Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (99)

Search Parameters:
Keywords = barium ion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1862 KB  
Article
Experimental and Molecular Dynamics Simulation Study on Influencing Factors of Barium Sulfate Scaling in Low-Permeability Sandstone Reservoirs
by Haien Yang, Xuan Xie, Miao Dou, Ajing Wei, Ming Lei and Chao Ma
Appl. Sci. 2026, 16(3), 1204; https://doi.org/10.3390/app16031204 - 24 Jan 2026
Viewed by 123
Abstract
This study aims to investigate the influencing factors and mechanisms of barium sulfate (BaSO4) scaling under low-permeability reservoir conditions, providing a scientific basis for water quality selection during water injection. The effects of key scaling ions and flow conditions on scaling [...] Read more.
This study aims to investigate the influencing factors and mechanisms of barium sulfate (BaSO4) scaling under low-permeability reservoir conditions, providing a scientific basis for water quality selection during water injection. The effects of key scaling ions and flow conditions on scaling behavior were examined through integrated experimental core flooding tests and molecular dynamics (MD) simulations. Experiments were conducted using synthetic cores simulating the ultra-low permeability Chang-8 Reservoir of the Jiyuan Oilfield, analyzing the impact of ion concentrations (Ba2+, SO42−, Na+, Ca2+, HCO3), flow velocity, and injection pressure. MD simulations were performed based on an interfacial SiO2(010)–BaSO4 solution model constructed in Materials Studio to elucidate the micro-mechanisms. Results indicate that increasing concentrations of Ba2+ and SO42− significantly promote scaling. High Ca2+ concentration (>8000 mg/L) inhibits BaSO4 deposition via competitive adsorption. High Na+ concentration (>70,000 mg/L) reduces Ba2+ activity due to ionic strength effects. When HCO3 concentration exceeds 600 mg/L, CaCO3 coprecipitation occurs, reducing effective SO42− concentration and thus inhibiting BaSO4 scaling. Increased flow velocity enhances scaling, whereas elevated injection pressure suppresses deposition. MD simulations reveal that increased ion concentrations decrease the mean square displacement (MSD) of Ba2+ and SO42−, weakening diffusion and enhancing scaling tendency. Elevated temperature promotes ion diffusion and inhibits scaling, while pressure shows negligible effect on ion diffusion at the molecular scale. This study provides theoretical insights for scaling prevention in low-permeability sandstone reservoirs. Full article
(This article belongs to the Topic Advances in Oil and Gas Wellbore Integrity, 2nd Edition)
Show Figures

Figure 1

22 pages, 6258 KB  
Article
Research on the Mechanical Properties, Hydration Mechanism and Engineering Applications of Road Base Materials Prepared from Harmless-Treated Barium Slag and Multiple Industrial Solid Wastes
by Yu Zhan, Siqi Zhang, Xing Yang, Keqing Li, Bo Zhang, Tong Zhao, Guocui Li, Lifeng Ye, Song Wu and Wen Ni
Appl. Sci. 2026, 16(1), 74; https://doi.org/10.3390/app16010074 - 21 Dec 2025
Viewed by 329
Abstract
Barium slag is classified as a hazardous waste due to its high content of soluble Ba2+. To achieve safe disposal and high-value utilization, this study developed a novel all-solid-waste road base material by synergistically combining harmlessly treated barium slag (HTBS) with [...] Read more.
Barium slag is classified as a hazardous waste due to its high content of soluble Ba2+. To achieve safe disposal and high-value utilization, this study developed a novel all-solid-waste road base material by synergistically combining harmlessly treated barium slag (HTBS) with steel slag, blast furnace slag, and flue-gas-desulfurization gypsum (SWB). The primary novelty of this work lies in the dual-immobilization mechanism of barium within a multi-solid-waste cementitious system. Our results showed that the mixture containing 16% binder achieved unconfined compressive strengths of 4.24 MPa (7 days) and 8.06 MPa (28 days), meeting the technical requirements for heavy-load road bases. Microstructural analyses revealed that the system evolved into a dense network composed of C–S–H gels and ettringite (AFt). Mechanistically, environmental safety is ensured by two pathways: (1) the chemical precipitation of stable BaSO4 and (2) the physical encapsulation of ions by the dense gel matrix. Leaching tests confirmed that Ba concentration remained far below the regulatory limit, ensuring environmental safety. This work provides a scalable, eco-friendly solution for the “waste-to-resource” conversion of hazardous barium slag in road engineering. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

11 pages, 2572 KB  
Article
Molecular-Scale Analysis of Barium Azide (Ba(N3)2) Under High Pressure: A Synchrotron X-Ray Diffraction Study on Azide Ion Rotation and Phase Transition
by Xiaoxin Wu, Wenhui Jiang, Jinwei Zhang, Yuxin Ding, Yang Liu, Yanqing Liu, Hongyang Zhu, Junkai Zhang and Jingshu Wang
Molecules 2025, 30(22), 4426; https://doi.org/10.3390/molecules30224426 - 16 Nov 2025
Viewed by 352
Abstract
This study presents a comprehensive investigation of the high-pressure behavior of barium azide Ba(N3)2 through synchrotron X-ray diffraction, revealing critical insights into its anisotropic compressibility and phase transitions under pressures up to 28 GPa. At ambient conditions, Ba(N3) [...] Read more.
This study presents a comprehensive investigation of the high-pressure behavior of barium azide Ba(N3)2 through synchrotron X-ray diffraction, revealing critical insights into its anisotropic compressibility and phase transitions under pressures up to 28 GPa. At ambient conditions, Ba(N3)2 crystallizes in a monoclinic structure (space group P21/m), exhibiting pronounced anisotropic compression with axial compressibility following the order b > a > c. The distinct compressibility arises from the arrangement of azide ions, where interlayer interactions along the b-axis dominate the response to pressure. A reversible phase transition (Phase I → Phase II) initiates at 2.6 GPa, characterized by a monoclinic-to-monoclinic transformation involving subtle symmetry changes driven by azide ion rotation and lattice plane slippage. Above 11.8 GPa, emergent diffraction peaks suggest a potential secondary transition, though the structure remains stable up to 28 GPa. These findings underscore the unique role of azide ion dynamics in governing structural stability and phase evolution in divalent azides, offering implications for their utility as precursors in polymeric nitrogen synthesis. Full article
Show Figures

Graphical abstract

16 pages, 2677 KB  
Article
Consolidation Efficacy of Nano-Barium Hydroxide on Neogene Sandstone
by Yujia Wang, Ruitao Gao, Yingbo Wu, Xuwei Yang, Guirong Wei and Jianwen Chen
Appl. Sci. 2025, 15(19), 10617; https://doi.org/10.3390/app151910617 - 30 Sep 2025
Cited by 1 | Viewed by 544
Abstract
This study focuses on the sandstone of the Kizil Grottoes as the research object. Sandstone samples reinforced with barium hydroxide nanoparticle (Ba(OH)2) solutions at different concentrations were subjected to mass and deformation monitoring, wave velocity tests, triaxial shear tests, and conventional [...] Read more.
This study focuses on the sandstone of the Kizil Grottoes as the research object. Sandstone samples reinforced with barium hydroxide nanoparticle (Ba(OH)2) solutions at different concentrations were subjected to mass and deformation monitoring, wave velocity tests, triaxial shear tests, and conventional mercury intrusion porosimetry (MIP) to investigate the reinforcement mechanism and effectiveness of nano-Ba(OH)2 on Kizil sandstone. The results indicate that after treatment with nano-Ba(OH)2, the strength and wave velocity of the sandstone samples significantly increased, with the 15% concentration showing the optimal reinforcement effect. Nano-Ba(OH)2 enhances the cementation between sandstone particles, alters pore morphology and size distribution, reduces capillary water rise height, and inhibits sulfate ion crystallization and recrystallization, thereby achieving the dual effects of strength reinforcement and deterioration prevention. Full article
(This article belongs to the Special Issue Geological Disasters: Mechanisms, Detection, and Prevention)
Show Figures

Figure 1

29 pages, 8282 KB  
Article
Dopaminergic Inhibition of the Inwardly Rectifying Potassium Current in Direct Pathway Medium Spiny Neurons in Normal and Parkinsonian Striatum
by Qian Wang, Yuhan Wang, Francesca-Fang Liao and Fu-Ming Zhou
Brain Sci. 2025, 15(9), 979; https://doi.org/10.3390/brainsci15090979 - 12 Sep 2025
Cited by 1 | Viewed by 1576
Abstract
Background: Despite the profound behavioral effects of the striatal dopamine (DA) activity and the inwardly rectifying potassium channel (Kir) being a key determinant of striatal medium spiny neuron (MSN) activity that strongly affects behavior, previously reported DA regulations of Kir are conflicting and [...] Read more.
Background: Despite the profound behavioral effects of the striatal dopamine (DA) activity and the inwardly rectifying potassium channel (Kir) being a key determinant of striatal medium spiny neuron (MSN) activity that strongly affects behavior, previously reported DA regulations of Kir are conflicting and incompatible with MSN function in behavior. Methods and Results: Here, we used DA depletion mouse models that have hyperfunctional DA receptors such that potential DA regulation of Kir may be enhanced and relatively large and thus detected reliably. We show that in striatal brain slices from normal mice with an intact striatal DA system, the predominant effect of DA activation of D1Rs in D1-MSNs is to cause a modest depolarization and an increase in input resistance by inhibiting Kir, thus moderately increasing the spike outputs from behavior-promoting D1-MSNs. In brain slices from parkinsonian (DA-depleted) striatum, DA increases D1-MSN intrinsic excitability more strongly than in normal striatum, consequently more strongly increasing D1-MSN spike firing that is behavior-promoting. This DA inhibition of Kir is occluded by the Kir blocker barium chloride (BaCl2). In behaving parkinsonian mice, BaCl2 microinjection into the dorsal striatum stimulates movement and also occludes the motor stimulation of D1R agonism. Conclusions: Taken together, our results resolve the long-standing question about what D1R agonism does to D1-MSN excitability in normal and parkinsonian striatum and strongly indicate that D1R inhibition of Kir is a key ion channel mechanism that mediates the profound motoric and behavioral stimulation of striatal D1R activation in normal and parkinsonian animals. Full article
(This article belongs to the Special Issue How to Rewire the Brain—Neuroplasticity)
Show Figures

Figure 1

6 pages, 603 KB  
Article
Creation and Stability of Color Centers in BaF2 Single Crystals Irradiated with Swift 132Xe Ions
by Daurzhan Kenbayev, Michael V. Sorokin, Ayman S. El-Said, Alma Dauletbekova, Balzhan Saduova, Gulnara Aralbayeva, Abdirash Akilbekov, Evgeni Shablonin and Assyl-Dastan Bazarbek
Crystals 2025, 15(9), 785; https://doi.org/10.3390/cryst15090785 - 31 Aug 2025
Cited by 1 | Viewed by 1108
Abstract
It was demonstrated that various defects can be induced in halide crystals by irradiation with swift heavy ions. Here, we irradiated barium fluoride (BaF2) single crystals with 220 MeV xenon ions at room temperature and performed stepwise thermal annealing up to [...] Read more.
It was demonstrated that various defects can be induced in halide crystals by irradiation with swift heavy ions. Here, we irradiated barium fluoride (BaF2) single crystals with 220 MeV xenon ions at room temperature and performed stepwise thermal annealing up to the temperature of 825 K to study the kinetics of ion-induced defects at different temperatures. Optical spectroscopy was utilized for the measurement of the wide range of absorption spectra from NIR to VUV. A sharp decrease in the F2 absorption peak was observed for the samples annealed in the temperature range of 400–450 K. This result can be explained by their recombination with anion interstitials during thermal decay of the complex hole centers. The mobile interstitials, those did not recombine with the F2 centers, increase the absorption peaks in the 9–10 eV region, which can be associated with interstitial aggregates. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

20 pages, 3111 KB  
Article
Study on Influencing Factors of Strength of Plastic Concrete Vertical Cutoff Wall
by Guolong Jin, Jingrui Liang, Lei Zhang, Haoqing Xu, Haoran Li and Shengwei Wang
Buildings 2025, 15(17), 2978; https://doi.org/10.3390/buildings15172978 - 22 Aug 2025
Viewed by 842
Abstract
Vertical containment barriers—critical for intercepting contaminant transport in subsurface environments—demand materials that balance low permeability with adequate strength, particularly in stress-sensitive mountainous terrain. Plastic concrete, as a key barrier material, provides essential properties, including exceptional stress relaxation, to suppress fracture development under compressive [...] Read more.
Vertical containment barriers—critical for intercepting contaminant transport in subsurface environments—demand materials that balance low permeability with adequate strength, particularly in stress-sensitive mountainous terrain. Plastic concrete, as a key barrier material, provides essential properties, including exceptional stress relaxation, to suppress fracture development under compressive loads, coupled with effective seepage control. This study examines its strength performance through experiments on varied mixing techniques (dry, wet, and 24 h hydration), unconfined compression under uncontaminated conditions (water–binder ratios: 1.3–2.1, bentonite content: 20–30%, ages: 14–90 days), barium ion immersion (1–5 g/L, pH 7–11), and dry–wet cycling (10 cycles). Key findings demonstrate that (1) the strength of samples prepared by dry mixing and wet mixing is lower than that of samples mixed for 24 h, and all specimens met the target design strength following 28 days of curing; (2) under pollution-free conditions, strength decreases with higher water–binder ratios and bentonite content, showing a linear relationship. Strength increases exponentially with age; (3) in the presence of Ba2+, strength gradually decreases as Ba2+ concentration and pH increase, particularly notably at 3 g/L Ba2+ and pH 11. Strength increases with age, following a power relationship; (4) under dry–wet cycles, ion concentration has minimal impact on sample quality and surface state but significantly affects strength, with higher ion concentrations leading to greater strength loss and susceptibility to cycles; (5) during solution immersion, higher ion concentrations and pHs result in greater strength loss and worse erosion resistance. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

29 pages, 3391 KB  
Article
Near-Infrared and Sono-Enhanced Photodynamic Therapy of Prostate Cancer Cells Using Phyto-Second Harmonic Generation Nanoconjugates
by Efrat Hochma, Michael A. Firer and Refael Minnes
Polymers 2025, 17(13), 1831; https://doi.org/10.3390/polym17131831 - 30 Jun 2025
Cited by 1 | Viewed by 1296
Abstract
This study investigates near-infrared (NIR)-induced, Phyto-enhanced, second harmonic generation-mediated photodynamic therapy (Phyto-SHG-PDT) using barium titanate (BT)/rhein/polyethylene glycol 100 (PEG100) and BT/Yemenite “Etrog” leaf extract/PEG100 nanoconjugates. We compare continuous-wave (CW), multi-line Argon-ion laser illumination in the NIR range with high-peak-power femtosecond (fs) 800 nm [...] Read more.
This study investigates near-infrared (NIR)-induced, Phyto-enhanced, second harmonic generation-mediated photodynamic therapy (Phyto-SHG-PDT) using barium titanate (BT)/rhein/polyethylene glycol 100 (PEG100) and BT/Yemenite “Etrog” leaf extract/PEG100 nanoconjugates. We compare continuous-wave (CW), multi-line Argon-ion laser illumination in the NIR range with high-peak-power femtosecond (fs) 800 nm pulses. Under CW NIR light, BT/rhein nanoconjugates reduced PC3 prostate cancer cell viability by 18% versus non-irradiated controls (p < 0.05), while BT/extract nanoconjugates exhibited 15% dark toxicity. The observed SHG signal matched theoretical predictions and previous CW laser studies. Reactive Oxygen Species (ROS) scavenger 1,3-diphenyl-isobenzofuran (DPBF) showed reduced absorbance at 410 nm upon NIR illumination, indirectly supporting SHG emission at 400 nm from nanoconjugates. Under fs-pulsed laser exposure, pronounced two-photon absorption (TPA) and SHG effects were observed in both nanoconjugate types. Our results demonstrate the effectiveness of BT/rhein nanoconjugates under both laser conditions, while the BT/extract nanoconjugates benefited from high-power pulsed excitation. These results highlight the potential of BT-based Phyto-SHG-PDT nanoconjugates for NIR and blue light applications, leveraging nonlinear optical effects for advanced photochemical cancer therapies. Full article
Show Figures

Graphical abstract

15 pages, 1518 KB  
Article
Machine Learning-Based Prediction of Scale Inhibitor Efficiency in Oilfield Operations
by Seyed Hossein Hashemi and Farshid Torabi
Processes 2025, 13(7), 1964; https://doi.org/10.3390/pr13071964 - 21 Jun 2025
Cited by 1 | Viewed by 1688
Abstract
Water injection is widely recognized as one of the most important operational approaches for enhanced oil recovery in oilfields. However, this process faces significant challenges due to the formation of sulfate and carbonate mineral scales caused by high salinity in both injected water [...] Read more.
Water injection is widely recognized as one of the most important operational approaches for enhanced oil recovery in oilfields. However, this process faces significant challenges due to the formation of sulfate and carbonate mineral scales caused by high salinity in both injected water and formation water. To address this issue, the use of mineral scale inhibitors has emerged as a valuable solution. In this study, we evaluated the performance of seven machine learning algorithms (Gradient Boosting Machine; k-Nearest Neighbors; Decision Tree; Random Forest; Linear Regression; Neural Network; and Gaussian Process Regression) to predict inhibitor efficiency. The models were trained on a comprehensive dataset of 661 samples (432 for training; 229 for testing) with 66 features including temperature; concentrations of various ions (sodium; calcium, magnesium; barium; strontium; chloride; sulfate; bicarbonate; carbonate, etc.), and inhibitor dosage levels (DTPMP, PPCA, PBTC, EDTMP, BTCA, etc.). The results showed that GPR achieved the highest prediction accuracy with R2 = 0.9608, followed by Neural Network (R2 = 0.9230) and Random Forest (R2 = 0.8822). These findings demonstrate the potential of machine learning approaches for optimizing scale inhibitor performance in oilfield operations Full article
(This article belongs to the Special Issue Recent Advances in Heavy Oil Reservoir Simulation and Fluid Dynamics)
Show Figures

Figure 1

12 pages, 8480 KB  
Article
Chemical and Biological Properties of C-Point Obturation Cones
by Marina Angélica Marciano, Paulo Jorge Palma, Ana Cristina Padilha Janini, Brenda Fornazaro Moraes, Thiago Bessa Marconato Antunes, Ribamar Lazanha Lucateli, Bruno Martini Guimarães, Mariza Akemi Matsumoto, Diana Bela Sequeira, Talita Tartari, Brenda Paula Figueiredo Almeida Gomes and Marco Antonio Hungaro Duarte
Biomimetics 2025, 10(6), 409; https://doi.org/10.3390/biomimetics10060409 - 18 Jun 2025
Cited by 2 | Viewed by 1065
Abstract
This study evaluated the chemical composition and subcutaneous tissue biocompatibility of C-Point, a root canal filling material, compared to ProTaper gutta-percha cones (control). Material characterization was conducted using scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS). For biocompatibility assessment, both materials were implanted subcutaneously [...] Read more.
This study evaluated the chemical composition and subcutaneous tissue biocompatibility of C-Point, a root canal filling material, compared to ProTaper gutta-percha cones (control). Material characterization was conducted using scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS). For biocompatibility assessment, both materials were implanted subcutaneously in the dorsal connective tissue of sixteen albino rats (n = 8 per group). Histological evaluation of inflammatory infiltrate intensity was performed at 30 and 60 days post-implantation, with statistical analysis (significance set at p < 0.05). SEM-EDS analysis revealed distinct elemental compositions: C-Point primarily contained zirconium and cobalt ions, while gutta-percha cones demonstrated a strong zinc signature with trace amounts of barium, aluminum, and sulfur. Both materials exhibited similar particulate morphology with radiopaque inclusions. Histologically, no significant difference in inflammatory response was observed between C-Point and gutta-percha at any time point (p > 0.05). All specimens developed a fibrous encapsulation. The inflammatory profile showed temporal dynamics, with lymphocyte predominance during early stages that progressively diminished by the study endpoint. These findings demonstrate that while C-Point possesses a unique elemental profile dominated by zirconium, its tissue biocompatibility parallels that of conventional gutta-percha obturation materials. However, due to the absence of mechanical testing and the limited in vivo follow-up period, the long-term stability of the material remains uncertain. Full article
(This article belongs to the Section Biomimetics of Materials and Structures)
Show Figures

Figure 1

13 pages, 3977 KB  
Article
Optical Properties of BaAl2O4 Due to Cerium Doping and Heat Treatment in Different Atmospheres
by Montserrat Nevai Coyotl Ojeda, Benito de Celis Alonso, José Eduardo Espinosa Rosales, Epifanio Cruz-Zaragoza and Martín Rodolfo Palomino Merino
Micromachines 2025, 16(6), 688; https://doi.org/10.3390/mi16060688 - 7 Jun 2025
Cited by 1 | Viewed by 1386
Abstract
The luminescent properties of cerium-doped barium aluminate (BaAl2O4) samples with varying Ce concentrations (0–1.1 mol%) prepared either in an air or nitrogen-reduced atmosphere are presented. This work provides the first detailed comparison of the material’s structural, luminescent, and chromatic [...] Read more.
The luminescent properties of cerium-doped barium aluminate (BaAl2O4) samples with varying Ce concentrations (0–1.1 mol%) prepared either in an air or nitrogen-reduced atmosphere are presented. This work provides the first detailed comparison of the material’s structural, luminescent, and chromatic properties at different doping levels and thermal treatments. X-ray diffraction analysis confirmed the hexagonal crystal structure of barium aluminate. Samples treated in an air atmosphere exhibited crystallite sizes of 58.5 nm for undoped samples and 45.7 nm for doped samples. In contrast, those treated under nitrogen showed smaller crystallite sizes, i.e., 39.8 nm for undoped and 42.3 nm for doped samples, respectively. XPS analysis indicated that the nitrogen-reduced atmosphere minimized Ce oxidation, favoring the presence of Ce3+. The bandgap values of the material were 4.0 eV and 5.6 eV for the air and for the nitrogen atmosphere, respectively. Photoluminescence spectra showed maxima at 357 nm (air) and 386 nm (nitrogen), attributed to 4f-5d transitions of Ce. The samples under air atmosphere showed longer lifetimes values (0.94 ns) compared to those in a nitrogen atmosphere (0.40 ns). These results suggest that thermal treatment in an air atmosphere promoted better structural order and higher photoluminescence efficiency, while treatment in a nitrogen-reduced atmosphere increased defect formation, shortening the lifetime. Chromaticity coordinate analysis showed that the cerium ion dopant influenced the blueish emission color in both samples. Full article
(This article belongs to the Collection Microdevices and Applications Based on Advanced Glassy Materials)
Show Figures

Graphical abstract

12 pages, 3650 KB  
Article
Research on the Damage Mechanism of Oilfield Water Injection System Based on Multiple Operating Conditions
by Chuanjiang Tan, Yan Fang, Fumin Li, Zeliang Chang, Yongbin Hou, Shuai Wang and Yang Du
Processes 2025, 13(6), 1798; https://doi.org/10.3390/pr13061798 - 5 Jun 2025
Viewed by 1087
Abstract
Petroleum is an indispensable energy source in modern industrial society, and maintaining the safe and stable operation of its injection and production system is of great significance. To analyze the mechanism of pipeline damage caused by corrosion and scaling in the injection production [...] Read more.
Petroleum is an indispensable energy source in modern industrial society, and maintaining the safe and stable operation of its injection and production system is of great significance. To analyze the mechanism of pipeline damage caused by corrosion and scaling in the injection production system, taking a water injection pipeline in an oil field as an example, the causes of corrosion and scaling damage were studied by detecting pipeline samples and analyzing corrosion products and various service conditions of the pipeline. The results showed that there was more scaling on the inner wall of the pipeline, and there was local corrosion in the pipeline sections that had experienced water injection, shutdown, and gas injection conditions, while there was no significant corrosion thinning in the pipeline sections that had only experienced water injection and shutdown conditions. The scale layer formed under water injection conditions is mainly composed of barium strontium sulfate (Ba0.75Sr0.25SO4), barium sulfate (BaSO4) and a small amount of silica (SiO2). The main reason for scale formation is the high content of barium ions (Ba2+) in the injected water. The corrosion products formed under gas injection conditions, including strontium ions (Sr2+) and sulfate ions (SO42−), are mainly composed of ferrous carbonate (FeCO3) and ferric oxide (Fe2O3). The pipeline corrosion product FeCO3 is mainly caused by carbon dioxide (CO2) in the medium. In addition, the high liquid content, cecal position, high Cl (chloride ion) content, and slightly acidic environment in the pipeline also accelerate the occurrence of corrosion damage. The Fe2O3 in the corrosion products is formed when the pipeline is exposed to air after sampling, and is not the main cause of pipeline corrosion. Full article
Show Figures

Figure 1

17 pages, 10201 KB  
Article
The Separation and Recovery of Barium from Barium Slag by Using Shaking Table Gravity Concentration Method
by Yang Wan, Bo Zhang, Xing Yang, Xin Song, Guocui Li, Siqi Zhang and Wen Ni
Processes 2025, 13(4), 1012; https://doi.org/10.3390/pr13041012 - 28 Mar 2025
Viewed by 1339
Abstract
Barium slag, classified as HW47 hazardous waste, is produced in large quantities and has a high accumulation with heavy metal Ba ions that are significantly above the standard levels, posing a serious threat to the ecological environment and the growth of flora and [...] Read more.
Barium slag, classified as HW47 hazardous waste, is produced in large quantities and has a high accumulation with heavy metal Ba ions that are significantly above the standard levels, posing a serious threat to the ecological environment and the growth of flora and fauna. Before barium slag can be stored, it must undergo harmless treatment, which is costly, and with the current large volume of accumulated barium slag, storage facilities are strained. There is an urgent need for new technologies to extract barium elements from barium slag while achieving reduction in volume. This study first treats the barium slag to reduce its oxidation state and then utilizes the density differences to separate barium-rich compounds through shaking table concentration. Macro and microanalytical methods such as XRD (X-ray diffraction), XRF (X-ray fluorescence), and SEM&EDS (Scanning Electron Microscopy & Energy-dispersive X-ray Spectroscopy) were employed. The results show that barium in the slag is evenly distributed, and after sufficient crushing, it can be separated by gravity concentration. The barium content can be enriched from 20% to over 80%. This research provides theoretical support for the separation of barium compounds from barium slag. Full article
(This article belongs to the Special Issue Advances in Wastewater and Solid Waste Treatment Processes)
Show Figures

Figure 1

15 pages, 6590 KB  
Article
High-Performance Barium Sulfate Scale Inhibitors: Monomer Design and Molecular Dynamics Studies
by Da Wu, Dexin Liu, Jiaqiang Wang, Han Zhao, Yeliang Dong and Xilin Wang
Processes 2025, 13(3), 660; https://doi.org/10.3390/pr13030660 - 26 Feb 2025
Cited by 2 | Viewed by 2319
Abstract
A novel efficient barium sulfate scale inhibitor was designed by examining important quantum parameters such as adsorption energy, solubility, steric hindrance parameter, and entanglement molecular weights. Through molecular simulation techniques, it was found that the carboxylic acid group of the scale inhibitor molecule [...] Read more.
A novel efficient barium sulfate scale inhibitor was designed by examining important quantum parameters such as adsorption energy, solubility, steric hindrance parameter, and entanglement molecular weights. Through molecular simulation techniques, it was found that the carboxylic acid group of the scale inhibitor molecule could transfer an average of 0.07 e electrons to the barium sulfate surface. During molecular dynamics simulations, closer adsorption between oxygen atoms and barium ions in the scale inhibitor was observed, which resulted from van der Waals forces. Based on the simulation results at the molecular level, we successfully prepared this scale inhibitor by free radical polymerization and verified its high efficiency in our experiments: the scale inhibition efficiency was as high as 89.1% when used at a concentration of 160 mg/L under the conditions of pH = 7 and 70 °C. In addition, by SEM and XRD analyses, we further confirmed the consistency of the scale inhibition mechanism of the scale inhibitor with the molecular simulation results. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

23 pages, 3423 KB  
Article
Application of a Mixture of Fly Ash and Solid Waste from Gas Treatment from Municipal Solid Waste Incineration in Cement Mortar
by Alina Pietrzak, Malgorzata Ulewicz, Ewa Kozień and Jacek Pietraszek
Materials 2025, 18(3), 481; https://doi.org/10.3390/ma18030481 - 21 Jan 2025
Cited by 8 | Viewed by 2083
Abstract
This paper analyzes the effective use of a mixture of fly ash (MSWI-FA) and solid waste from flue gas treatment (MSWI-SW), which are by-products of the municipal waste incineration process. MSWI-FA (19 01 13*) and MSWI-SW (19 01 07*) are classified as hazardous [...] Read more.
This paper analyzes the effective use of a mixture of fly ash (MSWI-FA) and solid waste from flue gas treatment (MSWI-SW), which are by-products of the municipal waste incineration process. MSWI-FA (19 01 13*) and MSWI-SW (19 01 07*) are classified as hazardous waste due to their toxic metal content and leaching potential, and currently lack practical applications, unlike slag and bottom ash (19 01 12). This study tested these wastes as partial substitutes for natural sand within a range of 0–20% of cement mass. Statistical analysis of the experimental results allowed the creation of good quality models predicting the effect of substitution additives on compressive strength and flexural strength (correlation 0.91 and 0.93, respectively). The mixture with the highest share of substitution additives (40% = 20% + 20%) was characterized by a decrease in compressive strength by 1.3% and flexural strength by 25.8%. Cement mortars synthesized with the waste mixture (up to 20% of each component) showed slightly lower consistency and water absorption than the control mortars. After the frost resistance tests (25 cycles), the flexural and compressive strength showed ambiguous behavior, showing both increases and decreases, indicating that the percentage of waste components alone is an insufficient set of factors for predicting these strength properties. The concentration of metal ions, i.e., Zn, Cu, Pb, Ni, Cu, and Cr, in the eluate after the leaching tests did not exceed the legal levels of pollutants introduced into waters, with the exception of barium. However, its content did not exceed the permissible levels required for waste intended for landfill. Using the mixing plant for this waste in the amount of 20% each, we save about EUR 10 in the cost of purchasing sand (which is 13% of the production costs of 1 m3) and EUR 8 in the cost of environmental fees when producing 1 m3 of mortar. The proposed technology is compatible with the objectives of a sustainable economy. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

Back to TopTop