Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (92)

Search Parameters:
Keywords = baryonic interaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 742 KB  
Article
Experimental Search for Neutron–Antineutron Oscillation with the Use of Ultra-Cold Neutrons Revisited
by Tatsushi Shima
Symmetry 2025, 17(9), 1524; https://doi.org/10.3390/sym17091524 - 12 Sep 2025
Viewed by 289
Abstract
Neutron–antineutron oscillation (nnbar-osc) is a baryon number-violating process and a sensitive probe for physics beyond the standard model. Ultra-cold neutrons (UCNs) are attractive for nnbar-osc searches because of their long storage time, but earlier analyses indicated that phase shifts on wall reflection differ [...] Read more.
Neutron–antineutron oscillation (nnbar-osc) is a baryon number-violating process and a sensitive probe for physics beyond the standard model. Ultra-cold neutrons (UCNs) are attractive for nnbar-osc searches because of their long storage time, but earlier analyses indicated that phase shifts on wall reflection differ for neutrons and antineutrons, leading to severe decoherence and a loss of sensitivity. Herein, we revisit this problem by numerically solving the time-dependent Schrödinger equation for the two-component n/nbar wave function, explicitly including wall interactions. We show that decoherence can be strongly suppressed by selecting a wall material whose neutron and antineutron optical potentials are nearly equal. Using coherent scattering length data and estimates for antineutrons, we identify a Ni–Al alloy composition that matches the potentials within a few percent while providing a high absolute value, enabling long UCN storage. With such a bottle and an improved UCN source, the sensitivity could reach an oscillation period τnnbar of the order 1010 s, covering most of the range predicted with certain grand unified models. This approach revives the feasibility of high-sensitivity nnbar-osc searches using stored UCNs and offers a clear path to probe baryon number violation far beyond existing limits. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

32 pages, 606 KB  
Article
Role of Thermal Fluctuations in Nucleation of Three-Flavor Quark Matter
by Mirco Guerrini, Giuseppe Pagliara, Andrea Lavagno and Alessandro Drago
Universe 2025, 11(8), 258; https://doi.org/10.3390/universe11080258 - 5 Aug 2025
Viewed by 506
Abstract
We present a framework that aims to investigate the role of thermal fluctuations in matter composition and color superconductivity in the nucleation of three-flavor deconfined quark matter in the typical conditions of high-energy astrophysical systems related to compact stars. It is usually assumed [...] Read more.
We present a framework that aims to investigate the role of thermal fluctuations in matter composition and color superconductivity in the nucleation of three-flavor deconfined quark matter in the typical conditions of high-energy astrophysical systems related to compact stars. It is usually assumed that the flavor composition is locally fixed during the formation of the first seed of deconfined quark matter, since a weak interaction acts too slowly to re-equilibrate flavors. However, the matter composition fluctuates around its average equilibrium values at the typical temperatures of high-energy astrophysical processes. Here, we extend our previous two-flavor nucleation formalism to a three-flavor case. We develop a thermodynamic framework incorporating finite-size effects and thermal fluctuations in the local composition to compute the nucleation probability as the product of droplet formation and composition fluctuation rates. Moreover, we discuss the role of color superconductivity in nucleation, arguing that it can play a role only in systems larger than the typical coherence length of diquark pairs. We found that thermal fluctuations in the matter composition led to lowering the potential barrier between the metastable hadronic phase and the stable quark phase. Moreover, the formation of diquark pairs reduced the critical radius and thus the potential barrier in the low baryon density and temperature regime. Full article
(This article belongs to the Special Issue Compact Stars in the QCD Phase Diagram 2024)
Show Figures

Figure 1

50 pages, 8738 KB  
Review
From Barthel–Randers–Kropina Geometries to the Accelerating Universe: A Brief Review of Recent Advances in Finslerian Cosmology
by Amine Bouali, Himanshu Chaudhary, Lehel Csillag, Rattanasak Hama, Tiberiu Harko, Sorin V. Sabau and Shahab Shahidi
Universe 2025, 11(7), 198; https://doi.org/10.3390/universe11070198 - 20 Jun 2025
Cited by 1 | Viewed by 663
Abstract
We present a review of recent developments in cosmological models based on Finsler geometry, as well as geometric extensions of general relativity formulated within this framework. Finsler geometry generalizes Riemannian geometry by allowing the metric tensor to depend not only on position but [...] Read more.
We present a review of recent developments in cosmological models based on Finsler geometry, as well as geometric extensions of general relativity formulated within this framework. Finsler geometry generalizes Riemannian geometry by allowing the metric tensor to depend not only on position but also on an additional internal degree of freedom, typically represented by a vector field at each point of the spacetime manifold. We examine in detail the possibility that Finsler-type geometries can describe the physical properties of the gravitational interaction, as well as the cosmological dynamics. In particular, we present and review the implications of a particular implementation of Finsler geometry, based on the Barthel connection, and of the (α,β) geometries, where α is a Riemannian metric, and β is a one-form. For a specific construction of the deviation part β, in these classes of geometries, the Barthel connection coincides with the Levi–Civita connection of the associated Riemann metric. We review the properties of the gravitational field, and of the cosmological evolution in three types of geometries: the Barthel–Randers geometry, in which the Finsler metric function F is given by F=α+β, in the Barthel–Kropina geometry, with F=α2/β, and in the conformally transformed Barthel–Kropina geometry, respectively. After a brief presentation of the mathematical foundations of the Finslerian-type modified gravity theories, the generalized Friedmann equations in these geometries are written down by considering that the background Riemannian metric in the Randers and Kropina line elements is of Friedmann–Lemaitre–Robertson–Walker type. The matter energy balance equations are also presented, and they are interpreted from the point of view of the thermodynamics of irreversible processes in the presence of particle creation. We investigate the cosmological properties of the Barthel–Randers and Barthel–Kropina cosmological models in detail. In these scenarios, the additional geometric terms arising from the Finslerian structure can be interpreted as an effective geometric dark energy component, capable of generating an effective cosmological constant. Several cosmological solutions—both analytical and numerical—are obtained and compared against observational datasets, including Cosmic Chronometers, Type Ia Supernovae, and Baryon Acoustic Oscillations, using a Markov Chain Monte Carlo (MCMC) analysis. A direct comparison with the standard ΛCDM model is also carried out. The results indicate that Finslerian cosmological models provide a satisfactory fit to the observational data, suggesting they represent a viable alternative to the standard cosmological model based on general relativity. Full article
(This article belongs to the Special Issue Cosmological Models of the Universe)
Show Figures

Figure 1

24 pages, 576 KB  
Article
Asymmetry in the Mean Free Path of Neutrinos in Hot Neutron Matter Under Strong Magnetic Fields
by Eduardo Bauer and Vanesa D. Olivera
Symmetry 2025, 17(6), 896; https://doi.org/10.3390/sym17060896 - 6 Jun 2025
Viewed by 471
Abstract
We investigate the asymmetry in the mean free path of massive neutrinos propagating through hot neutron matter under strong magnetic fields. The system is studied at temperatures up to 30 MeV and baryon densities up to ρ/ρ0 = 2.5, where [...] Read more.
We investigate the asymmetry in the mean free path of massive neutrinos propagating through hot neutron matter under strong magnetic fields. The system is studied at temperatures up to 30 MeV and baryon densities up to ρ/ρ0 = 2.5, where ρ0 is the nuclear saturation density. Magnetic field strengths up to B = 1018 G are considered. We analyze three different equations of state: one corresponding to a non-interacting Fermi gas and two derived from Skyrme-type interactions. The impact of a finite neutrino mass is assessed and found to be negligible within the energy range considered. The neutrino mean free path is computed for various angles of incidence with respect to the magnetic field direction, revealing a clear angular asymmetry. We show that quantum interference terms contribute significantly to this asymmetry, enhancing neutrino emission in directions perpendicular to the magnetic field at high densities. This result contrasts with previous expectations and suggests a revised interpretation of neutrino transport in magnetized nuclear matter. Full article
(This article belongs to the Special Issue Neutrino Physics and Symmetries)
Show Figures

Figure 1

46 pages, 1618 KB  
Review
Electroweak Form Factors of Baryons in Dense Nuclear Matter
by G. Ramalho, K. Tsushima and Myung-Ki Cheoun
Symmetry 2025, 17(5), 681; https://doi.org/10.3390/sym17050681 - 29 Apr 2025
Viewed by 616
Abstract
There is evidence that the properties of hadrons are modified in a nuclear medium. Information about the medium modifications of the internal structure of hadrons is fundamental for the study of dense nuclear matter and high-energy processes, including heavy-ion and nucleus–nucleus collisions. At [...] Read more.
There is evidence that the properties of hadrons are modified in a nuclear medium. Information about the medium modifications of the internal structure of hadrons is fundamental for the study of dense nuclear matter and high-energy processes, including heavy-ion and nucleus–nucleus collisions. At the moment, however, empirical information about medium modifications of hadrons is limited; therefore, theoretical studies are essential for progress in the field. In the present work, we review theoretical studies of the electromagnetic and axial form factors of octet baryons in symmetric nuclear matter. The calculations are based on a model that takes into account the degrees of freedom revealed in experimental studies of low and intermediate square transfer momentum q2=Q2: valence quarks and meson cloud excitations of baryon cores. The formalism combines a covariant constituent quark model, developed for a free space (vacuum) with the quark–meson coupling model for extension to the nuclear medium. We conclude that the nuclear medium modifies the baryon properties differently according to the flavor content of the baryons and the medium density. The effects of the medium increase with density and are stronger (quenched or enhanced) for light baryons than for heavy baryons. In particular, the in-medium neutrino–nucleon and antineutrino–nucleon cross-sections are reduced compared to the values in free space. The proposed formalism can be extended to densities above the normal nuclear density and applied to neutrino–hyperon and antineutrino–hyperon scattering in dense nuclear matter. Full article
(This article belongs to the Special Issue Chiral Symmetry, and Restoration in Nuclear Dense Matter)
Show Figures

Figure 1

22 pages, 771 KB  
Article
Effects of Quark Core Sizes of Baryons in Neutron Star Matter
by Wolfgang Bentz and Ian C. Cloët
Symmetry 2025, 17(4), 505; https://doi.org/10.3390/sym17040505 - 26 Mar 2025
Viewed by 509
Abstract
We describe the quark substructure of hadrons and the equation of state of high-density neutron star matter by using the Nambu–Jona-Lasinio (NJL) model, which is an effective quark theory based on QCD. The interaction between quarks fully respects the chiral and flavor symmetries. [...] Read more.
We describe the quark substructure of hadrons and the equation of state of high-density neutron star matter by using the Nambu–Jona-Lasinio (NJL) model, which is an effective quark theory based on QCD. The interaction between quarks fully respects the chiral and flavor symmetries. Guided by the success of various low-energy theorems, we assume that the explicit breaking of these symmetries occurs only via the current quark masses, and all other symmetry breakings are of dynamical nature. In order to take into account the effects of the finite quark core sizes of the baryons on the equation of state, we make use of an excluded volume framework that respects thermodynamic consistency. The effects generated by the swelling quark cores generally act repulsively and lead to an increase in the pressure with increasing baryon density. On the other hand, in neutron star matter, these effects also lead to a decrease in the density window where hyperons appear because it becomes energetically more favorable to convert the faster moving nucleons into hyperons. Our quantitative analysis shows that the net effect of the excluded volume is too small to solve the long-standing “hyperon puzzle”, which is posed by the large observed masses of neutron stars. Thus, the puzzle persists in a relativistic effective quark theory which takes into account the short-range repulsion between baryons caused by their finite and swelling quark core sizes in a phenomenological way. Full article
(This article belongs to the Special Issue Chiral Symmetry, and Restoration in Nuclear Dense Matter)
Show Figures

Figure 1

27 pages, 1056 KB  
Article
Quantum Mechanical Numerical Model for Interaction of Dark Atom with Atomic Nucleus of Matter
by Timur Bikbaev, Maxim Khlopov and Andrey Mayorov
Physics 2025, 7(1), 8; https://doi.org/10.3390/physics7010008 - 7 Mar 2025
Viewed by 1308
Abstract
Within the framework of the XHe hypothesis, the positive results of the DAMA/NaI and DAMA/LIBRA experiments on the direct search for dark matter particles can be explained by the annual modulation of the radiative capture of dark atoms into low-energy bound states with [...] Read more.
Within the framework of the XHe hypothesis, the positive results of the DAMA/NaI and DAMA/LIBRA experiments on the direct search for dark matter particles can be explained by the annual modulation of the radiative capture of dark atoms into low-energy bound states with sodium nuclei. Since this effect is not observed in other underground WIMP (weakly interacting massive particle) search experiments, it is necessary to explain these results by investigating the possibility of the existence of low-energy bound states between dark atoms and the nuclei of matter. Numerical modeling is used to solve this problem, since the study of the XHe–nucleus system is a three-body problem and leaves no possibility of an analytical solution. To understand the key properties and patterns underlying the interaction of dark atoms with the nuclei of baryonic matter, we develop the quantum mechanical description of such an interaction. In the numerical quantum mechanical model presented, takes into account the effects of quantum physics, self-consistent electromagnetic interaction, and nuclear attraction. This approach allows us to obtain a numerical model of the interaction between the dark atom and the nucleus of matter and interpret the results of direct experiments on the underground search for dark matter, within the framework of the dark atom hypothesis. Thus, in this paper, for the first time, steps are taken towards a consistent quantum mechanical description of the interaction of dark atoms, with unshielded nuclear attraction, with the nuclei of atoms of matter. The total effective interaction potential of the OHe–Na system has therefore been restored, the shape of which allows for the preservation of the integrity and stability of the dark atom, which is an essential requirement for confirming the validity of the OHe hypothesis. Full article
(This article belongs to the Special Issue Beyond the Standard Models of Physics and Cosmology: 2nd Edition)
Show Figures

Figure 1

24 pages, 579 KB  
Article
Chiral Symmetry in Dense Matter with Meson Condensation
by Takumi Muto, Toshiki Maruyama and Toshitaka Tatsumi
Symmetry 2025, 17(2), 270; https://doi.org/10.3390/sym17020270 - 10 Feb 2025
Viewed by 1266
Abstract
Kaon condensation in hyperon-mixed matter [(Y+K) phase], which may be realized in neutron stars, is discussed on the basis of chiral symmetry. With the use of the effective chiral Lagrangian for kaon–baryon and kaon–kaon interactions; coupled with the relativistic [...] Read more.
Kaon condensation in hyperon-mixed matter [(Y+K) phase], which may be realized in neutron stars, is discussed on the basis of chiral symmetry. With the use of the effective chiral Lagrangian for kaon–baryon and kaon–kaon interactions; coupled with the relativistic mean field theory and universal three-baryon repulsive interaction, we clarify the effects of the s-wave kaon–baryon scalar interaction simulated by the kaon–baryon sigma terms and vector interaction (Tomozawa–Weinberg term) on kaon properties in hyperon-mixed matter, the onset density of kaon condensation, and the equation of state with the (Y+K) phase. In particular, the quark condensates in the (Y+K) phase are obtained, and their relevance to chiral symmetry restoration is discussed. Full article
(This article belongs to the Special Issue Chiral Symmetry, and Restoration in Nuclear Dense Matter)
Show Figures

Figure 1

19 pages, 703 KB  
Article
Surface and Curvature Tensions of Cold, Dense Quark Matter: A Term-by-Term Analysis Within the Nambu–Jona–Lasinio Model
by Ana Gabriela Grunfeld, María Florencia Izzo Villafañe and Germán Lugones
Universe 2025, 11(2), 29; https://doi.org/10.3390/universe11020029 - 21 Jan 2025
Cited by 1 | Viewed by 911
Abstract
In this paper, we conduct a thorough investigation of the surface and curvature tensions, σ and γ, of three-flavor cold quark matter using the Nambu–Jona–Lasinio (NJL) model with vector interactions. Our approach ensures both local and global electric charge neutrality, as well [...] Read more.
In this paper, we conduct a thorough investigation of the surface and curvature tensions, σ and γ, of three-flavor cold quark matter using the Nambu–Jona–Lasinio (NJL) model with vector interactions. Our approach ensures both local and global electric charge neutrality, as well as chemical equilibrium under weak interactions. By employing the multiple reflection expansion formalism to account for finite size effects, we explore the impact of specific input parameters, particularly the vector coupling constant ratio ηV, the radius R of quark matter droplets, as well as the charge-per-baryon ratio ξ of the finite size configurations. We focus on the role of the contributions of each term of the NJL Lagrangian to the surface and curvature tensions in the mean field approximation. We find that the total surface tension exhibits two different density regimes: it remains roughly constant at around 100MeVfm2 up to approximately 2–4 times the nuclear saturation density, and beyond this point, it becomes a steeply increasing function of nB. The total surface and curvature tensions are relatively insensitive to variations in R but are affected by changes in ξ and ηV. We observe that the largest contribution to σ and γ comes from the regularized divergent term, making these quantities significantly higher than those obtained within the MIT bag model. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2024 – Compact Objects)
Show Figures

Figure 1

10 pages, 320 KB  
Article
Elliptic and Quadrangular Flow of Protons in the High-Baryon-Density Region
by Shaowei Lan, Zuowen Liu, Like Liu and Shusu Shi
Universe 2025, 11(1), 27; https://doi.org/10.3390/universe11010027 - 17 Jan 2025
Cited by 1 | Viewed by 782
Abstract
The collective flow provides valuable insights into the anisotropic expansion of particles produced in heavy-ion collisions and is sensitive to the equation of the state of nuclear matter in high-baryon-density regions. In this paper, we use the hadronic transport model SMASH to investigate [...] Read more.
The collective flow provides valuable insights into the anisotropic expansion of particles produced in heavy-ion collisions and is sensitive to the equation of the state of nuclear matter in high-baryon-density regions. In this paper, we use the hadronic transport model SMASH to investigate the elliptic flow (v2), quadrangular flow (v4), and their ratio (v4/v22) in Au+Au collisions at high baryon density. Our results show that the inclusion of baryonic mean-field potential in the model successfully reproduces experimental data from the HADES experiment, indicating that baryonic interactions play an important role in shaping anisotropic flow. In addition to comparing the transverse momentum (pT), rapidity, and centrality dependence of v4/v22 between HADES data and model calculations, we also explore its time evolution and energy dependence across sNN= 2.4 to 4.5 GeV. While the ratio v4/v22 for high-pT particles approaches 0.5, which aligns with expectations from hydrodynamic behavior, we emphasize that this result primarily reflects agreement with the HADES measurements rather than a definitive indication of ideal fluid behavior. These findings contribute to understanding the early-stage dynamics in heavy-ion collisions at high baryon density. Full article
(This article belongs to the Section High Energy Nuclear and Particle Physics)
Show Figures

Figure 1

11 pages, 1319 KB  
Article
The Multimessenger Contribution of Ultra-High-Energy Cosmic Rays from Gamma-Ray Bursts
by Zhenjiang Li, Fangsheng Min, Yi Jin and Yiqing Guo
Universe 2025, 11(1), 22; https://doi.org/10.3390/universe11010022 - 15 Jan 2025
Viewed by 1137
Abstract
It has long been debated whether gamma-ray bursts (GRBs) could serve as potential sources of ultra-high-energy cosmic rays (UHECRs). In this study, we consider GRBs as sources of UHECR injection with an injection index of α=2 and propagate them through the [...] Read more.
It has long been debated whether gamma-ray bursts (GRBs) could serve as potential sources of ultra-high-energy cosmic rays (UHECRs). In this study, we consider GRBs as sources of UHECR injection with an injection index of α=2 and propagate them through the extragalactic magnetic field within the framework of CRPropa 3. The baryon loading factor fCR is taken into account to quantify the rate of UHECR energy injection. In the benchmark case with a jet opening angle of θj=1 and fCR=1, we find that both high- and low-luminosity populations contribute to less than 10% of the UHECR spectrum. The most constrained scenario suggests fCR15, indicating that GRBs are less efficient in producing the all-sky UHECR intensity. The high-energy diffuse neutrinos and gamma rays resulting from interactions between UHECRs from GRBs and extragalactic background photons do not dominate the observations of Fermi-LAT or IceCube. Full article
(This article belongs to the Special Issue Ultra-High-Energy Cosmic Rays)
Show Figures

Figure 1

18 pages, 714 KB  
Article
Implications of the Intriguing Constant Inner Mass Surface Density Observed in Dark Matter Halos
by Jorge Sánchez Almeida
Galaxies 2025, 13(1), 6; https://doi.org/10.3390/galaxies13010006 - 9 Jan 2025
Viewed by 1172
Abstract
It has long been known that the observed mass surface density of cored dark matter (DM) halos is approximately constant, independently of the galaxy mass (i.e., ρcrcconstant, with ρc and rc being the central volume [...] Read more.
It has long been known that the observed mass surface density of cored dark matter (DM) halos is approximately constant, independently of the galaxy mass (i.e., ρcrcconstant, with ρc and rc being the central volume density and the radius of the core, respectively). Here, we review the evidence supporting this empirical fact as well as its theoretical interpretation. It seems to be an emergent law resulting from the concentration–halo mass relation predicted by the current cosmological model, where the DM is made of collisionless cold DM particles (CDM). We argue that the prediction ρcrcconstant is not specific to this particular model of DM but holds for any other DM model (e.g., self-interacting) or process (e.g., stellar or AGN feedback) that redistributes the DM within halos conserving its CDM mass. In addition, the fact that ρcrcconstant is shown to allow the estimate of the core DM mass and baryon fraction from stellar photometry alone is particularly useful when the observationally expensive conventional spectroscopic techniques are unfeasible. Full article
Show Figures

Figure 1

12 pages, 337 KB  
Article
The Effective Baryon–Baryon Potential with Configuration Mixing in Quark Models
by Xinmei Zhu, Hongxia Huang and Jialun Ping
Universe 2024, 10(10), 382; https://doi.org/10.3390/universe10100382 - 29 Sep 2024
Viewed by 890
Abstract
The effective baryon–baryon potential can be derived in the framework of the quark model. The configurations with different quark spatial distributions are mixed naturally when two baryons get close. The effect of configuration mixing in the chiral quark model (ChQM) is studied by [...] Read more.
The effective baryon–baryon potential can be derived in the framework of the quark model. The configurations with different quark spatial distributions are mixed naturally when two baryons get close. The effect of configuration mixing in the chiral quark model (ChQM) is studied by calculating the effective potential between two non-strange baryons in the channels IJ=01,10 and 03. For comparison, the results of the color screening model (CSM) are also presented. Generally, configuration mixing will lower the potential when the separation between two baryons is small, and its effect will be ignorable when the separation becomes large. Due to the screened color confinement, the effect of configuration mixing is rather large, which leads to stronger intermediate-range attraction in the CSM, while the effect of configuration mixing is small in the ChQM due to the quadratic confinement and σ-meson exchange, which is responsible for the intermediate-range attraction. Full article
(This article belongs to the Section High Energy Nuclear and Particle Physics)
Show Figures

Figure 1

50 pages, 3558 KB  
Article
Dark Atoms of Nuclear Interacting Dark Matter
by Vitaly A. Beylin, Timur E. Bikbaev, Maxim Yu. Khlopov, Andrey G. Mayorov and Danila O. Sopin
Universe 2024, 10(9), 368; https://doi.org/10.3390/universe10090368 - 11 Sep 2024
Cited by 3 | Viewed by 1812
Abstract
The lack of positive evidence for Weakly Interacting Massive Particles (WIMPs) as well as the lack of discovery of supersymmetric (SUSY) particles at the LHC may appeal to a non-supersymmetric solution for the Standard Model problem of the Higgs boson mass divergence, the [...] Read more.
The lack of positive evidence for Weakly Interacting Massive Particles (WIMPs) as well as the lack of discovery of supersymmetric (SUSY) particles at the LHC may appeal to a non-supersymmetric solution for the Standard Model problem of the Higgs boson mass divergence, the origin of the electroweak energy scale and the physical nature of the cosmological dark matter in the approach of composite Higgs boson. If the Higgs boson consists of charged constituents, their binding can lead to stable particles with electroweak charges. Such particles can take part in sphaleron transitions in the early Universe, which balance their excess with baryon asymmetry. Constraints on exotic charged species leave only stable particles with charge 2n possible, which can bind with n nuclei of primordial helium in neutral dark atoms. The predicted ratio of densities of dark atoms and baryonic matter determines the condition for dark atoms to dominate in the cosmological dark matter. To satisfy this condition of the dark-atom nature of the observed dark matter, the mass of new stable 2n charged particles should be within reach of the LHC for their searches. We discuss the possibilities of dark-atom binding in multi-atom systems and present state-of-the-art quantum mechanical descriptions of dark-atom interactions with nuclei. Annual modulations in such interactions with nuclei of underground detectors can explain the positive results of DAMA/NaI and DAMA/LIBRA experiments and the negative results of the underground WIMP searches. Full article
Show Figures

Figure 1

28 pages, 2303 KB  
Article
Probing the Nonlinear Density Wave Theory of Spiral Galaxies by Baryonic Tully–Fisher Relation
by Miroslava Vukcevic, Djordje Savic and Predrag Jovanović
Universe 2024, 10(9), 359; https://doi.org/10.3390/universe10090359 - 6 Sep 2024
Cited by 1 | Viewed by 1293
Abstract
The baryonic mass–velocity relation provides an important test of different galaxy dynamics models such as Lambda–cold dark matter (ΛCDM) and alternatives like Modified Newtonian Dynamics (MOND). Novel nonlinear density wave theory with a soliton solution gives an opportunity to test whether [...] Read more.
The baryonic mass–velocity relation provides an important test of different galaxy dynamics models such as Lambda–cold dark matter (ΛCDM) and alternatives like Modified Newtonian Dynamics (MOND). Novel nonlinear density wave theory with a soliton solution gives an opportunity to test whether the derived rotational velocity expression is able to support the well known Tully–Fisher empirical relation between mass and rotation velocity in disk galaxies. Initial assumptions do not involve any larger dark matter halo that supports the stability of the very thin galactic disk nor any modified gravitational acceleration acting on galactic scales. It rather follows an important gravitational interaction between constituents of disk mass in the outer part of the disk via gravitational potential. Data are obtained by a fitting procedure applied on the sample of 81 rotational curves of late type spirals using expressions for the rotational velocity derived as an exact, a self-consistent solution of the nonlinear Schrodinger (NLS) equation for galactic surface mass density. The location of these selected objects in the baryonic mass–rotation velocity plane follows the relation logMb=3.7±0.2logVflat+2.7±0.4 in marginal agreement with the findings in the literature. Full article
(This article belongs to the Special Issue Recent Advances in Gravitational Lensing and Galactic Dynamics)
Show Figures

Figure 1

Back to TopTop