Application of a Mixture of Fly Ash and Solid Waste from Gas Treatment from Municipal Solid Waste Incineration in Cement Mortar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Research Methods
3. Results
3.1. Summary of Results Used in Numerical Analysis
3.2. Analysis of Mortar Consistency
SW·MSWI-SW
3.3. Flexural and Compressive Strength Cement Mortar Analysis After 28 Days
− 0.00253·MSWI-SW·MSWI-SW + 0.004151·MSWI-FA·MSWI-SW
− 0.06047·MSWI-SW·MSWI-SW + 0.04424·MSWI-FA·MSWI-SW
3.4. Water Absorption Analysis of Cement Mortars Containing MSWI-FA and MSWI-SW
FA·MSWI-SW
3.5. Analysis of the Mechanical Strength of Cement Mortars After Frost Resistance Tests
3.6. Mass Loss (ML) Analysis of Cement Mortar with MSWI
3.7. Metal Ion Leaching Test from Mortars Containing MSWI
Ref. | Legal Act | Units | Zn | Ni | Cd | Pb | Cr | Ba | As | Se | Cu |
---|---|---|---|---|---|---|---|---|---|---|---|
[25] | EPA [76] | mg/dm3 | - | - | - | 5.0 | 5.0 | 100 | 5.0 | 1.0 | - |
[25] | National THA * [77] | mg/kg | - | 1600 | 37 | 400 | 300 | - | 3.9 | 390 | - |
[50] | TCLP [78] | mg/dm3 | - | - | 1 | 5 | 5 | - | - | 15 | |
[6] | EU ** [79] | mg/kg | 4 | 0.4 | 0.04 | 0.5 | 0.5 | 20 | - | - | 2 |
[6] | EU *** [79] | mg/kg | 50 | 10 | 1 | 10 | 10 | 1000 | 50 | ||
[47] | National [80] | mg/dm3 | 50 | - | 0.3 | 3.0 | 0.3 | - | - | - | 50 |
[81] | National [82] | μg/dm3 | 1000 | 20 | 5 | 10 | 50 | 1000 | |||
[77] | National [83] | 2.8 | 1.3 | 0.5 | - | 0.8 | 0.1 | 0.5 | |||
[13] | National PL ** [84] | mg/kg | 2.0 | 0.2 | 0.03 | 0.2 | 0.2 | 7.0 | - | - | 0.9 |
Sample No | Waste | Units | Zn | Ni | Cd | Pb | Cr | Ba | Cu |
---|---|---|---|---|---|---|---|---|---|
Legal act [75] * | – | mg/dm3 | 2.0 | 0.5 | 0.4 | 0.5 | 0.5 | 2.0 | 0.5 |
Legal act [84] ** | – | mg/dm3 | 2.0 | 0.2 | 0.03 | 0.2 | 0.2 | 7.0 | 0.9 |
No 1 | Control | mg/dm3 | 0.245 | <0.01 | <0.01 | 0.292 | <0.01 | 3.248 | 0.025 |
No 3 | MSWI-SW | mg/dm3 | 0.110 | <0.01 | <0.01 | 0.241 | <0.01 | 3.726 | <0.01 |
No 5 | MSWI-SW + MSWI-FA | mg/dm3 | 0.112 | <0.01 | <0.01 | 0.221 | <0.01 | 3.682 | <0.01 |
No 7 | MSWI-FA | mg/dm3 | 0.072 | <0.01 | <0.01 | 0.216 | <0.01 | 2.984 | <0.01 |
4. Conclusions
- (1)
- Using a mixture of fly ash (MSWI-FA) and solid waste from the purification of flue gases (MSWI-SW) generated during the incineration of municipal waste, as a substitute for aggregate, enables the production of cement mortars with good strength parameters.
- (2)
- The obtained models predicting compressive strength and flexural strength are of good quality, as the coefficient of determination of the models was 0.91 and 0.93, respectively, while the lack of fit had a significance level p of 0.26 and 0.46, respectively.
- (3)
- The mortars containing a mixture of MSWI-FA and MSWI-SW (at a 20% replacement rate each) exhibit only a 1.3% reduction in compressive strength and a 25.8% reduction in bending strength.
- (4)
- The flexural and compressive strength, after the frost resistance tests, showed ambiguous behavior, showing both increases and decreases, indicating that the percentage of waste components alone is an insufficient set of factors for predicting these strength properties.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, J.; Wang, T.; Xia, H.; Cui, C. An Overview of Artificial Intelligence Application for Optimal Control of Municipal Solid Waste Incineration Process. Sustainability 2024, 16, 2042. [Google Scholar] [CrossRef]
- Bień, J. Forecasting municipal waste accumulation rate and personal consumption expenditures using vector autoregressive (VAR) model. Prod. Eng. Arch. 2022, 28, 150–156. [Google Scholar] [CrossRef]
- Global Waste Management Outlook 2024. Available online: https://www.unep.org/resources/global-waste-management-outlook-2024 (accessed on 20 November 2024).
- Municipal Waste Statistics. Eurostat. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Municipal_waste_statistics (accessed on 20 November 2024).
- Wang, P.; Hu, Y.; Cheng, H. Municipal solid waste (MSW) incineration fly ash as an important source of heavy metal pollution in China. Environ. Pollut. 2019, 252, 461–475. [Google Scholar] [CrossRef] [PubMed]
- Czop, M.; Łaźniewska-Piekarczyk, B. Use of Slag from the Combustion of Solid Municipal Waste as A Partial Replacement of Cement in Mortar and Concrete. Materials 2020, 13, 1593. [Google Scholar] [CrossRef] [PubMed]
- Czop, M.; Kajda-Szcześniak, M.; Zajusz-Zubek, E.; Biss, W.; Bochenko, A.; Brzezina, Ł.; Czech, D.; Turyła, K. The Role of Slag from the Combustion of Solid Municipal Waste in Circular Economy. Inz. Miner. J. Pol. Miner. Eng. Soc. 2023, 1, 145–150. [Google Scholar] [CrossRef]
- Andriulaitytė, I.; Valentukeviciene, M. Circular economy in buildings. Constr. Optim. Energy Potential (CoOEP) 2020, 9, 23–29. [Google Scholar] [CrossRef]
- Ingaldi, M.; Ulewicz, R. The Business Model of a Circular Economy in the Innovation and Improvement of Metal Processing. Sustainability 2024, 16, 5513. [Google Scholar] [CrossRef]
- Commission Decision Directive 2000/532/EC of May 3, 2000 Replacing Decision 94/3/EC Establishing a List of Wastes Pursuant to Article 1(a) of Council Directive 75/442/EEC on Waste and Council Decision 94/904/EC Establishing a List of Hazardous Waste Pursuant to Article 1(4) of Council Directive 91/689/EEC on Hazardous Waste. Available online: https://eur-lex.europa.eu/eli/dec/2000/532/oj/eng (accessed on 20 November 2024).
- Marieta, C.; Martín-Garin, A.; Leon, I.; Guerrero, A. Municipal Solid Waste Incineration Fly Ash: From Waste to Cement Manufacturing Resource. Materials 2023, 16, 2538. [Google Scholar] [CrossRef]
- Godyń, K.; Dutka, B. Preliminary Studies of Slag and Ash from Incinerated Municipal Waste for Prospective Applications. Energies 2023, 16, 117. [Google Scholar] [CrossRef]
- Czop, M.; Kajda-Szczesniak, M. Leachability of environmentally hazardous substances from solid waste generated in the process of flue gas treatment and from composites immobilizing them. Przem. Chem. 2021, 100, 832–835. [Google Scholar] [CrossRef]
- Alorro, R.D.; Hiroyoshi, N.; Ito, M.; Tsunekawa, M. Recovery of heavy metals, from MSW molten fly ash by CIP method. Hydrometallurgy 2009, 97, 8–14. [Google Scholar] [CrossRef]
- Reijnders, L. Disposal, uses and treatments of combustion ashes: A review. Resour. Conserv. Recycl. 2005, 43, 313–336. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, Y.; Xu, Y.; Nie, Q.; Yang, Z.; Sheng, W.; Qian, G. Municipal solid waste incineration residues recycled for typical construction materials—A review. RSC Adv. 2022, 12, 6279–6291. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, Z.; Xie, G.; Li, Z.; Fan, X.; Zhang, W.; Xing, F.; Tang, L.; Ren, J. Resource utilization of municipal solid waste incineration fly ash—Cement and alkali-activated cementitious materials: A review. Sci. Total Environ. 2022, 852, 158254. [Google Scholar] [CrossRef] [PubMed]
- Bertolini, L.; Carsana, M.; Cassago, D.; Curzio, A.Q.; Collepardi, M. MSWI ashes as mineral additions in concrete. Cem. Concr. Res. 2004, 34, 1899–1906. [Google Scholar] [CrossRef]
- Kokalj, F.; Samec, N.; Juric, B. Utilization of bottom ash from incineration of separated wastes as a cement substitute. Waste Manag. Res. 2005, 23, 468–472. [Google Scholar] [CrossRef]
- Vegas, I.; Ibanez, J.A.; San Jose, J.T.; Urzelai, A. Construction demolition wastes, Waelz slag and MSWI bottom ash: A comparative analysis as material for road construction. Waste Manag. 2008, 28, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Ferraris, M.; Salvo, M.; Ventrella, A.; Buzzi, L.; Veglia, M. Use of vitrified MSWI bottom ashes for concrete production. Waste Manag. 2009, 29, 1041–1047. [Google Scholar] [CrossRef]
- Müller, U.; Rübner, K. The microstructure of concrete made with municipal waste incinerator bottom ash as an aggregate component. Cem. Concr. Res. 2006, 36, 1434–1443. [Google Scholar] [CrossRef]
- Pera, J.; Coutaz, L.; Ambroise, J.; Chababbet, M. Use of incinerator bottom ash in concrete. Cem. Concr. Res. 1997, 27, 1–5. [Google Scholar] [CrossRef]
- Węgliński, S.; Martysz, G. Utilization of Municipal Solid Waste Incineration Bottom Ash in Cement-Bound Mixtures. Sustainability 2024, 16, 1865. [Google Scholar] [CrossRef]
- Phutthimethakul, L.; Supakata, N. Partial replacement of municipal incinerated bottom ash and PET pellets as fine aggregate in cement mortars. Polymers 2022, 22, 2597. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Qiu, J.; Wang, F.; Li, Z.; Gu, X. Utilization of bioactivated incineration bottom ash in cement binder for mortar harmless treatment and performance improvement. J. Build. Eng. 2022, 57, 104980. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Zhao, Y.C.; Qi, J.Y. Study on use of MSWI fly ash in ceramic tile. J. Hazard. Mater. 2007, 141, 106–114. [Google Scholar] [CrossRef]
- Baran, P.; Nazarko, M.; Włosińska, E.; Kanciruk, A.; Zarębska, K. Synthesis of geopolymers derived from fly ash with an addition, of perlite. J. Clean. Prod. 2021, 293, 126112. [Google Scholar] [CrossRef]
- Zarębska, K.; Zabierowski, P.; Gazda-Grzywacz, M.; Czuma, N.; Baran, P. Fly ash-based geopolymers with refractoriness properties. Clean Technol. Environ. Policy 2022, 24, 2161–2175. [Google Scholar] [CrossRef]
- Wang, L.; Jin, Y.; Nie, Y.; Li, R. Recycling of municipal solid waste incineration fly ash for ordinary Portland cement production: A real-scale test. Resour. Conserv. Recycl. 2010, 54, 1428–1435. [Google Scholar] [CrossRef]
- Siddique, R. Utilization of MSWI ash in cement and mortar. Resour. Conserv. Recy. 2010, 54, 1037–1047. [Google Scholar] [CrossRef]
- Zheng, L.; Gao, X.; Wang, W.; Li, Z.; Zhang, L.; Cheng, S. Utilization of MSWI fly ash as partial cement or sand substitute with focus on cementing efficiency and health risk assessment. Front. Environ. Sci. Eng. 2020, 14, 5. [Google Scholar] [CrossRef]
- Cristelo, N.; Segadães, L.; Coelho, J.; Chaves, B.; Sousa, N.R.; de Lurdes Lopes, M. Recycling municipal solid waste incineration slag and fly ash as precursors in low-range alkaline cements. Waste Manag. 2020, 104, 60–73. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.C.; Wanga, W.J.; Shih, P.Y.; Lin, K.L. Enhancement in early strengths of slag-cement mortars by adjusting basicity of the slag prepared from fly-ash of MSWI. Cem. Concr. Res. 2009, 39, 651–658. [Google Scholar] [CrossRef]
- Li, J. Municipal Solid Waste Incineration Ash-Incorporated Concrete: One Step towards Environmental Justice. Buildings 2021, 11, 495. [Google Scholar] [CrossRef]
- Aubert, J.E.; Husson, B.; Sarramone, N. Utilization of municipal solid waste incineration (MSWI) fly ash in blended cement Part 2. Mechanical strength of mortars and environmental impact. J. Hazard. Mater. 2007, 146, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Poranek, N.; Pizoń, J.; Łaźniewska-Piekarczyk, B.; Czajkowski, A.; Lagashkin, R. Recycle Option for Municipal Solid Waste Incineration Fly Ash (MSWIFA) as a Partial Replacement for Cement in Mortars Containing Calcium Sulfoaluminate Cement (CSA) and Portland Cement to Save the Environment and Natural Resources. Materials 2024, 17, 39. [Google Scholar] [CrossRef]
- Thomas, M.; Ślosarczyk, A. Effect of Municipal Solid Waste Slag on the Durability of Cementitious Composites in Terms of Resistance to Freeze–Thaw Cycling. Materials 2023, 16, 626. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.L.; Wang, K.S.; Tzeng, B.Y.; Lin, C.Y. The reuse of municipal solid waste incinerator fly ash slag as a cement substitute. Resour. Conserv. Recycl. 2003, 39, 315–324. [Google Scholar] [CrossRef]
- Rémond, S.; Pimient, P.; Bentz, D.P. Effects of the incorporation of Municipal Solid Waste Incineration fly ash in cement pastes and mortars: I. Experimental study. Cem. Concr. Res. 2002, 32, 303–311. [Google Scholar] [CrossRef]
- Abdi, E.; Asadollahfardi, G.; Salehi, A.; Akbardoost, J.; Esmaeili, N.; Panahandeh, A. Using Municipal Solid-Waste Incinerator Fly Ash, Wash Water, and Propylene Fibers in Self-Compacting Repair Mortar, Greenhouse Gas Emissions Potential. Int. J. Concr. Struct. Mater. 2024, 18, 57. [Google Scholar] [CrossRef]
- Ginés, O.; Chimenos, J.M.; Vizcarro, A.; Formosa, J.; Rosell, J.R. Combined use of MSWI bottom ash and fly ash as aggregate in concrete formulation: Enviromental and mechanical considerations. J. Hazard. Mater. 2009, 169, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Bourtsalas, A.; Kawashima, S.; Ma, S.; Themelis, N.J. Performance of structural concrete using Waste-to-Energy (WTE) combined ash. Waste Manag. 2020, 118, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.L.; Lin, D.F.; Wang, W.J.; Chang, C.C.; Lee, T.C. Pozzolanic reaction of a mortar made with cement and slag vitrified from a MSWI ash-mix and LED sludge. Constr. Build. Mater. 2014, 64, 277–287. [Google Scholar] [CrossRef]
- Al-Rawas, A.A.; Hago, A.W.; Taha, R.; Al-Kharousi, K. Use of incinerator ash as replacement for cement and sand in cement mortars. Build. Environ. 2005, 40, 1261–1266. [Google Scholar] [CrossRef]
- Sikora, J.; Niemiec, M.; Szeląg-Sikora, A.; Kuboń, M.; Mruk, B.; Marczuk, A. Use of slag from thermal treatment of municipal waste for concrete purposes. Przem. Chem. 2019, 98, 1104–1107. [Google Scholar] [CrossRef]
- Zeng, C.; Lyu, Y.; Wang, D.; Ju, Y.; Shang, X.; Li, L. Application of Fly Ash and Slag Generated by Incineration of Municipal Solid Waste in Concrete. Adv. Mater. Sci. Eng. 2020, 2020, 7802103. [Google Scholar] [CrossRef]
- Sun, Z.; Li, X.; Gan, M.; Ji, Z.; Fan, X.; Xing, J. Converting Municipal Solid Waste Incineration Fly Ash and Municipal Sludge into Environmentally Compatible Alkali-Activated Material. Sustainability 2024, 16, 7912. [Google Scholar] [CrossRef]
- Lee, T.C.; Rao, M.K. Recycling municipal incinerator fly- and scrubber-ash into fused slag for the substantial replacement of cement in cement-mortars. Waste Manag. 2009, 29, 1952–1959. [Google Scholar] [CrossRef]
- Lee, T.C.; Wang, W.J.; Shih, P.Y. Slag-cement mortar made with cement and slag vitrified from MSWI fly-ash/scrubber-ash and glass frit. Constr. Build. Mater. 2008, 22, 1914–1921. [Google Scholar] [CrossRef]
- Lee, T.C.; Li, Z.S. Conditioned MSWI ash-slag-mix as a replacement for cement in cement mortar. Constr. Build. Mater. 2010, 24, 970–979. [Google Scholar] [CrossRef]
- Sorlini, S.; Abba, A.; Colliviqnarelli, C. Recovery of MSWI and soil washing residues as concrete aggregates. Waste Manag. 2011, 31, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Jura, J.; Ulewicz, M. Assessment of the Possibility of Using Fly Ash from Biomass Combustion for Concrete. Materials 2021, 14, 6708. [Google Scholar] [CrossRef]
- Ulewicz, M.; Jura, J.; Gnatowski, A. 2024. Cement Mortars Based on Polyamide Waste Modified with Fly Ash from Biomass Combustion—A New Material for Sustainable Construction. Sustainability 2024, 16, 3079. [Google Scholar] [CrossRef]
- Kalak, T.; Szypura, P.; Cierpiszewski, R.; Ulewicz, M. Modification of Concrete Composition Doped by Sewage Sludge Fly Ash and Its Effect on Compressive Strength. Materials 2023, 16, 4043. [Google Scholar] [CrossRef] [PubMed]
- Pietrzak, A. The effect of ashes generated from the combustion of sewage sludge on the basic mechanical properties of concrete. Constr. Optim. Energy Potential (CoOEP) 2019, 8, 29–35. [Google Scholar] [CrossRef]
- Pietraszek, J. Response surface methodology at irregular grids based on Voronoi scheme with neural network approximator. In Neural Networks and Soft Computing; Rutkowski, L., Kacprzyk, J., Eds.; Physica: Heidelberg, Germany, 2003; pp. 250–255. [Google Scholar] [CrossRef]
- Pietraszek, J.; Skrzypczak-Pietraszek, E. The Optimization of the Technological Process with the Fuzzy Regression. Adv. Mater. Res. 2014, 874, 151–155. [Google Scholar] [CrossRef]
- PN-EN 197-1; Cement—Part 1: Composition, Requirements and Conformity Criteria for Common Cements. European Committee for Standardization: Warsaw, Poland, 2012.
- PN EN 196-1:2016; Methods of Testing Cement—Part 1: Determination of Strength. European Committee for Standardization: Warsaw, Poland, 2016.
- PN-EN 1008:2004; Mixing Water for Concrete—Specification for Sampling, Testing and Evaluation of Suitability of Mixing Water for Concrete, Including Water Recovered from Concrete Production Processes. European Committee for Standardization: Warsaw, Poland, 2004.
- EN 998-2:2016-12; Specification for Mortar for Masonry—Part 2: Masonry Mortar. European Committee for Standardization: Warsaw, Poland, 2016.
- Ulewicz, M.; Jura, J.; Zieliński, A.; Pietraszek, J. The Application of Converter Sludge and Slag to Produce Ecological Cement Mortars. Materials 2024, 17, 4295. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, D.C. Design and Analysis of Experiments, EMEA Edition, 10th ed.; Wiley: Hoboken, NJ, USA, 2023. [Google Scholar]
- Selejdak, J.; Bobalo, T.; Blikharskyy, Y.; Dankevych, I. Mathematical modelling of stress-strain state of steel-concrete beams with combined reinforcement. Prod. Eng. Arch. 2023, 29, 108–115. [Google Scholar] [CrossRef]
- PN-EN 1015-3; Test Methods for Masonry Mortars—Determination of the Consistency of Fresh Mortar (Using a Flow Table). Polish Committee for Standardization: Warsaw, Poland, 2013.
- EN 1015-11:2020-04; Test Methods for Masonry Mortars—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar. Polish Committee for Standardization: Warsaw, Poland, 2020.
- PN-85/B-04500; Construction Mortars. Research of Physical and Strength Characteristics. Polish Committee for Standardization: Warsaw, Poland, 1985.
- EN-12457-2:2006; Characterization of Waste—Leaching—Compliance Test for Leaching of Granular Waste Materials and Sludges—Part 2: One Stage Batch Test at a Liquid to Solid Ratio of 10 L/kg for Materials with Particle Size below 4 mm (Without or with Size Reduction). Polish Committee for Standardization: Warsaw, Poland, 2013.
- Jura, J. Analysis of the impact of sludge and slag waste on basic properties of cement mortars. Syst. Saf. Hum. Tech. Facil. Environ. 2023, 5, 130–141. [Google Scholar] [CrossRef]
- Cheng, A.; Hsu, H.M.; Chao, S.J.; Lin, W.T.; Chen, H.H.; Lin, C.T. Properties of Cement-Based Materials Containing Melting Incinerator Bottom Ash. Adv. Mat. Res. 2011, 250, 834–838. [Google Scholar] [CrossRef]
- Pietrzak, A. The Impact of Waste Generated from Thermal Transformation of Municipal Wate on Selected Properties of Cement Mortar. Syst. Saf. Hum. Tech. Facil. Environ. 2023, 5, 142–150. [Google Scholar] [CrossRef]
- Saikia, N.; Mertens, G.; Van Balen, K.; Elsen, J.; Van Gerven, T.; Vandecasteele, C. Pre-treatment of municipal solid waste incineration (MSWI) bottom ash for utilisation in cement mortar. Constr. Build. Mater. 2015, 96, 76–85. [Google Scholar] [CrossRef]
- Keppert, M.; Pavlik, Z.; Cerny, R.; Reiterman, P. Properties of concrete with municipal solid waste incinerator bottom ash. In Proceedings of the IACSIT Coimbatore Conferences IPCSIT, Coimbatore, India, 18–19 February 2012; IACSIT Press: Singapore, 2012; Volume 28, pp. 127–131. [Google Scholar]
- Regulation of the Minister of Maritime Economy and Inland Navigation of 12 July 2019. J. Laws 2019, item 1311. Warsaw, Poland (In Polish). Available online: https://eli.gov.pl/api/acts/DU/2019/1311/text/O/D20191311.pdf (accessed on 20 November 2024).
- Environmental Protection Agency (EPA). Identification and Listing of Hazardous Waste, Identification and Listing of Hazardous Waste; Environmental Protection Agency (EPA): Washington, DC, USA, 2022. Available online: https://www.ecfr.gov/current/title-40 (accessed on 20 November 2024).
- Pollution Control Department. Announcement of the National Environment Board (BE 2547) Regarding to Determination of Soil Quality. In Government Gazette; Pollution Control Department: Bangkok, Thailand, 2004; Volume 25, Available online: https://www.pcd.go.th/ (accessed on 20 November 2024).
- SW-846 Test Method 1311: Toxicity Characteristic Leaching Procedure. Available online: https://www.epa.gov/hw-sw846/sw-846-test-method-1311-toxicity-characteristic-leaching-procedure (accessed on 20 November 2024).
- Directive 2003/33/EC: The Council of the European Union. Council Decision of 19 December 2002 Establishing Criteria and Procedures for the Acceptance of Waste at Landfills Pursuant to Article 16 of and Annex II to Directive 1999/31/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex:32003D0033 (accessed on 20 November 2024).
- GB/T 14848-2017; Chinese Standard for Groundwater Quality. 2017. Available online: https://www.chinesestandard.net/PDF.aspx/GBT14848-2017 (accessed on 20 November 2024).
- Su, L.; Fu, G.; Liang, B.; Sun, Q.; Zhang, X.; Shen, Z. Working performance and microscopic mechanistic analyses of municipal solid waste incineration (MSWI) fly ash-based self-foaming filling materials. Constr. Build. Mater. 2022, 361, 129647. [Google Scholar] [CrossRef]
- HJ557-2010; Standard of Solid Waste Leaching Toxicity Leaching Method Standard-Horizontal Oscillation Leaching Procedure. 2010. Available online: https://www.codeofchina.com/standard/HJ557-2010.html (accessed on 20 November 2024).
- NEN 7345-1995; Leaching Characteristics of Solid Earthy and Stony Building and Waste Materials—Leaching Tests—Determination of the Leaching of Inorganic Components from Buildings and Monolitic Waste Materials with the Diffusion Test. Netherlands Normalisation Institute: Delft, The Netherlands, 1995.
- Regulation of the Minister of Economy of 16 July 2015 on the Acceptance of Waste for Storage in Landfills. J. Laws 2015, item 1277. Warsaw, Poland (In Polish). Available online: https://eli.gov.pl/eli/DU/2015/1277/ogl (accessed on 20 November 2024).
- Zhao, C.; Lin, S.; Zhao, Y.; Lin, K.; Tian, L.; Xie, M.; Zhou, T. Comprehensive understanding the transition behaviors and mechanisms of chlorine and metal ions in municipal solid waste incineration fly ash during thermal treatment. Sci. Total Environ. 2022, 807, 150731. [Google Scholar] [CrossRef]
Code | Used ** | |
---|---|---|
19 01 | Wastes from Incineration or Pyrolysis of Waste [10] | |
19 01 02 | Ferrous materials removed from the bottom ash | |
19 01 05* | Filter cake from gas treatment | |
19 01 06* | Aqueous liquid waste from gas treatment and other aqueous liquid waste | |
19 01 07* | Solid waste from gas treatment | X |
19 01 10* | Spent activated carbon from flue gas treatment | |
19 01 11* | Bottom ash and slag containing dangerous substances | |
19 01 12 | Bottom ash and slag other than those mentioned in 19 01 11 | |
19 01 13* | Fly ash containing dangerous substances | X |
19 01 14 | Fly ash other than those mentioned in 19 01 13 | |
19 01 15* | Boiler dust containing dangerous substances | |
19 01 16 | Boiler dust other than those mentioned in 19 01 15 | |
19 01 17* | Pyrolysis waste containing dangerous substances | |
19 01 18 | Pyrolysis waste other than those mentioned in 19 01 17 | |
19 01 99 | Wastes not otherwise specified |
Waste | SiO2 | CaO | MgO | Al2O3 | F2O3 | Na2O | K2O | P2O5 | S | Cl |
MSWI-SW 19 01 07* | 4.85 | 43.97 | 2.95 | 7.31 | 0.72 | 4.11 | 1.05 | 0.57 | 4.24 | 8.21 |
MSWI-FA 19 01 13* | 17.22 | 37.22 | 4.31 | 9.62 | 2.91 | 9.02 | 1.45 | 1.13 | 3.14 | 4.51 |
Waste | Mn | Zn | Ti | Pb | Sn | Cu | Cr | Ba | Sr | Cd |
MSWI-SW 19 01 07* | 0.04 | 1.08 | 0.79 | 0.11 | 0.04 | 0.04 | 0.02 | 0.11 | 0.03 | 0.01 |
MSWI-FA 19 01 13* | 0.09 | 0.83 | 1.31 | 0.93 | 0.03 | 0.05 | 0.01 | 0.14 | 0.05 | 0.02 |
No. | MSWI-FA | MSWI-SW | C | FS-28 | CS-28 | WA | ML | DFS | DCS |
---|---|---|---|---|---|---|---|---|---|
[%] | [%] | [cm] | [MPa] | [MPa] | [%] | [%] | [%] | [%] | |
1 | 0.00 | 0.00 | 16.1 | 8.57 | 50.42 | 8.07 | 2.39 | −21.5 | −4.0 |
2 | 0.00 | 10.00 | 15.2 | 7.75 | 50.67 | 9.29 | 0.90 | 33.8 | −3.5 |
3 | 0.00 | 20.00 | 11.9 | 6.58 | 47.75 | 9.79 | 1.08 | −13.8 | −10.4 |
4 | 10.00 | 20.00 | 11.0 | 6.29 | 49.79 | 9.93 | 0.72 | −8.7 | 3.2 |
5 | 20.00 | 20.00 | 10.3 | 6.36 | 49.78 | 10.15 | 1.21 | −5.8 | 1.6 |
6 | 20.00 | 10.00 | 12.4 | 6.52 | 50.97 | 9.89 | 1.07 | 1.9 | 10.2 |
7 | 20.00 | 0.00 | 14.6 | 6.44 | 36.46 | 9.98 | 1.32 | −6.9 | −0.7 |
8 | 10.00 | 0.00 | 15.1 | 6.90 | 44.23 | 9.78 | 2.01 | −21.7 | −15.1 |
9 | 10.00 | 10.00 | 14.7 | 7.22 | 54.30 | 9.50 | 0.43 | −4.6 | −7.7 |
9 | 10.00 | 10.00 | 14.5 | 6.91 | 52.65 | 9.60 | 0.52 | −10.7 | −2.1 |
9 | 10.00 | 10.00 | 13.8 | 7.15 | 55.91 | 9.75 | 0.79 | 23.5 | −2.2 |
9 | 10.00 | 10.00 | 14.4 | 6.75 | 51.96 | 9.28 | 0.55 | −13.3 | 1.4 |
9 | 10.00 | 10.00 | 15.0 | 6.81 | 54.97 | 9.71 | 0.40 | 5.1 | −0.7 |
9 | 10.00 | 10.00 | 15.9 | 6.91 | 53.98 | 9.24 | 0.52 | 16.1 | 2.9 |
9 | 10.00 | 10.00 | 15.7 | 6.86 | 55.15 | 9.39 | 0.49 | 24.9 | 5.1 |
10 | 2.93 | 2.93 | 18.3 | 7.77 | 52.88 | 8.70 | 1.24 | −12.6 | 1.2 |
11 | 2.93 | 17.07 | 14.4 | 7.21 | 49.40 | 9.83 | 0.70 | −3.1 | 1.2 |
12 | 17.07 | 17.07 | 11.1 | 6.39 | 51.64 | 9.96 | 0.99 | 9.6 | 10.6 |
13 | 17.07 | 2.93 | 15.1 | 6.62 | 42.88 | 9.72 | 1.23 | 0.3 | −4.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietrzak, A.; Ulewicz, M.; Kozień, E.; Pietraszek, J. Application of a Mixture of Fly Ash and Solid Waste from Gas Treatment from Municipal Solid Waste Incineration in Cement Mortar. Materials 2025, 18, 481. https://doi.org/10.3390/ma18030481
Pietrzak A, Ulewicz M, Kozień E, Pietraszek J. Application of a Mixture of Fly Ash and Solid Waste from Gas Treatment from Municipal Solid Waste Incineration in Cement Mortar. Materials. 2025; 18(3):481. https://doi.org/10.3390/ma18030481
Chicago/Turabian StylePietrzak, Alina, Malgorzata Ulewicz, Ewa Kozień, and Jacek Pietraszek. 2025. "Application of a Mixture of Fly Ash and Solid Waste from Gas Treatment from Municipal Solid Waste Incineration in Cement Mortar" Materials 18, no. 3: 481. https://doi.org/10.3390/ma18030481
APA StylePietrzak, A., Ulewicz, M., Kozień, E., & Pietraszek, J. (2025). Application of a Mixture of Fly Ash and Solid Waste from Gas Treatment from Municipal Solid Waste Incineration in Cement Mortar. Materials, 18(3), 481. https://doi.org/10.3390/ma18030481