation. This technology exhibits significant potential for practical engineering applications. Full article
Show Figures

Figure 1

13 pages, 704 KiB  
Article
Population Substructures of Castanopsis tribuloides in Northern Thailand Revealed Using Autosomal STR Variations
by Patcharawadee Thongkumkoon, Jatupol Kampuansai, Maneesawan Dansawan, Pimonrat Tiansawat, Nuttapol Noirungsee, Kittiyut Punchay, Nuttaluck Khamyong and Prasit Wangpakapattanawong
Plants 2025, 14(15), 2306; https://doi.org/10.3390/plants14152306 - 26 Jul 2025
Viewed by 197
Abstract
This study investigates the genetic diversity and population structure of Castanopsis tribuloides, a vital tree species in Asian forest ecosystems. Understanding the genetic patterns of keystone forest species provides critical insights into forest resilience and ecosystem function and informs conservation strategies. We [...] Read more.
This study investigates the genetic diversity and population structure of Castanopsis tribuloides, a vital tree species in Asian forest ecosystems. Understanding the genetic patterns of keystone forest species provides critical insights into forest resilience and ecosystem function and informs conservation strategies. We analyzed population samples collected from three distinct locations within Doi Suthep Mountain in northern Thailand using Short Tandem Repeat (STR) markers to assess both intra- and inter-population genetic relationships. DNA was extracted from leaf samples and analyzed using a panel of polymorphic microsatellite loci specifically optimized for Castanopsis species. Statistical analyses included the assessment of forensic parameters (number of alleles, observed and expected heterozygosity, gene diversity, polymorphic information content), population differentiation metrics (GST), inbreeding coefficients (FIS), and gene flow estimates (Nm). We further examined population history through bottleneck analysis using three models (IAM, SMM, and TPM) and visualized genetic relationships through principal coordinate analysis and cluster analysis. Our results revealed significant patterns of genetic structuring across the sampled populations, with genetic distance metrics showing statistically significant differentiation between certain population pairs. The PCA and cluster analyses confirmed distinct population groupings that correspond to geographic distribution patterns. These findings provide the first comprehensive assessment of C. tribuloides population genetics in this region, establishing baseline data for monitoring genetic diversity and informing conservation strategies. This research contributes to our understanding of how landscape features and ecological factors shape genetic diversity patterns in essential forest tree species, with implications for managing forest genetic resources in the face of environmental change. Full article
(This article belongs to the Section Plant Genetic Resources)
Show Figures

Figure 1

14 pages, 604 KiB  
Article
Functional Benefits of Inpatient Cardiac Rehabilitation After Open Aortic and Valvular Surgery: A Retrospective Cohort Study
by Younji Kim, Suk-Won Song, Ha Lee, Myeong Su Kim, Seoyon Yang and You Gyoung Yi
Healthcare 2025, 13(15), 1816; https://doi.org/10.3390/healthcare13151816 - 25 Jul 2025
Viewed by 169
Abstract
Background/Objectives: Patients undergoing open aortic and valvular surgery often experience postoperative deconditioning, yet research on the role of inpatient cardiac rehabilitation (CR) in this population remains limited. This study aimed to examine the effects of inpatient CR on muscle strength, mobility, psychological well-being, [...] Read more.
Background/Objectives: Patients undergoing open aortic and valvular surgery often experience postoperative deconditioning, yet research on the role of inpatient cardiac rehabilitation (CR) in this population remains limited. This study aimed to examine the effects of inpatient CR on muscle strength, mobility, psychological well-being, and quality of life in patients recovering from open aortic surgery. Methods: We conducted a retrospective study using the medical records of patients who participated in inpatient CR after open aortic surgery. Functional and psychological outcomes were evaluated using the Medical Research Council (MRC) sum score, Timed Up and Go (TUG) test, Five Times Sit-to-Stand test (5STS), Six-Minute Walk Distance (6MWD), Berg Balance Scale (BBS), Modified Barthel Index (MBI), Patient Health Questionnaire-9 (PHQ-9), and the EuroQol-5D (EQ-5D). Pre- and post-rehabilitation scores were compared to assess changes in functional status, mobility, and quality of life. A post-discharge satisfaction survey was also analyzed. Results: A total of 33 patients were included. Significant improvements were observed in MBI (p < 0.001), MRC sum score (p < 0.001), 6MWD (p < 0.001), BBS (p < 0.001), TUG (p = 0.003), 5STS (p < 0.001), EQ-5D (p = 0.011), and PHQ-9 (p = 0.009) following inpatient CR. Patients with lower baseline mobility (6MWD ≤ 120 m) exhibited greater improvement in MBI (p = 0.034). Of the 33 patients, 26 completed the satisfaction survey; most reported high satisfaction, perceived health improvements, and willingness to recommend the program. Conclusions: Inpatient CR following open aortic and valvular surgery resulted in significant gains in muscle strength, mobility, psychological health, and overall quality of life. Patients with greater initial impairment demonstrated especially notable functional improvement, supporting the value of tailored CR in this population. Full article
Show Figures

Figure 1

15 pages, 1242 KiB  
Article
Single-Night Sleep Extension Enhances Morning Physical and Cognitive Performance Across Time of Day in Physically Active University Students: A Randomized Crossover Study
by Eya Bouzouraa, Wissem Dhahbi, Aymen Ferchichi, Vlad Adrian Geantă, Mihai Ioan Kunszabo, Hamdi Chtourou and Nizar Souissi
Life 2025, 15(8), 1178; https://doi.org/10.3390/life15081178 - 24 Jul 2025
Viewed by 378
Abstract
This study investigated the effects of a single-night sleep extension protocol on physical performance and cognitive function in physically active university students across different times of day. Using a within-subjects, counterbalanced crossover design, 24 physically active university students (17 males, 7 females; age: [...] Read more.
This study investigated the effects of a single-night sleep extension protocol on physical performance and cognitive function in physically active university students across different times of day. Using a within-subjects, counterbalanced crossover design, 24 physically active university students (17 males, 7 females; age: 22.7 ± 1.6 years) completed performance assessments under normal-sleep and sleep-extension conditions. Participants’ sleep was monitored via wrist actigraphy, and a comprehensive assessment battery comprising vertical jumps, Y-Balance tests, medicine-ball throws, 5 m shuttle-run tests, reaction-time tests, and digit-cancellation tests was administered at baseline (8 PM), morning (8 AM), and afternoon (4 PM). Sleep extension increased total sleep time by approximately 55 min (531.3 ± 56.8 min vs. 476.5 ± 64.2 min; p < 0.001, d = 0.91). Significant improvements were observed in 5 m shuttle-run performance at 8 AM (best distance: 102.8 ± 11.9 m vs. 93.3 ± 8.5 m, p < 0.001, d = 0.93; fatigue index: 13.1 ± 8.3% vs. 21.2 ± 9.5%, p < 0.001, d = 0.90), squat-jump heights (28.2 ± 8.0 cm vs. 26.3 ± 7.2 cm, p = 0.005, d = 0.25), simple reaction time (252.8 ± 55.3 ms vs. 296.4 ± 75.2 ms, p < 0.001, d = 0.66), and digit-cancellation performance (67.6 ± 12.6 vs. 63.0 ± 10.0 targets, p = 0.006, d = 0.40). Sleep extension significantly enhances both physical and cognitive performance in physically active individuals, with effects more pronounced during morning hours, partially attenuating typical circadian performance decline and establishing sleep extension as an effective, non-pharmacological strategy for optimizing performance capabilities. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

16 pages, 5555 KiB  
Article
Optimization of a Navigation System for Autonomous Charging of Intelligent Vehicles Based on the Bidirectional A* Algorithm and YOLOv11n Model
by Shengkun Liao, Lei Zhang, Yunli He, Junhui Zhang and Jinxu Sun
Sensors 2025, 25(15), 4577; https://doi.org/10.3390/s25154577 - 24 Jul 2025
Viewed by 263
Abstract
Aiming to enable intelligent vehicles to achieve autonomous charging under low-battery conditions, this paper presents a navigation system for autonomous charging that integrates an improved bidirectional A* algorithm for path planning and an optimized YOLOv11n model for visual recognition. The system utilizes the [...] Read more.
Aiming to enable intelligent vehicles to achieve autonomous charging under low-battery conditions, this paper presents a navigation system for autonomous charging that integrates an improved bidirectional A* algorithm for path planning and an optimized YOLOv11n model for visual recognition. The system utilizes the improved bidirectional A* algorithm to generate collision-free paths from the starting point to the charging area, dynamically adjusting the heuristic function by combining node–target distance and search iterations to optimize bidirectional search weights, pruning expanded nodes via a greedy strategy and smoothing paths into cubic Bézier curves for practical vehicle motion. For precise localization of charging areas and piles, the YOLOv11n model is enhanced with a CAFMFusion mechanism to bridge semantic gaps between shallow and deep features, enabling effective local–global feature fusion and improving detection accuracy. Experimental evaluations in long corridors and complex indoor environments showed that the improved bidirectional A* algorithm outperforms the traditional improved A* algorithm in all metrics, particularly in that it reduces computation time significantly while maintaining robustness in symmetric/non-symmetric and dynamic/non-dynamic scenarios. The optimized YOLOv11n model achieves state-of-the-art precision (P) and mAP@0.5 compared to YOLOv5, YOLOv8n, and the baseline model, with a minor 0.9% recall (R) deficit compared to YOLOv5 but more balanced overall performance and superior capability for small-object detection. By fusing the two improved modules, the proposed system successfully realizes autonomous charging navigation, providing an efficient solution for energy management in intelligent vehicles in real-world environments. Full article
(This article belongs to the Special Issue Vision-Guided System in Intelligent Autonomous Robots)
Show Figures

Figure 1

21 pages, 9379 KiB  
Article
UDirEar: Heading Direction Tracking with Commercial UWB Earbud by Interaural Distance Calibration
by Minseok Kim, Younho Nam, Jinyou Kim and Young-Joo Suh
Electronics 2025, 14(15), 2940; https://doi.org/10.3390/electronics14152940 - 23 Jul 2025
Viewed by 203
Abstract
Accurate heading direction tracking is essential for immersive VR/AR, spatial audio rendering, and robotic navigation. Existing IMU-based methods suffer from drift and vibration artifacts, vision-based approaches require LoS and raise privacy concerns, and RF techniques often need dedicated infrastructure. We propose UDirEar, a [...] Read more.
Accurate heading direction tracking is essential for immersive VR/AR, spatial audio rendering, and robotic navigation. Existing IMU-based methods suffer from drift and vibration artifacts, vision-based approaches require LoS and raise privacy concerns, and RF techniques often need dedicated infrastructure. We propose UDirEar, a COTS UWB device-based system that estimates user heading using solely high-level UWB information like distance and unit direction. By initializing an EKF with each user’s constant interaural distance, UDirEar compensates for the earbuds’ roto-translational motion without additional sensors. We evaluate UDirEar on a step-motor-driven dummy head against an IMU-only baseline (MAE 30.8°), examining robustness across dummy head–initiator distances, elapsed time, EKF calibration conditions, and NLoS scenarios. UDirEar achieves a mean absolute error of 3.84° and maintains stable performance under all tested conditions. Full article
(This article belongs to the Special Issue Wireless Sensor Network: Latest Advances and Prospects)
Show Figures

Figure 1

15 pages, 2256 KiB  
Article
In Vivo Wear Analysis of Leucite-Reinforced Ceramic Inlays/Onlays After 14 Years
by Ragai-Edward Matta, Lara Berger, Oleksandr Sednyev, Dennis Bäuerle, Eva Maier, Werner Adler and Michael Taschner
Materials 2025, 18(15), 3446; https://doi.org/10.3390/ma18153446 - 23 Jul 2025
Viewed by 280
Abstract
Material wear significantly impacts the clinical success and longevity of dental ceramic restorations. This in vivo study aimed to assess the wear behavior of IPS Empress® glass-ceramic inlays and onlays over 14 years, considering the influence of different antagonist materials. Fifty-four indirect [...] Read more.
Material wear significantly impacts the clinical success and longevity of dental ceramic restorations. This in vivo study aimed to assess the wear behavior of IPS Empress® glass-ceramic inlays and onlays over 14 years, considering the influence of different antagonist materials. Fifty-four indirect restorations of 21 patients were available for comprehensive wear analysis, with complete follow-up data for up to 14 years. Three-dimensional measurements relied on digitized epoxy resin models produced immediately post-insertion (baseline) and subsequently at 2, 4, and 14 years. The occlusal region on the baseline model was delineated for comparative analysis. Three-dimensional superimpositions with models from subsequent time points were executed to assess wear in terms of average linear wear and volumetric loss. Statistical analyses were conducted in R (version 4.4.1), employing Mann–Whitney U tests (material comparisons) and Wilcoxon signed rank tests (time point comparisons), with a significance threshold of p ≤ 0.05. During the entire study period, an increase in wear was observed at each assessment interval, gradually stabilizing over time. Significant differences in substance loss were found between the follow-up time points, both for mean (−0.536 ± 0.249 mm after 14a) and integrated distance (−18,935 ± 11,711 mm3 after 14a). In addition, significantly higher wear was observed after 14 years with gold as antagonist compared to other materials (p ≤ 0.03). The wear behavior of IPS Empress® ceramics demonstrates clinically acceptable long-term outcomes, with abrasion characteristics exhibiting stabilization over time. Full article
(This article belongs to the Special Issue Advanced Dental Materials: From Design to Application, Second Volume)
Show Figures

Figure 1

11 pages, 892 KiB  
Article
Sotatercept for Connective Tissue Disease-Associated Pulmonary Arterial Hypertension with Concomitant Interstitial Lung Disease: Efficacy and Safety Insights
by Chebly Dagher, Maria Akiki, Kristin Swanson, Brett Carollo, Garett Fiscus, Harrison W. Farber and Raj Parikh
J. Clin. Med. 2025, 14(15), 5177; https://doi.org/10.3390/jcm14155177 - 22 Jul 2025
Viewed by 333
Abstract
Background/Objectives: Sotatercept has demonstrated efficacy in pulmonary arterial hypertension (PAH), but its use has not been studied in patients with Group 3 pulmonary hypertension (PH). Additionally, patients with connective tissue disease-associated PAH (CTD-PAH) were underrepresented in the STELLAR trial. Given the limited [...] Read more.
Background/Objectives: Sotatercept has demonstrated efficacy in pulmonary arterial hypertension (PAH), but its use has not been studied in patients with Group 3 pulmonary hypertension (PH). Additionally, patients with connective tissue disease-associated PAH (CTD-PAH) were underrepresented in the STELLAR trial. Given the limited treatment options for pulmonary hypertension in patients with interstitial lung disease (PH-ILD), this study aimed to evaluate the use of sotatercept in CTD-PAH patients with concomitant ILD. Methods: Eligible patients (n = 7) had a confirmed diagnosis of CTD-PAH with concomitant ILD. The patients were already receiving background PAH therapy. Baseline hemodynamic and clinical measurements were reassessed after 24 weeks of sotatercept therapy. The variables assessed included six-minute walk distance (6MWD), pulmonary vascular resistance (PVR), echocardiographic right ventricular systolic pressure (eRVSP), N-terminal pro-brain natriuretic peptide (NT-proBNP) levels, World Health Organization (WHO) functional class, and supplemental oxygen requirements. Results: The study included seven patients with a mean age of 57 years (range: 39–73 years). After 24 weeks, the mean 6MWT distance increased from 211 m to 348 m (p < 0.01). Mean PVR decreased from 7.77 WU at baseline to 4.53 WU (p < 0.01). Mean eRVSP decreased from 79.43 mmHg to 54.14 mmHg (p < 0.01). NT-proBNP decreased from 3056.86 pg/mL to 1404.29 pg/mL (p < 0.01). The WHO functional class and supplemental oxygen requirements improved in all patients. Conclusions: Sotatercept was tolerated in patients with CTD-PAH and ILD, with no evidence of adverse respiratory effects. When added to foundational PAH therapy, sotatercept resulted in significant improvements across multiple parameters. These findings suggest that sotatercept may be a promising therapeutic option as an adjunctive treatment in this patient population. Full article
(This article belongs to the Section Respiratory Medicine)
Show Figures

Figure 1

39 pages, 17182 KiB  
Article
A Bi-Layer Collaborative Planning Framework for Multi-UAV Delivery Tasks in Multi-Depot Urban Logistics
by Junfu Wen, Fei Wang and Yebo Su
Drones 2025, 9(7), 512; https://doi.org/10.3390/drones9070512 - 21 Jul 2025
Viewed by 360
Abstract
To address the modeling complexity and multi-objective collaborative optimization challenges in multi-depot and multiple unmanned aerial vehicle (UAV) delivery task planning, this paper proposes a bi-layer planning framework, which comprehensively considers resource constraints, multi-depot coordination, and the coupling characteristics of path execution. The [...] Read more.
To address the modeling complexity and multi-objective collaborative optimization challenges in multi-depot and multiple unmanned aerial vehicle (UAV) delivery task planning, this paper proposes a bi-layer planning framework, which comprehensively considers resource constraints, multi-depot coordination, and the coupling characteristics of path execution. The novelty of this work lies in the seamless integration of an enhanced genetic algorithm and tailored swarm optimization within a unified two-tier architecture. The upper layer tackles the task assignment problem by formulating a multi-objective optimization model aimed at minimizing economic costs, delivery delays, and the number of UAVs deployed. The Enhanced Non-Dominated Sorting Genetic Algorithm II (ENSGA-II) is developed, incorporating heuristic initialization, goal-oriented search operators, an adaptive mutation mechanism, and a staged evolution control strategy to improve solution feasibility and distribution quality. The main contributions are threefold: (1) a novel ENSGA-II design for efficient and well-distributed task allocation; (2) an improved PSO-based path planner with chaotic initialization and adaptive parameters; and (3) comprehensive validation demonstrating substantial gains over baseline methods. The lower layer addresses the path planning problem by establishing a multi-objective model that considers path length, flight risk, and altitude variation. An improved particle swarm optimization (PSO) algorithm is proposed by integrating chaotic initialization, linearly adjusted acceleration coefficients and maximum velocity, a stochastic disturbance-based position update mechanism, and an adaptively tuned inertia weight to enhance algorithmic performance and path generation quality. Simulation results under typical task scenarios demonstrate that the proposed model achieves an average reduction of 47.8% in economic costs and 71.4% in UAV deployment quantity while significantly reducing delivery window violations. The framework exhibits excellent capability in multi-objective collaborative optimization. The ENSGA-II algorithm outperforms baseline algorithms significantly across performance metrics, achieving a hypervolume (HV) value of 1.0771 (improving by 72.35% to 109.82%) and an average inverted generational distance (IGD) of 0.0295, markedly better than those of comparison algorithms (ranging from 0.0893 to 0.2714). The algorithm also demonstrates overwhelming superiority in the C-metric, indicating outstanding global optimization capability in terms of distribution, convergence, and the diversity of the solution set. Moreover, the proposed framework and algorithm are both effective and feasible, offering a novel approach to low-altitude urban logistics delivery problems. Full article
(This article belongs to the Section Innovative Urban Mobility)
Show Figures

Figure 1

Back to TopTop