Consolidation Efficacy of Nano-Barium Hydroxide on Neogene Sandstone
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Methods
3. Experimental Results
3.1. Petrological Properties of Kizil Sandstone
3.2. Mass and Deformation
3.3. Wave Velocity
3.4. Triaxial Shear Strength
3.5. Pore Size Distribution and Pore Structure
4. Discussion
4.1. Consolidation Mechanisms
4.2. Consolidation Effectiveness
4.3. Implications for the Conservation of Kizil Grottoes
5. Conclusions
- (1)
- This study demonstrates that nano-barium hydroxide (Ba(OH)2) is a highly effective and compatible consolidant for the preservation of Neogene sandstone from the Kizil Grottoes. Under optimized application protocols, it induces negligible morphological alterations, with post-treatment mass change and deformation rates consistently below 1.31%, thereby adhering to the fundamental conservation principle of minimal intervention.
- (2)
- The treatment significantly enhances the mechanical integrity and structural cohesion of the sandstone. Specimens consolidated with a 15% nano-Ba(OH)2 solution exhibited the most substantial improvement, achieving a peak wave velocity increase by a factor of 1.79 and a triaxial shear strength up to 2.01 times that of untreated samples under a confining pressure of 50 kPa.
- (3)
- Beyond mechanical reinforcement, the treatment induces a favorable shift in pore structure by selectively reducing the proportion of micro- and sub-pores while increasing macro-pore dominance. This redistribution, coupled with the formation of new carbonate phases, contributes to a reduction in capillary water rise potential, thereby mitigating a key mechanism of moisture-driven deterioration.
- (4)
- The most significant contribution of this research to heritage conservation lies in its dual-function mechanism. This technology not only physically reinforces the decayed stone matrix but also provides a continuous chemical sequestration capacity for sulfate ions. This effectively inhibits the crystallization and recrystallization of soluble salts—a primary cause of deterioration at the Kizil Grottoes and many other sites worldwide. This proactive, preventive approach addresses the root cause of salt damage, offering a more sustainable conservation strategy.
- (5)
- By translating laboratory efficacy into a clear, practical framework for field application—including considerations for safety protocols and environmental control—this study provides a scientifically grounded and practically feasible protocol for mitigating sandstone deterioration in culturally significant contexts. It thus represents a meaningful advance in the toolkit for conserving earthen and sandstone heritage sites in arid and sulfate-rich environments.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Su, B. Studies on Chinese Grottoes; SDX Joint Publishing Company: Beijing, China, 2019. [Google Scholar]
- Yuan, H.H.; Swanson, B.F. Resolving pore space characteristics by rate—Controlled porosometry. SPE Form. Eval. 1989, 4, 17–24. [Google Scholar] [CrossRef]
- Yan, S.; Ye, M.; Chen, H.; Pi, L.; Li, W. Study on the Reinforcement Effect of PS on Kizil Sandstone. J. Yangtze River Sci. Res. Inst. 2015, 32, 55–59. [Google Scholar]
- Wang, L.; Yan, S.; Chen, J.; Dou, Y.; Ye, M. Anti-Freezing and Thawing Test of PS-Reinforced Sandstone in Kizil Grottoes. J. Yangtze River Sci. Res. Inst. 2017, 34, 130–133. [Google Scholar]
- Giorgi, R.; Ambrosi, M.; Toccafondi, N.; Baglioni, P. Nanoparticles for cultural heritage conservation: Calcium and barium hydroxide nanoparticles for wall painting consolidation. Chem.-A Eur. J. 2010, 16, 9374–9382. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, R.; Dei, L.; Baglioni, P. A New Method for Consolidating Wall Paintings Based on Dispersions of Lime in Alcohol. Stud. Conserv. 2000, 45, 154–161. [Google Scholar] [CrossRef]
- Hall, L.R.; Matero, F.G. Considerations on Complex Sequential Treatments of Gypsum Crusts: The Carrara Marble Capitals of the Philadelphia Merchants’ Exchange. J. Am. Inst. Conserv. 2011, 50, 123–148. [Google Scholar] [CrossRef]
- Rodrigues, J.D.; Pinto, A.P.F. Laboratory and onsite study of barium hydroxide as a consolidant for high porosity limestones. J. Cult. Herit. 2016, 19, 467–476. [Google Scholar] [CrossRef]
- Rodrigues, J.D.; Pinto, A.P.F.; Nogueira, R.; Gomes, A. Consolidation of lime mortars with ethyl silicate, nanolime and barium hydroxide. Effectiveness assessment with microdrilling data. J. Cult. Herit. 2018, 29, 43–53. [Google Scholar] [CrossRef]
- Haynes, W.M. (Ed.) CRC Handbook of Chemistry and Physics, 95th ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 4–45. [Google Scholar]
- Wang, L.; Dang, G.; Liang, G. Discussion on Weathering and Reinforcement Protection of Outdoor Stone Cultural Relics. Sci. Conserv. Archaeol. 2004, 16, 58–63. [Google Scholar] [CrossRef]
- Wang, L.; Dang, G.; Zhao, X.; Liang, G. Research Progress on Application of Reinforcement Materials in Protection of Stone Cultural Relics. J. Mater. Sci. Eng. 2004, 22, 778–782. [Google Scholar] [CrossRef]
- Chen, F. Study on Mesoscopic Pore Structure Characteristics of Salt Rock. Master’s Thesis, China University of Geosciences, Wuhan, China, 2013. [Google Scholar]
- Lewin, S.Z.; Baer, N.S. Rationale of the barium hydroxide-urea treatment of decayed stone. Stud. Conserv. 1974, 19, 24–35. [Google Scholar] [CrossRef]
- Hansen, E.; Doehne, E.; Fidler, J.; Larson, J.; Martin, B.; Matteini, M.; Rodriguez-Navarro, C.; Pardo, E.S.; Price, C.; de Tagle, A.; et al. A review of selected inorganic consolidants and protective treatments for porous calcareous materials. Stud. Conserv. 2003, 48 (Suppl. S1), 13–25. [Google Scholar] [CrossRef]
- Wang, D.; Ma, W.; Chang, X.; Sun, Z.; Feng, W.; Zhang, J. Influence of Freeze-Thaw Cycles on Physical and Mechanical Properties of Qinghai-Tibet Clay. Chin. J. Rock Mech. Eng. 2005, 23, 4313–4319. [Google Scholar]
- Zhang, L.; Mou, J. Nanomaterials and Nanostructures; Science Press: Beijing, China, 2001; p. 3. [Google Scholar]
- Zhang, X. Experimental Study on the Effect of PS Penetration Reinforcement of Earthen Relics in Humid Environment. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2011. [Google Scholar]
- Peng, L. Study on the Mechanism of Nano-Calcium Hydroxide Reinforcement and Hydraulic Property Improvement of Leshan Giant Buddha Sandstone. Master’s Thesis, China University of Geosciences, Wuhan, China, 2021. [Google Scholar]
- Su, X.; Tang, H.; Huang, L.; Shen, P.; Xia, D. The role of pH in red-stratum mudstone disintegration in the Three Gorges reservoir area, China, and the associated micromechanisms. Eng. Geol. 2020, 279, 105873. [Google Scholar] [CrossRef]
- Yao, H.; Zhang, X.; Zhang, D. Study on Factors Affecting Capillary Water Rise Height in Coarse-Grained Soil. Site Investig. Sci. Technol. 2007, 01, 10–12+26. [Google Scholar]
- Wang, R.; Cui, X.; Wang, J.; Bai, C.; Li, Y. Preparation of Nano-Barium Hydroxide and Its Experimental Study on Reinforcing Earthen Relics. J. Nanyang Inst. Technol. 2021, 13, 69–72. [Google Scholar] [CrossRef]
- Zhao, S. Determination of the Lower Limit of Flow Pore Throat Radius by Using Pore Throat Volume-Permeability Contribution Distribution Curve. J. Southwest Pet. Inst. 1993, 03, 36–42. [Google Scholar]
- Song, J.; Yan, S.; Xiang, W.; Liu, J.; Zhao, G.; Jiang, S. Study on Influencing Factors of Capillary Water Migration Characteristics of Baoding Mountain Sandstone in Dazu Rock Carvings. Bull. Geol. Sci. Technol. 2022, 1–11. [Google Scholar] [CrossRef]
Sample ID | Chemical Composition (wt%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | MgO | CaO | Na2O | K2O | MnO | TiO2 | P2O5 | Loss on Ignition | |
S-1 | 50.37 | 7.95 | 2.99 | 4.14 | 15.00 | 1.31 | 1.78 | 0.08 | 0.43 | 0.11 | 15.76 |
S-2 | 56.14 | 9.23 | 3.48 | 2.28 | 12.67 | 1.48 | 1.98 | 0.07 | 0.47 | 0.12 | 11.99 |
S-3 | 55.31 | 9.01 | 3.09 | 3.81 | 11.70 | 1.62 | 1.91 | 0.08 | 0.44 | 0.12 | 12.92 |
S-4 | 54.78 | 9.18 | 3.36 | 3.37 | 12.15 | 1.60 | 1.88 | 0.08 | 0.47 | 0.13 | 12.92 |
S-5 | 48.51 | 7.77 | 2.76 | 4.05 | 16.24 | 1.37 | 1.56 | 0.07 | 0.43 | 0.12 | 17.03 |
Ion Concentration (mg/L) | TDS (mg/L) | pH | |||||
---|---|---|---|---|---|---|---|
Ca2+ | Mg2+ | K+ + Na+ | Cl− | SO42− | HCO3− | ||
132.23 | 54.32 | 389.03 | 508.78 | 515.20 | 93.27 | 1692.83 | 7.85 |
Consolidation Concentration (%) | Wave Velocity (m/s) | |||||
---|---|---|---|---|---|---|
Sample ID | The First Time | The Second Time | The Third Time | Mean | Sample Wave Velocity | |
0 | 0-1 | 721 | 723 | 717 | 720 | 720 |
0-2 | 711 | 713 | 715 | 713 | ||
0-3 | 723 | 713 | 723 | 720 | ||
5 | 5-1 | 884 | 887 | 889 | 887 | 888 |
5-2 | 899 | 891 | 890 | 893 | ||
5-3 | 885 | 893 | 887 | 888 | ||
10 | 10-1 | 1138 | 1110 | 1131 | 1126 | 1130 |
10-2 | 1098 | 1123 | 1128 | 1116 | ||
10-3 | 1135 | 1124 | 1139 | 1133 | ||
15 | 15-1 | 1274 | 1263 | 1287 | 1275 | 1293 |
15-2 | 1391 | 1374 | 1362 | 1376 | ||
15-3 | 1295 | 1314 | 1325 | 1311 |
Consolidation Concentration (%) | Peak Shear Strength (kPa) | Strength Parameters | |||
---|---|---|---|---|---|
Confining Pressure (kPa) | |||||
50 | 100 | 150 | c (kPa) | φ (°) | |
0 | 441.3 | 614.2 | 810.9 | 62 | 40.4 |
5 | 705.7 | 938.0 | 1121.5 | 118 | 42.3 |
10 | 749.2 | 962.7 | 1160.8 | 120 | 42.9 |
15 | 886.4 | 1128.7 | 1366.2 | 135 | 45.6 |
Percentage of pore volume content (%) | Pore size range (μm) | Consolidation concentrations (%) | |||
0% | 5% | 10% | 15% | ||
>8 | 85.58 | 86.71 | 86.56 | 88.09 | |
1~8 | 11.78 | 10.60 | 10.58 | 9.49 | |
<1 | 2.64 | 2.69 | 2.86 | 2.41 |
Mercury Intrusion Characteristic | Unit | Consolidation Concentration (%) | |||
---|---|---|---|---|---|
0% | 5% | 10% | 15% | ||
Maximum mercury intrusion volume | mL/g | 0.34 | 0.37 | 0.37 | 0.39 |
Calculated porosity | % | 46.55 | 49.56 | 49.32 | 50.02 |
Average Pore diameter | μm | 5.57 | 5.65 | 4.61 | 6.53 |
Total pore area | m2/g | 0.24 | 0.26 | 0.32 | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Gao, R.; Wu, Y.; Yang, X.; Wei, G.; Chen, J. Consolidation Efficacy of Nano-Barium Hydroxide on Neogene Sandstone. Appl. Sci. 2025, 15, 10617. https://doi.org/10.3390/app151910617
Wang Y, Gao R, Wu Y, Yang X, Wei G, Chen J. Consolidation Efficacy of Nano-Barium Hydroxide on Neogene Sandstone. Applied Sciences. 2025; 15(19):10617. https://doi.org/10.3390/app151910617
Chicago/Turabian StyleWang, Yujia, Ruitao Gao, Yingbo Wu, Xuwei Yang, Guirong Wei, and Jianwen Chen. 2025. "Consolidation Efficacy of Nano-Barium Hydroxide on Neogene Sandstone" Applied Sciences 15, no. 19: 10617. https://doi.org/10.3390/app151910617
APA StyleWang, Y., Gao, R., Wu, Y., Yang, X., Wei, G., & Chen, J. (2025). Consolidation Efficacy of Nano-Barium Hydroxide on Neogene Sandstone. Applied Sciences, 15(19), 10617. https://doi.org/10.3390/app151910617