Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,697)

Search Parameters:
Keywords = band energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 15691 KiB  
Article
Mechanical Behavior and Response Mechanism of Short Fiber-Reinforced Polymer Structures Under Low-Speed Impact
by Xinke Xiao, Penglei Wang, Anxiao Guo, Linzhuang Han, Yunhao Yang, Yalin He and Xuanming Cai
Materials 2025, 18(15), 3686; https://doi.org/10.3390/ma18153686 - 6 Aug 2025
Abstract
Short fiber-reinforced polymer (SFRP) has been extensively applied in structural engineering due to its exceptional specific strength and superior mechanical properties. Its mechanical behavior under medium strain rate conditions has become a key focus of ongoing research. A comprehensive understanding of the response [...] Read more.
Short fiber-reinforced polymer (SFRP) has been extensively applied in structural engineering due to its exceptional specific strength and superior mechanical properties. Its mechanical behavior under medium strain rate conditions has become a key focus of ongoing research. A comprehensive understanding of the response characteristics and underlying mechanisms under such conditions is of critical importance for both theoretical development and practical engineering applications. This study proposes an innovative three-dimensional (3D) multiscale constitutive model that comprehensively integrates mesoscopic fiber–matrix interface effects and pore characteristics. To systematically investigate the dynamic response and damage evolution of SFRP under medium strain rate conditions, 3D-printed SFRP porous structures with volume fractions of 25%, 35%, and 45% are designed and subjected to drop hammer impact experiments combined with multiscale numerical simulations. The experimental and simulation results demonstrate that, for specimens with a 25% volume fraction, the strain rate strengthening effect is the primary contributor to the increase in peak stress. In contrast, for specimens with a 45% volume fraction, the interaction between damage evolution and strain rate strengthening leads to a more complex stress–strain response. The specific energy absorption (SEA) of 25% volume fraction specimens increases markedly with increasing strain rate. However, for specimens with 35% and 45% volume fractions, the competition between these two mechanisms results in non-monotonic variations in energy absorption efficiency (EAE). The dominant failure mode under impact loading is shear-dominated compression, with damage evolution becoming increasingly complex as the fiber volume fraction increases. Furthermore, the damage characteristics transition from fiber pullout and matrix folding at lower volume fractions to the coexistence of brittle and ductile behaviors at higher volume fractions. The numerical simulations exhibit strong agreement with the experimental data. Multi-directional cross-sectional analysis further indicates that the initiation and propagation of shear bands are the principal drivers of structural instability. This study offers a robust theoretical foundation for the impact-resistant design and dynamic performance optimization of 3D-printed short fiber-reinforced polymer (SFRP) porous structures. Full article
Show Figures

Figure 1

11 pages, 2425 KiB  
Article
Single-Layer High-Efficiency Metasurface for Multi-User Signal Enhancement
by Hui Jin, Peixuan Zhu, Rongrong Zhu, Bo Yang, Siqi Zhang and Huan Lu
Micromachines 2025, 16(8), 911; https://doi.org/10.3390/mi16080911 (registering DOI) - 6 Aug 2025
Abstract
In multi-user wireless communication scenarios, signal degradation caused by channel fading and co-channel interference restricts system capacity, while traditional enhancement schemes face challenges of high coordination complexity and hardware integration. This paper proposes an electromagnetic focusing method using a single-layer transmissive passive metasurface. [...] Read more.
In multi-user wireless communication scenarios, signal degradation caused by channel fading and co-channel interference restricts system capacity, while traditional enhancement schemes face challenges of high coordination complexity and hardware integration. This paper proposes an electromagnetic focusing method using a single-layer transmissive passive metasurface. A high-efficiency metasurface array is fabricated based on PCB technology, which utilizes subwavelength units for wide-range phase modulation to construct a multi-user energy convergence model in the WiFi band. By optimizing phase gradients through the geometric phase principle, the metasurface achieves collaborative wavefront manipulation for multiple target regions with high transmission efficiency, reducing system complexity compared to traditional multi-layer structures. Measurements in a microwave anechoic chamber and tests in an office environment demonstrate that the metasurface can simultaneously create signal enhancement zones for multiple users, featuring stable focusing capability and environmental adaptability. This lightweight design facilitates deployment in dense networks, providing an effective solution for signal optimization in indoor distributed systems and IoT communications. Full article
(This article belongs to the Special Issue Novel Electromagnetic and Acoustic Devices)
Show Figures

Figure 1

23 pages, 3337 KiB  
Article
Imbalance Charge Reduction in the Italian Intra-Day Market Using Short-Term Forecasting of Photovoltaic Generation
by Cristina Ventura, Giuseppe Marco Tina and Santi Agatino Rizzo
Energies 2025, 18(15), 4161; https://doi.org/10.3390/en18154161 - 5 Aug 2025
Abstract
In the Italian intra-day electricity market (MI-XBID), where energy positions can be adjusted up to one hour before delivery, imbalance charges due to forecast errors from non-programmable renewable sources represent a critical issue. This work focuses on photovoltaic (PV) systems, whose production variability [...] Read more.
In the Italian intra-day electricity market (MI-XBID), where energy positions can be adjusted up to one hour before delivery, imbalance charges due to forecast errors from non-programmable renewable sources represent a critical issue. This work focuses on photovoltaic (PV) systems, whose production variability makes them particularly sensitive to forecast accuracy. To address these challenges, a comprehensive methodology for assessing and mitigating imbalance penalties by integrating a short-term PV forecasting model with a battery energy storage system is proposed. Unlike conventional approaches that focus exclusively on improving statistical accuracy, this study emphasizes the economic and regulatory impact of forecast errors under the current Italian imbalance settlement framework. A hybrid physical-artificial neural network is developed to forecast PV power one hour in advance, combining historical production data and clear-sky irradiance estimates. The resulting imbalances are analyzed using regulatory tolerance thresholds. Simulation results show that, by adopting a control strategy aimed at maintaining the battery’s state of charge around 50%, imbalance penalties can be completely eliminated using a storage system sized for just over 2 equivalent hours of storage capacity. The methodology provides a practical tool for market participants to quantify the benefits of storage integration and can be generalized to other electricity markets where tolerance bands for imbalances are applied. Full article
(This article belongs to the Special Issue Advanced Forecasting Methods for Sustainable Power Grid: 2nd Edition)
Show Figures

Figure 1

14 pages, 1536 KiB  
Article
Control Strategy of Multiple Battery Energy Storage Stations for Power Grid Peak Shaving
by Peiyu Chen, Wenqing Cui, Jingan Shang, Bin Xu, Chao Li and Danyang Lun
Appl. Sci. 2025, 15(15), 8656; https://doi.org/10.3390/app15158656 (registering DOI) - 5 Aug 2025
Abstract
In order to achieve the goals of carbon neutrality, large-scale storage of renewable energy sources has been integrated into the power grid. Under these circumstances, the power grid faces the challenge of peak shaving. Therefore, this paper proposes a coordinated variable-power control strategy [...] Read more.
In order to achieve the goals of carbon neutrality, large-scale storage of renewable energy sources has been integrated into the power grid. Under these circumstances, the power grid faces the challenge of peak shaving. Therefore, this paper proposes a coordinated variable-power control strategy for multiple battery energy storage stations (BESSs), improving the performance of peak shaving. Firstly, the strategy involves constructing an optimization model incorporating load forecasting, capacity constraints, and security indices to design a coordination mechanism tracking the target load band with the equivalent power. Secondly, it establishes a quantitative evaluation system using metrics such as peak–valley difference and load standard deviation. Comparison based on typical daily cases shows that, compared with the constant power strategy, the coordinated variable-power control strategy has a more obvious and comprehensive improvement in overall peak-shaving effects. Furthermore, it employs a “dynamic dispatch of multiple BESS” mode, effectively mitigating the risks and flexibility issues associated with single BESSs. This strategy provides a reliable new approach for large-scale energy storage to participate in high-precision peaking. Full article
Show Figures

Figure 1

10 pages, 3553 KiB  
Article
A Trench Heterojunction Diode-Integrated 4H-SiC LDMOS with Enhanced Reverse Recovery Characteristics
by Yanjuan Liu, Fangfei Bai and Junpeng Fang
Micromachines 2025, 16(8), 909; https://doi.org/10.3390/mi16080909 (registering DOI) - 4 Aug 2025
Viewed by 42
Abstract
In this paper, a novel 4H-SiC LDMOS structure with a trench heterojunction in the source (referred as to THD-LDMOS) is proposed and investigated for the first time, to enhance the reverse recovery performance of its parasitic diode. Compared with 4H-SiC, silicon has a [...] Read more.
In this paper, a novel 4H-SiC LDMOS structure with a trench heterojunction in the source (referred as to THD-LDMOS) is proposed and investigated for the first time, to enhance the reverse recovery performance of its parasitic diode. Compared with 4H-SiC, silicon has a smaller band energy, which results in a lower built-in potential for the junction formed by P+ polysilicon and a 4N-SiC N-drift region. A trench P+ polysilicon is introduced in the source side, forming a heterojunction with the N-drift region, and this heterojunction is unipolar and connected in parallel with the body PiN diode. When the LDMOS operates as a freewheeling diode, the trench heterojunction conducts first, preventing the parasitic PiN from turning on and thereby significantly reducing the number of carriers in the N-drift region. Consequently, THD-LDMOS exhibits superior reverse recovery characteristics. The simulation results indicate that the reverse recovery peak current and reverse recovery charge of THD-LDMOS are reduced by 55.5% and 77.6%, respectively, while the other basic electrical characteristics remains unaffected. Full article
(This article belongs to the Special Issue Advanced Wide Bandgap Semiconductor Materials and Devices)
Show Figures

Figure 1

22 pages, 1969 KiB  
Article
Significance of Time-Series Consistency in Evaluating Machine Learning Models for Gap-Filling Multi-Level Very Tall Tower Data
by Changhyoun Park
Mach. Learn. Knowl. Extr. 2025, 7(3), 76; https://doi.org/10.3390/make7030076 - 3 Aug 2025
Viewed by 94
Abstract
Machine learning modeling is a valuable tool for gap-filling or prediction, and its performance is typically evaluated using standard metrics. To enable more precise assessments for time-series data, this study emphasizes the importance of considering time-series consistency, which can be evaluated through amplitude—specifically, [...] Read more.
Machine learning modeling is a valuable tool for gap-filling or prediction, and its performance is typically evaluated using standard metrics. To enable more precise assessments for time-series data, this study emphasizes the importance of considering time-series consistency, which can be evaluated through amplitude—specifically, the interquartile range and the lower bound of the band in gap-filled time series. To test this hypothesis, a gap-filling technique was applied using long-term (~6 years) high-frequency flux and meteorological data collected at four different levels (1.5, 60, 140, and 300 m above sea level) on a ~300 m tall flux tower. This study focused on turbulent kinetic energy among several variables, which is important for estimating sensible and latent heat fluxes and net ecosystem exchange. Five ensemble machine learning algorithms were selected and trained on three different datasets. Among several modeling scenarios, the stacking model with a dataset combined with derivative data produced the best metrics for predicting turbulent kinetic energy. Although the metrics before and after gap-filling reported fewer differences among the scenarios, large distortions were found in the consistency of the time series in terms of amplitude. These findings underscore the importance of evaluating time-series consistency alongside traditional metrics, not only to accurately assess modeling performance but also to ensure reliability in downstream applications such as forecasting, climate modeling, and energy estimation. Full article
(This article belongs to the Section Data)
Show Figures

Figure 1

20 pages, 6269 KiB  
Article
Miniaturized EBG Antenna for Efficient 5.8 GHz RF Energy Harvesting in Self-Powered IoT and Medical Sensors
by Yahya Albaihani, Rizwan Akram, Abdullah. M. Almohaimeed, Ziyad M. Almohaimeed, Lukman O. Buhari and Mahmoud Shaban
Sensors 2025, 25(15), 4777; https://doi.org/10.3390/s25154777 - 3 Aug 2025
Viewed by 264
Abstract
This study presents a compact and high-efficiency microstrip antenna integrated with a square electromagnetic band-gap (EBG) structure for radio frequency energy harvesting to power battery-less Internet of Things (IoT) sensors and medical devices in the 5.8 GHz Industrial, Scientific, and Medical (ISM) band. [...] Read more.
This study presents a compact and high-efficiency microstrip antenna integrated with a square electromagnetic band-gap (EBG) structure for radio frequency energy harvesting to power battery-less Internet of Things (IoT) sensors and medical devices in the 5.8 GHz Industrial, Scientific, and Medical (ISM) band. The proposed antenna features a compact design with reduced physical dimensions of 36 × 40 mm2 (0.69λo × 0.76λo) while providing high-performance parameters such as a reflection coefficient of −27.9 dB, a voltage standing wave ratio (VSWR) of 1.08, a gain of 7.91 dBi, directivity of 8.1 dBi, a bandwidth of 188 MHz, and radiation efficiency of 95.5%. Incorporating EBG cells suppresses surface waves, enhances gain, and optimizes impedance matching through 50 Ω inset feeding. The simulated and measured results of the designed antenna show a high correlation. This study demonstrates a robust and promising solution for high-performance wireless systems requiring a compact size and energy-efficient operation. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

24 pages, 8010 KiB  
Article
Mono-(Ni, Au) and Bimetallic (Ni-Au) Nanoparticles-Loaded ZnAlO Mixed Oxides as Sunlight-Driven Photocatalysts for Environmental Remediation
by Monica Pavel, Liubovi Cretu, Catalin Negrila, Daniela C. Culita, Anca Vasile, Razvan State, Ioan Balint and Florica Papa
Molecules 2025, 30(15), 3249; https://doi.org/10.3390/molecules30153249 - 2 Aug 2025
Viewed by 204
Abstract
A facile and versatile strategy to obtain NPs@ZnAlO nanocomposite materials, comprising controlled-size nanoparticles (NPs) within a ZnAlO matrix is reported. The mono-(Au, Ni) and bimetallic (Ni-Au) NPs serving as an active phase were prepared by the polyol-alkaline method, while the ZnAlO support was [...] Read more.
A facile and versatile strategy to obtain NPs@ZnAlO nanocomposite materials, comprising controlled-size nanoparticles (NPs) within a ZnAlO matrix is reported. The mono-(Au, Ni) and bimetallic (Ni-Au) NPs serving as an active phase were prepared by the polyol-alkaline method, while the ZnAlO support was obtained via the thermal decomposition of its corresponding layered double hydroxide (LDH) precursors. X-ray diffraction (XRD) patterns confirmed the successful fabrication of the nanocomposites, including the synthesis of the metallic NPs, the formation of LDH-like structure, and the subsequent transformation to ZnO phase upon LDH calcination. The obtained nanostructures confirmed the nanoplate-like morphology inherited from the original LDH precursors, which tended to aggregate after the addition of gold NPs. According to the UV-Vis spectroscopy, loading NPs onto the ZnAlO support enhanced the light absorption and reduced the band gap energy. ATR-DRIFT spectroscopy, H2-TPR measurements, and XPS analysis provided information about the functional groups, surface composition, and reducibility of the materials. The catalytic performance of the developed nanostructures was evaluated by the photodegradation of bisphenol A (BPA), under simulated solar irradiation. The conversion of BPA over the bimetallic Ni-Au@ZnAlO reached up to 95% after 180 min of irradiation, exceeding the monometallic Ni@ZnAlO and Au@ZnAlO catalysts. Its enhanced activity was correlated with good dispersion of the bimetals, narrower band gap, and efficient charge carrier separation of the photo-induced e/h+ pairs. Full article
Show Figures

Graphical abstract

15 pages, 3579 KiB  
Article
Dual-Control-Gate Reconfigurable Ion-Sensitive Field-Effect Transistor with Nickel-Silicide Contacts for Adaptive and High-Sensitivity Chemical Sensing Beyond the Nernst Limit
by Seung-Jin Lee, Seung-Hyun Lee, Seung-Hwa Choi and Won-Ju Cho
Chemosensors 2025, 13(8), 281; https://doi.org/10.3390/chemosensors13080281 - 2 Aug 2025
Viewed by 176
Abstract
In this study, we propose a bidirectional chemical sensor platform based on a reconfigurable ion-sensitive field-effect transistor (R-ISFET) architecture. The device incorporates Ni-silicide Schottky barrier source/drain (S/D) contacts, enabling ambipolar conduction and bidirectional turn-on behavior for both p-type and n-type configurations. Channel polarity [...] Read more.
In this study, we propose a bidirectional chemical sensor platform based on a reconfigurable ion-sensitive field-effect transistor (R-ISFET) architecture. The device incorporates Ni-silicide Schottky barrier source/drain (S/D) contacts, enabling ambipolar conduction and bidirectional turn-on behavior for both p-type and n-type configurations. Channel polarity is dynamically controlled via the program gate (PG), while the control gate (CG) suppresses leakage current, enhancing operational stability and energy efficiency. A dual-control-gate (DCG) structure enhances capacitive coupling, enabling sensitivity beyond the Nernst limit without external amplification. The extended-gate (EG) architecture physically separates the transistor and sensing regions, improving durability and long-term reliability. Electrical characteristics were evaluated through transfer and output curves, and carrier transport mechanisms were analyzed using band diagrams. Sensor performance—including sensitivity, hysteresis, and drift—was assessed under various pH conditions and external noise up to 5 Vpp (i.e., peak-to-peak voltage). The n-type configuration exhibited high mobility and fast response, while the p-type configuration demonstrated excellent noise immunity and low drift. Both modes showed consistent sensitivity trends, confirming the feasibility of complementary sensing. These results indicate that the proposed R-ISFET sensor enables selective mode switching for high sensitivity and robust operation, offering strong potential for next-generation biosensing and chemical detection. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Figure 1

25 pages, 7503 KiB  
Article
A Diagnostic Framework for Decoupling Multi-Source Vibrations in Complex Machinery: An Improved OTPA Application on a Combine Harvester Chassis
by Haiyang Wang, Zhong Tang, Liyun Lao, Honglei Zhang, Jiabao Gu and Qi He
Appl. Sci. 2025, 15(15), 8581; https://doi.org/10.3390/app15158581 (registering DOI) - 1 Aug 2025
Viewed by 209
Abstract
Complex mechanical systems, such as agricultural combine harvesters, are subjected to dynamic excitations from multiple coupled sources, compromising structural integrity and operational reliability. Disentangling these vibrations to identify dominant sources and quantify their transmission paths remains a significant engineering challenge. This study proposes [...] Read more.
Complex mechanical systems, such as agricultural combine harvesters, are subjected to dynamic excitations from multiple coupled sources, compromising structural integrity and operational reliability. Disentangling these vibrations to identify dominant sources and quantify their transmission paths remains a significant engineering challenge. This study proposes a robust diagnostic framework to address this issue. We employed a multi-condition vibration test with sequential source activation and an improved Operational Transfer Path Analysis (OTPA) method. Applied to a harvester chassis, the results revealed that vibration energy is predominantly concentrated in the 0–200 Hz frequency band. Path contribution analysis quantified that the “cutting header → conveyor trough → hydraulic cylinder → chassis frame” path is the most critical contributor to vertical vibration, with a vibration acceleration level of 117.6 dB. Further analysis identified the engine (29.3 Hz) as the primary source for vertical vibration, while lateral vibration was mainly attributed to a coupled resonance between the threshing cylinder (58 Hz) and the engine’s second-order harmonic. This study’s theoretical contribution lies in validating a powerful methodology for vibration source apportionment in complex systems. Practically, the findings provide direct, actionable insights for targeted structural optimization and vibration suppression. Full article
Show Figures

Figure 1

21 pages, 4169 KiB  
Article
An Anisotropic Failure Characteristic- and Damage-Coupled Constitutive Model
by Ruiqing Chen, Jieyu Dai, Shuning Gu, Lang Yang, Laohu Long and Jundong Wang
Modelling 2025, 6(3), 75; https://doi.org/10.3390/modelling6030075 - 1 Aug 2025
Viewed by 168
Abstract
This study proposes a coupled constitutive model that captures the anisotropic failure characteristics and damage evolution of nickel-based single-crystal (SX) superalloys under various temperature conditions. The model accounts for both creep rate and material damage evolution, enabling accurate prediction of the typical three-stage [...] Read more.
This study proposes a coupled constitutive model that captures the anisotropic failure characteristics and damage evolution of nickel-based single-crystal (SX) superalloys under various temperature conditions. The model accounts for both creep rate and material damage evolution, enabling accurate prediction of the typical three-stage creep curves, macroscopic fracture morphologies, and microstructural features under uniaxial tensile creep for specimens with different crystallographic orientations. Creep behavior of SX superalloys was simulated under multiple orientations and various temperature-stress conditions using the proposed model. The resulting creep curves aligned well with experimental observations, thereby validating the model’s feasibility and accuracy. Furthermore, a finite element model of cylindrical specimens was established, and simulations of the macroscopic fracture morphology were performed using a user-defined material subroutine. By integrating the rafting theory governed by interfacial energy density, the model successfully predicts the rafting morphology of the microstructure at the fracture surface for different crystallographic orientations. The proposed model maintains low programming complexity and computational cost while effectively predicting the creep life and deformation behavior of anisotropic materials. The model accurately captures the three-stage creep deformation behavior of SX specimens and provides reliable predictions of stress fields and microstructural changes at critical cross-sections. The model demonstrates high accuracy in life prediction, with all predicted results falling within a ±1.5× error band and an average error of 14.6%. Full article
Show Figures

Graphical abstract

12 pages, 4246 KiB  
Article
Theoretical Modeling of Pathways of Transformation of Fructose and Xylose to Levulinic and Formic Acids over Single Na Site in BEA Zeolite
by Izabela Czekaj and Weronika Grzesik
Catalysts 2025, 15(8), 735; https://doi.org/10.3390/catal15080735 - 1 Aug 2025
Viewed by 206
Abstract
The aim of our work is to theoretically model the conversion of C6 and C5 carbohydrates derived from lignocellulosic biomass waste into C1–C5 carboxylic acids such as levulinic, oxalic, lactic, and formic acids. Understanding the mechanism of these processes will provide the necessary [...] Read more.
The aim of our work is to theoretically model the conversion of C6 and C5 carbohydrates derived from lignocellulosic biomass waste into C1–C5 carboxylic acids such as levulinic, oxalic, lactic, and formic acids. Understanding the mechanism of these processes will provide the necessary knowledge to better plan the structure of zeolite. In this article, we focus on the theoretical modeling of two carbohydrates, representing C5 and C6, namely xylose and fructose, into levulinic acid (LE) and formic acid (FA). The modeling was carried out with the participation of Na-BEA zeolite in a hierarchical form, due to the large size of the carbohydrates. The density functional theory (DFT) method (StoBe program) was used, employing non-local generalized gradient-corrected functions according to Perdew, Burke, and Ernzerhof (RPBE) to account for electron exchange and correlation and using the nudged elastic band (NEB) method to determine the structure and energy of the transition state. The modeling was performed using cluster representations of hierarchical Na-Al2Si12O39H23 and ideal Al2Si22O64H34 beta zeolite. However, to accommodate the size of the carbohydrate molecules in reaction paths, only hierarchical Na-Al2Si12O39H23 was used. Sodium ions were positioned above the aluminum centers within the zeolite framework. Full article
(This article belongs to the Special Issue State of the Art and Future Challenges in Zeolite Catalysts)
Show Figures

Graphical abstract

21 pages, 12325 KiB  
Article
Inspection of Damaged Composite Structures with Active Thermography and Digital Shearography
by João Queirós, Hernâni Lopes, Luís Mourão and Viriato dos Santos
J. Compos. Sci. 2025, 9(8), 398; https://doi.org/10.3390/jcs9080398 - 1 Aug 2025
Viewed by 204
Abstract
This study comprehensively compares the performance of two non-destructive testing (NDT) techniques—active thermography (AT) and digital shearography (DS)—for identifying various damage types in composite structures. Three distinct composite specimens were inspected: a carbon-fiber-reinforced polymer (CFRP) plate with flat-bottom holes, an aluminum honeycomb core [...] Read more.
This study comprehensively compares the performance of two non-destructive testing (NDT) techniques—active thermography (AT) and digital shearography (DS)—for identifying various damage types in composite structures. Three distinct composite specimens were inspected: a carbon-fiber-reinforced polymer (CFRP) plate with flat-bottom holes, an aluminum honeycomb core sandwich plate with a circular skin-core disbond, and a CFRP plate with two low-energy impacts damage. The research highlights the significant role of post-processing methods in enhancing damage detectability. For AT, algorithms such as fast Fourier transform (FFT) for temperature phase extraction and principal component thermography (PCT) for identifying significant temperature components were employed, generally making anomalies brighter and easier to locate and size. For DS, a novel band-pass filtering approach applied to phase maps, followed by summing the filtered maps, remarkably improved the visualization and precision of damage-induced anomalies by suppressing background noise. Qualitative image-based comparisons revealed that DS consistently demonstrated superior performance. The sum of DS filtered phase maps provided more detailed and precise information regarding damage location and size compared to both pulsed thermography (PT) and lock-in thermography (LT) temperature phase and amplitude. Notably, DS effectively identified shallow flat-bottom holes and subtle imperfections that AT struggled to clearly resolve, and it provided a more comprehensive representation of the impacts damage location and extent. This enhanced capability of DS is attributed to the novel phase map filtering approach, which significantly improves damage identification compared to the thermogram post-processing methods used for AT. Full article
Show Figures

Figure 1

34 pages, 4196 KiB  
Review
Surface Interface Modulation and Photocatalytic Membrane Technology for Degradation of Oily Wastewater
by Yulin Zhao, Yang Xu, Chunling Yu, Yufan Feng, Geng Chen and Yingying Zhu
Catalysts 2025, 15(8), 730; https://doi.org/10.3390/catal15080730 - 31 Jul 2025
Viewed by 246
Abstract
The discharge of oily wastewater threatens the ecosystem and human health, and the efficient treatment of oily wastewater is confronted with problems of high mass transfer resistance at the oil-water-solid multiphase interface, significant light shielding effect, and easy deactivation of photocatalysts. Although traditional [...] Read more.
The discharge of oily wastewater threatens the ecosystem and human health, and the efficient treatment of oily wastewater is confronted with problems of high mass transfer resistance at the oil-water-solid multiphase interface, significant light shielding effect, and easy deactivation of photocatalysts. Although traditional physical separation methods avoid secondary pollution by chemicals and can effectively separate floating oil and dispersed oil, they are ineffective in removing emulsified oil with small particle sizes. To address these complex challenges, photocatalytic technology and photocatalysis-based improved technologies have emerged, offering significant application prospects in degrading organic pollutants in oily wastewater as an environmentally friendly oxidation technology. In this paper, the degradation mechanism, kinetic mechanism, and limitations of conventional photocatalysis technology are briefly discussed. Subsequently, the surface interface modulation functions of metal doping and heterojunction energy band engineering, along with their applications in enhancing the light absorption range and carrier separation efficiency, are reviewed. Focus on typical studies on the separation and degradation of aqueous and oily phases using photocatalytic membrane technology, and illustrate the advantages and mechanisms of photocatalysts loaded on the membranes. Finally, other new approaches and converging technologies in the field are outlined, and the challenges and prospects for the future treatment of oily wastewater are presented. Full article
Show Figures

Figure 1

11 pages, 2887 KiB  
Article
INTEGRAL/ISGRI Post 2024-Periastron View of PSR B1259-63
by Aleksei Kuzin, Denys Malyshev, Maria Chernyakova, Brian van Soelen and Andrea Santangelo
Universe 2025, 11(8), 254; https://doi.org/10.3390/universe11080254 - 31 Jul 2025
Viewed by 118
Abstract
PSR B1259-63/LS 2883 is a well-studied gamma-ray binary hosting a pulsar in a 3.4-year eccentric orbit around a Be-type star. Its non-thermal emission spans from radio to TeV energies, exhibiting a significant increase near the periastron passage. This paper is dedicated to the [...] Read more.
PSR B1259-63/LS 2883 is a well-studied gamma-ray binary hosting a pulsar in a 3.4-year eccentric orbit around a Be-type star. Its non-thermal emission spans from radio to TeV energies, exhibiting a significant increase near the periastron passage. This paper is dedicated to the analysis of INTEGRAL observations of the system following its last periastron passage in June 2024. We aim to study the spectral evolution of this gamma-ray binary in the soft (0.3–10 keV) and hard (30–300 keV) X-ray energy bands. We performed a joint analysis of the data taken by INTEGRAL/ISGRI in July–August 2024 and quasi-simultaneous Swift/XRT observations. The spectrum of the system in the 0.3–300 keV band is well described by an absorbed power law with a photon index of Γ=1.42±0.03. We place constraints on potential spectral curvature, limiting the break energy Eb>30 keV for ΔΓ>0.3 and cutoff energy Ecutoff>150 keV at a 95% confidence level. For one-zone leptonic emission models, these values correspond to electron distribution spectral parameters of Eb,e>0.8 TeV and Ecutoff,e>1.7 TeV, consistent with previous constraints derived by H.E.S.S. Full article
(This article belongs to the Section Compact Objects)
Show Figures

Figure 1

Back to TopTop