Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = bamboo invasion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5639 KiB  
Article
Nesting and Hibernation Host Preference of Bamboo Carpenter Bee, Xylocopa (Biluna) tranquebarorum tranquebarorum, and Arthropods Co-Habiting and Re-Using the Bee Nest
by Natsumi Kanzaki, Keito Kobayashi, Keiko Hamaguchi and Yuta Fujimori
Insects 2025, 16(8), 807; https://doi.org/10.3390/insects16080807 - 4 Aug 2025
Abstract
The bamboo carpenter bee, Xylocopa (Biluna) tranquebarorum tranquebarorum, is native to continental China and Taiwan, and the species invaded Japan around 2006. The bee utilizes bamboo culm for its nesting and hibernation, thereby causing structural damage to bamboo fencing and [...] Read more.
The bamboo carpenter bee, Xylocopa (Biluna) tranquebarorum tranquebarorum, is native to continental China and Taiwan, and the species invaded Japan around 2006. The bee utilizes bamboo culm for its nesting and hibernation, thereby causing structural damage to bamboo fencing and sting injuries to humans. Serious economic and ecological impacts were not expected in the early stage of its invasion. However, its distribution is rapidly expanding in Japan, and thus, its potential impacts need to be evaluated. Since the basic biology of the bee has not been examined in detail, even in its natural range, we examined the basic biology of X. t. tranquebarorum in its invasive range by evaluating its nesting preference and hibernation in several bamboo species collections in Kyoto, Japan. The field survey revealed that the bee prefers dead bamboo internodes with approximately16–28 mm of external diameter, which is well-congruent with previous studies, and does not have strict preference concerning the bamboo species, though the bee prefers Bambusa multiplex and Phyllostachys spp. in its native range. The hibernating bees in the culm sometimes share their nests with other invertebrates, including Anterhynchium gibbifrons, Dinoderus japonicus, Crematogaster matsumurai, unidentified spiders, shield bugs, and lepidopteran larvae. Within these co-habitants, the former two possibly negatively affect nesting and hibernation of the bees. Full article
Show Figures

Figure 1

15 pages, 2837 KiB  
Article
Spatial Reconfiguration of Living Stems and Snags Reveals Stand Structural Simplification During Moso Bamboo (Phyllostachys edulis (Carrière) J.Houz.) Invasion into Coniferbroad-Leaf Forests
by Xi Chen, Xiumei Zhou, Songheng Jin and Shangbin Bai
Plants 2025, 14(11), 1698; https://doi.org/10.3390/plants14111698 - 2 Jun 2025
Viewed by 476
Abstract
In subtropical regions of China, the expansion of Moso bamboo has become increasingly prominent, resulting in massive mortality of original trees in adjacent forest stands. Significant changes have also occurred in the population characteristics and spatial distribution patterns of these native tree species. [...] Read more.
In subtropical regions of China, the expansion of Moso bamboo has become increasingly prominent, resulting in massive mortality of original trees in adjacent forest stands. Significant changes have also occurred in the population characteristics and spatial distribution patterns of these native tree species. This study aims to examine the impacts of Moso bamboo (Phyllostachys edulis) expansion on the successional dynamics of coniferous and broad-leaved mixed forests. Three sample plots were successively set up in the transition zone from bamboo to conifer and broad-leaved forest, including conifer and broad-leaved mixed forest (CF), transition forest (TF), and Moso bamboo forest (MF); a total of 72 10 m × 10 m quadrats (24 per forest type) were included. The species composition, diameter class structure and distribution pattern of living stems and snags (dead standing stems) were studied. The results showed that during the late expansion phase of bamboo, the density of living stems and snags separately increased by 2234 stems·ha−1 and 433 stems·ha−1, basal area increments of 23.45 m2·ha−1 and 7.81 m2·ha−1. The individuals with large diameter in living stems and snags gradually decreased, and the distribution range of the diameter steps mainly narrowed to 10–15 cm. On the scale of 0–10 m, the spatial pattern of standing stems changed from random and weak aggregation distribution to strong aggregation distribution and then to weak aggregation and random distribution in the three stands, while the overall distribution of snags in the three stands was random. The spatial correlation between living stems and snags evolved from uncorrelated in CF, to significant positive correlation in TF, and then to positive correlation and uncorrelation in MF. These results indicated that the bamboo expansion accelerated the mortality rate of the original tree species, leading to the diversity of tree species decreased, the composition of diameter classes was simplified, the degree of stem aggregation increased, and intra- and inter-species competition became the main reasons for tree death. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

17 pages, 3011 KiB  
Article
New Eco-Cements Made with Marabou Weed Biomass Ash
by Moisés Frías, Ana María Moreno de los Reyes, Ernesto Villar-Cociña, Rosario García, Raquel Vigil de la Villa and Milica Vidak Vasić
Materials 2024, 17(20), 5012; https://doi.org/10.3390/ma17205012 - 14 Oct 2024
Cited by 6 | Viewed by 1311
Abstract
Biomass ash is currently attracting the attention of science and industry as an inexhaustible eco-friendly alternative to pozzolans traditionally used in commercial cement manufacture (fly ash, silica fume, natural/calcined pozzolan). This paper explores a new line of research into Marabou weed ash (MA), [...] Read more.
Biomass ash is currently attracting the attention of science and industry as an inexhaustible eco-friendly alternative to pozzolans traditionally used in commercial cement manufacture (fly ash, silica fume, natural/calcined pozzolan). This paper explores a new line of research into Marabou weed ash (MA), an alternative to better-known conventional agro-industry waste materials (rice husk, bagasse cane, bamboo, forest waste, etc.) produced in Cuba from an invasive plant harvested as biomass for bioenergy production. The study entailed full characterization of MA using a variety of instrumental techniques, analysis of pozzolanic reactivity in the pozzolan/lime system, and, finally its influence on the physical and mechanical properties of binary pastes and mortars containing 10% and 20% MA replacement content. The results indicate that MA has a very low acid oxide content and a high loss on ignition (30%) and K2O content (6.9%), which produces medium–low pozzolanic activity. Despite an observed increase in the blended mortars’ total and capillary water absorption capacity and electrical resistivity and a loss in mechanical strength approximately equivalent to the replacement percentage, the 10% and 20% MA blended cements meet the regulatory chemical, physical, and mechanical requirements specified. Marabou weed ash is therefore a viable future supplementary cementitious material. Full article
(This article belongs to the Special Issue Advances in Rock and Mineral Materials)
Show Figures

Figure 1

13 pages, 2429 KiB  
Article
Decreased P Cycling Rate and Increased P-Use Efficiency after Phyllostachys edulis (Carrière) J. Houz. Expansion into Adjacent Secondary Evergreen Broadleaved Forest
by Shuwang Song, Lin Wang, Zacchaeus G. Compson, Tingting Xie, Chuyin Liao, Dongmei Huang, Jun Liu, Qingpei Yang and Qingni Song
Forests 2024, 15(9), 1518; https://doi.org/10.3390/f15091518 - 29 Aug 2024
Viewed by 1183
Abstract
(1) Background: Moso bamboo (Phyllostachys edulis (Carrière) J. Houz.) expansion has seriously altered the species composition and structure of adjacent forest ecosystems in subtropical regions. However, the shift in phosphorus (P) biogeochemical cycling has yet to be assessed, which is a critical [...] Read more.
(1) Background: Moso bamboo (Phyllostachys edulis (Carrière) J. Houz.) expansion has seriously altered the species composition and structure of adjacent forest ecosystems in subtropical regions. However, the shift in phosphorus (P) biogeochemical cycling has yet to be assessed, which is a critical gap considering the great variation in ecophysiological properties between invasive bamboo and the displaced native tree species. (2) Methods: We investigated and compared expansion-induced changes in P pools (plant, litter, and soil) and P fluxes (plant uptake and litterfall return) using paired sampling of the bamboo-dominated forest (BDF) and secondary evergreen broadleaved forest (EBF) at Jiangxi province’s Dagang Mountain National Forest Ecological Station. (3) Results: Both the P storage of the plants and litter were significantly greater by 31.8% and 68.2% in the BDF than in the EBF, respectively. The soil total P and available P storage were 28.9% and 40.4% lower, respectively, in the BDF than in the EBF. Plant P uptake was 15.6% higher in the BDF than in the EBF, and the annual litter P return was 26.1% lower in the BDF than in the EBF due to higher P resorption efficiency for moso bamboo compared with evergreen broadleaved tree species. The ecosystem P cycling rate was reduced by 36.1% in the BDF compared with the EBF. (4) Conclusions: Moso bamboo expansion slowed the broadleaved forest ecosystem’s P cycle rate, likely because moso bamboo has higher P-use efficiency, reserving more P in its tissues rather than returning it to the soil. The results from this study elucidate an understudied element cycle in the context of forest succession, demonstrating the ecosystem consequences related to bamboo invasion. Full article
Show Figures

Figure 1

23 pages, 15514 KiB  
Article
Expansion of Naturally Grown Phyllostachys edulis (Carrière) J. Houzeau Forests into Diverse Habitats: Rates and Driving Factors
by Juan Wei, Yongde Zhong, Dali Li, Jinyang Deng, Zejie Liu, Shuangquan Zhang and Zhao Chen
Forests 2024, 15(9), 1482; https://doi.org/10.3390/f15091482 - 23 Aug 2024
Cited by 2 | Viewed by 1180
Abstract
Moso bamboo (Phyllostachys edulis (Carrière) J. Houzeau), which is native to China, is considered to be an invasive species due to its powerful asexual reproductive capabilities that allow it to rapidly spread into neighboring ecosystems and replace existing plant communities. In the [...] Read more.
Moso bamboo (Phyllostachys edulis (Carrière) J. Houzeau), which is native to China, is considered to be an invasive species due to its powerful asexual reproductive capabilities that allow it to rapidly spread into neighboring ecosystems and replace existing plant communities. In the absence of human intervention, it remains poorly understood how indigenous moso bamboo forests naturally expand into surrounding areas over the long term, and whether these patterns vary with environmental changes. Using multi-year forest resource inventory data, we extracted moso bamboo patches that emerged from 2010 to 2020 and proposed a bamboo expansion index to calculate the average rate of patch expansion during this period. Using the first global 30 m land-cover dynamic monitoring product with a fine classification system, we assessed the expansion speeds of moso bamboo into various areas, particularly forests with different canopy closures and categories. Using parameter-optimized geographic detectors, we explored the significance of multi-factors in the expansion process. The results indicate that the average expansion rate of moso bamboo forests in China is 1.36 m/y, with evergreen broadleaved forests being the primary area for invasion. Moso bamboo expands faster into open forest types (0.15 < canopy closure < 0.4), shrublands, and grasslands. The importance of factors influencing the expansion rate is ranked as follows: temperature > chemical properties of soil > light > physical properties of soil > moisture > atmosphere > terrain. When considering interactions, the primary factors contributing to expansion rates include various climate factors and the combined effect of climate factors and soil factors. Our work underscores the importance of improving the quality and density of native vegetation, such as evergreen broadleaved forests. Effective management strategies, including systematic monitoring of environmental variables, as well as targeted interventions like bamboo removal and soil moisture control, are essential for mitigating the invasion of moso bamboo. Full article
Show Figures

Figure 1

13 pages, 2232 KiB  
Article
Effects of Moso Bamboo (Phyllostachys pubescens) Expansion on the Stock and Nutrient Characteristics of the Litter Layer in Subtropical Coniferous and Broad-Leaved Mixed Forests, China
by Xi Chen and Yang Liu
Forests 2024, 15(2), 342; https://doi.org/10.3390/f15020342 - 9 Feb 2024
Viewed by 1450
Abstract
To reveal the changes on the stock of the litter layer and its nutrient storage capacity during Moso bamboo expansion in subtropical coniferous and broad-leaved forests, permanent plots were set up in the transitional zone in Wuxie National Park, Zhuji, Zhejiang, China. The [...] Read more.
To reveal the changes on the stock of the litter layer and its nutrient storage capacity during Moso bamboo expansion in subtropical coniferous and broad-leaved forests, permanent plots were set up in the transitional zone in Wuxie National Park, Zhuji, Zhejiang, China. The plots contained conifer and broad-leaved forests (CFs), transition forests (TFs), and Moso bamboo forests (MFs), which represented three stages of the expansion of Moso bamboo to the surrounding forests. Litter samples were collected and analyzed by un-decomposed, semi-decomposed, and decomposed layers. The stock of the litter layer, the content and storage of the main nutrient elements, and their release rate were measured. It was revealed that the stock of the litter layer and each decomposition layer decreased as the bamboo expands. However, the litter decomposition rate exhibited a positive correlation with the expansion of Moso bamboo, which might be due to the change in the physical properties of the litter. Meanwhile, there were no significant differences in the un-decomposed and semi-decomposed layers of the litter contents of C, N, and P between the three forests, but the contents of C, N, and P in the decomposed layer gradually decreased with the expansion of Moso bamboo. There were no remarkable differences in the N content, C/N, C/P, and lignin/N values of the un-decomposed layer of the three forests, indicating that the litter quality was not the principal reason affecting the decomposition rate. The total nutrient storage in the litter layer decreased significantly with the bamboo expansion, and the release rate of nutrient elements increased, which was adverse to the accumulation and storage of the nutrients. The material cycle of the original forest ecosystem is likely to deteriorate gradually with the bamboo expansion. Full article
(This article belongs to the Special Issue Ecological Research in Bamboo Forests)
Show Figures

Figure 1

13 pages, 2994 KiB  
Article
Effect of the Moso Bamboo Pyllostachys edulis (Carrière) J.Houz. on Soil Phosphorus Bioavailability in a Broadleaf Forest (Jiangxi Province, China)
by Dou Yang, Fuxi Shi, Xiangmin Fang, Ruoling Zhang, Jianmin Shi and Yang Zhang
Forests 2024, 15(2), 328; https://doi.org/10.3390/f15020328 - 8 Feb 2024
Cited by 1 | Viewed by 1393
Abstract
Moso bamboo (Phyllostachys edulis (Carrière) J.Houz.) is a fast-growing species that commonly invades neighboring broadleaf forests and has been widely reported in subtropical forest ecosystems. However, little is known about the effect on soil phosphorus (P) bioavailability and its potential influence factor [...] Read more.
Moso bamboo (Phyllostachys edulis (Carrière) J.Houz.) is a fast-growing species that commonly invades neighboring broadleaf forests and has been widely reported in subtropical forest ecosystems. However, little is known about the effect on soil phosphorus (P) bioavailability and its potential influence factor during the P. edulis expansion. Here, the four soil P bioavailable fractions (i.e., CaCl2-P, Citrate-P, Enzyme-P, and HCl-P), acid phosphatase activity, iron and aluminum oxides (Fed and Ald), and soil total P pool at depths of 0–10 cm, 10–20 cm, and 20–40 cm were measured in three expanding interfaces (a broadleaf forest, a mixed bamboo–broadleaf forest, and a pure P. edulis forest) in subtropical forests of southern China. Regardless of soil depths, the CaCl2-P content was significantly lower in the mixed bamboo–broadleaf forest than the other two forest types, with contents ranging from 0.09 to 0.16 mg/kg, whereas the HCl-P content was significantly lower in the broadleaf forest, with contents ranging from 3.42 to 14.33 mg/kg, and the Enzyme-P content and acid phosphatase activity were notably lower in P. edulis forest with contents of 0.17–0.52 mg/kg and 68.66–74.80 μmol MUF released g−1 min−1, respectively. Moreover, the soil total P pool was enhanced in the mixed bamboo–broadleaf forest in 0–10 cm depth compared to broadleaf and P. edulis forests, with increases of 27.40% and 31.02%, respectively. The redundancy analysis showed that soil pH plays an important role in regulating soil P bioavailability during the P. edulis expansion (p < 0.01). From the above results, the invasion of P. edulis into broadleaf forests has resulted in soil P bioavailability and storage capacity. The results of this study suggest that when P. edulis invades broadleaf forests, it could affect the soil P bioavailability by elevating soil pH, which in turn drives and facilitates the completion of the expansion. This is important for understanding P cycling during the P. edulis forest expansion in subtropical regions. Full article
(This article belongs to the Special Issue Fungal Interactions with Host Trees and Forest Sustainability)
Show Figures

Figure 1

12 pages, 6967 KiB  
Article
Monitoring Forest Diversity under Moso Bamboo Invasion: A Random Forest Approach
by Zijie Wang, Yufang Bi, Gang Lu, Xu Zhang, Xiangyang Xu, Yilin Ning, Xuhua Du and Anke Wang
Forests 2024, 15(2), 318; https://doi.org/10.3390/f15020318 - 7 Feb 2024
Cited by 7 | Viewed by 2071
Abstract
Moso bamboo (Phyllostachys edulis) is a crucial species among the 500 varieties of bamboo found in China and plays an important role in providing ecosystem services. However, remote sensing studies on the invasion of Moso bamboo, especially its impact on forest [...] Read more.
Moso bamboo (Phyllostachys edulis) is a crucial species among the 500 varieties of bamboo found in China and plays an important role in providing ecosystem services. However, remote sensing studies on the invasion of Moso bamboo, especially its impact on forest biodiversity, are limited. Therefore, we explored the feasibility of using Sentinel-2 multispectral data and digital elevation data from the Shuttle Radar Topography Mission and random forest (RF) algorithms to monitor changes in forest diversity due to the spread of Moso bamboo. From October to November 2019, researchers conducted field surveys on 100 subtropical forest plots in Zhejiang Province, China. Four biodiversity indices (Margalef, Shannon, Simpson, and Pielou) were calculated from the survey data. Subsequently, after completing 100 epochs of training and testing, we developed the RF prediction model and assessed its performance using three key metrics: coefficient of determination, root mean squared error, and mean absolute error. Our results showed that the RF model has a strong predictive ability for all indices except for the Pilou index, which has an average predictive ability. These results demonstrate the feasibility of using remote sensing to monitor forest diversity changes caused by the spreading of Moso bamboo. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

10 pages, 1814 KiB  
Article
An Evaluation of the Crop Preference and Phenotypic Characteristics of Ceracris kiangsu Tsai (Orthoptera: Arcypteridae) under Different Temperatures
by Meizhi Wang, Hongmei Li, Abdul Aziz Bukero, Jinping Shu, Fuyan Zhuo, Linyi Liu and Aihuan Zhang
Biology 2023, 12(11), 1377; https://doi.org/10.3390/biology12111377 - 27 Oct 2023
Cited by 2 | Viewed by 2167
Abstract
The yellow-spined bamboo locust (YSBL), Ceracris kiangsu Tsai, has historically had a significant impact on different bamboo varieties in East Asia and Southeast Asia. Since 2014, there have been many outbreaks of YSBL populations in Laos, and YSBLs subsequently invaded Southwest China in [...] Read more.
The yellow-spined bamboo locust (YSBL), Ceracris kiangsu Tsai, has historically had a significant impact on different bamboo varieties in East Asia and Southeast Asia. Since 2014, there have been many outbreaks of YSBL populations in Laos, and YSBLs subsequently invaded Southwest China in 2020 and 2023. However, there was limited information about the damage to staple crops. Life table parameters and fitness parameters were assessed using wheat, rice, waxy maize, and sweet maize under three different temperatures (25 °C, 30 °C, and 35 °C) in the laboratory. The results indicated that the YSBLs feeding on wheat seedlings displayed a significantly higher survival rate, a shorter developmental time, and a higher adult emergence rate compared to YSBLs feeding on the other host species at 30 °C. The developmental durations of 1st and 3rd instar YSBLs on wheat (1st: 8.21 ± 0.35 d; 3rd: 6.32 ± 0.34 d) and rice (1st: 7.19 ± 0.23 d; 3rd: 9.00 ± 0.66 d) were significantly shorter than those of 1st and 3rd instar YSBLs on waxy maize (1st: 13.62 ± 1.22 d; 3rd: 13.67 ± 6.33 d) and sweet maize (1st: 16.00 ± 1.79 d; 3rd: 18.00 ± 3.49 d) at 30 °C. The body lengths of male and female YSBLs on wheat (male: 29.52 ± 0.40 mm, female: 34.97 ± 0.45 mm) and rice (male: 28.85 ± 0.68 mm, female: 34.66 ± 0.35 mm) were significantly longer than those observed when they were fed on sweet maize (male: 25.64 ± 1.60 mm, female: 21.93 ± 6.89 mm). There were only male adults obtained on waxy maize. The phenotypic characteristics of the YSBLs feeding on rice seedlings were very close to those of the YSBLs feeding on wheat seedlings. A relatively slower decline was observed in the survival rates of YSBL nymphs on wheat and rice compared to those on waxy maize and sweet maize at 25 °C, 30 °C, and 35 °C. In short, this study implied that YSBLs prefer wheat and rice. This study is the first report of direct damage caused by the YSBL to wheat in the laboratory, and its results could be useful in improving our understanding of the host preference of the YSBL and providing strategies for the management of this pest in field crops. Full article
Show Figures

Figure 1

17 pages, 3800 KiB  
Article
Native Bamboo (Indosasa shibataeoides McClure) Invasion of Broadleaved Forests Promotes Soil Organic Carbon Sequestration in South China Karst
by Zedong Chen, Xiangyang Xu, Zhizhuang Wu, Zhiyuan Huang, Guibin Gao, Jie Zhang and Xiaoping Zhang
Forests 2023, 14(11), 2135; https://doi.org/10.3390/f14112135 - 26 Oct 2023
Cited by 6 | Viewed by 1960
Abstract
Bamboo invasion into broadleaf forests is a common phenomenon in karst areas; however, the effect of bamboo invasion on soil organic carbon (SOC) in karst areas and the mechanism of the effect are not clear. We selected the study site with broad-leaved forests [...] Read more.
Bamboo invasion into broadleaf forests is a common phenomenon in karst areas; however, the effect of bamboo invasion on soil organic carbon (SOC) in karst areas and the mechanism of the effect are not clear. We selected the study site with broad-leaved forests (BF), mixed forests (MF), and pure bamboo (Indosasa shibataeoides McClure) forests (IF). Furthermore, we sampled the soil from 0 cm to 20 cm and 20 cm to 40 cm layers in the region and investigated the soil properties, organic carbon fractions, and microbial communities. At the same time, we sampled the litterfall layer of different stands and determined the biomass. The results showed that bamboo invasion increased the litterfall biomass per unit area of karst forest, increased the bulk weight of the 0–20 cm soil layer, and lowered the soil pH in the 0–20 cm and 20–40 cm soil layers, bamboo invasion consistently increased the content of soil AN and AK, whereas the content of AP was significantly reduced after bamboo invasion. Both active organic carbon groups (MBC, DOC, and EOC) and passive organic carbon groups (Fe/Al-SOC and Ca-SOC) increased significantly after bamboo invasion. The bamboo invasion increased the diversity of soil microorganisms and bacterial communities; the relative abundance of Actinobacteriota increased in MF and IF, while the relative abundance of Firmicutes decreased in IF. The structure of fungal communities was altered during the bamboo invasion, with an increase in the relative abundance of Mortierellomycota and a decrease in the relative abundance of Basidiomycota at the level of fungal phyla. Partial least squares path modeling analysis identified bamboo invasion enhanced SOC sequestration mainly by increasing litterfall biomass and altering the structure of the fungal community, and the effect of bacteria on SOC was not significant. Our study suggests that bamboo invasion of broadleaf forests is more favorable to soil organic carbon sequestration in karst areas. Full article
(This article belongs to the Special Issue Ecological Research in Bamboo Forests)
Show Figures

Figure 1

21 pages, 8815 KiB  
Review
Hirsutine, an Emerging Natural Product with Promising Therapeutic Benefits: A Systematic Review
by Md. Shimul Bhuia, Polrat Wilairatana, Jannatul Ferdous, Raihan Chowdhury, Mehedi Hasan Bappi, Md Anisur Rahman, Mohammad S. Mubarak and Muhammad Torequl Islam
Molecules 2023, 28(16), 6141; https://doi.org/10.3390/molecules28166141 - 19 Aug 2023
Cited by 33 | Viewed by 4365
Abstract
Fruits and vegetables are used not only for nutritional purposes but also as therapeutics to treat various diseases and ailments. These food items are prominent sources of phytochemicals that exhibit chemopreventive and therapeutic effects against several diseases. Hirsutine (HSN) is a naturally occurring [...] Read more.
Fruits and vegetables are used not only for nutritional purposes but also as therapeutics to treat various diseases and ailments. These food items are prominent sources of phytochemicals that exhibit chemopreventive and therapeutic effects against several diseases. Hirsutine (HSN) is a naturally occurring indole alkaloid found in various Uncaria species and has a multitude of therapeutic benefits. It is found in foodstuffs such as fish, seafood, meat, poultry, dairy, and some grain products among other things. In addition, it is present in fruits and vegetables including corn, cauliflower, mushrooms, potatoes, bamboo shoots, bananas, cantaloupe, and citrus fruits. The primary emphasis of this study is to summarize the pharmacological activities and the underlying mechanisms of HSN against different diseases, as well as the biopharmaceutical features. For this, data were collected (up to date as of 1 July 2023) from various reliable and authentic literature by searching different academic search engines, including PubMed, Springer Link, Scopus, Wiley Online, Web of Science, ScienceDirect, and Google Scholar. Findings indicated that HSN exerts several effects in various preclinical and pharmacological experimental systems. It exhibits anti-inflammatory, antiviral, anti-diabetic, and antioxidant activities with beneficial effects in neurological and cardiovascular diseases. Our findings also indicate that HSN exerts promising anticancer potentials via several molecular mechanisms, including apoptotic cell death, induction of oxidative stress, cytotoxic effect, anti-proliferative effect, genotoxic effect, and inhibition of cancer cell migration and invasion against various cancers such as lung, breast, and antitumor effects in human T-cell leukemia. Taken all together, findings from this study show that HSN can be a promising therapeutic agent to treat various diseases including cancer. Full article
(This article belongs to the Special Issue The Role of Dietary Bioactive Compounds in Human Health)
Show Figures

Figure 1

15 pages, 3302 KiB  
Article
Effects of Moso Bamboo Expansion on the Spatial Pattern of Coarse Woody Debris in Secondary Coniferous and Broad-Leaved Mixed Forest in Wuxie National Forest Park, China
by Xi Chen and Shangbin Bai
Forests 2023, 14(7), 1402; https://doi.org/10.3390/f14071402 - 9 Jul 2023
Cited by 1 | Viewed by 1566
Abstract
The spatial pattern of coarse woody debris (CWD) within the surrounding forest changes continuously during the expansion of Moso bamboo (Phyllostachys edulis), which partly reflects the death process of trees within the community. In this paper, we sampled an area of [...] Read more.
The spatial pattern of coarse woody debris (CWD) within the surrounding forest changes continuously during the expansion of Moso bamboo (Phyllostachys edulis), which partly reflects the death process of trees within the community. In this paper, we sampled an area of 0.72 hm2 within the transition zone of Moso bamboo expansion, which included continuous secondary coniferous and broad-leaved mixed forest (SF), transitional forest (TF), and Moso bamboo forest (MF) in Wuxie National Forest Park, Zhejiang Province. The spatial pattern and spatial correlation of CWD with different diameter classes, different decay classes, and different types in the three forests were analyzed using Ripley’s L function. The results showed that, with the expansion of Moso bamboo, the volume of CWD in TF was higher than those in SF and MF, and the total density of CWD in the three forests varied, with a decreasing order of MF > TF > SF. The spatial pattern of CWD in the three forests was aggregated on a relatively small scale, but the pattern changed from aggregated to random distribution with the increase in scale. Moreover, the CWD of Moso bamboo in TF showed aggregated distribution, and the aggregation intensity increased with the increase in scale. With the expansion of Moso bamboo, the spatial pattern and spatial correlation of CWD with different diameter classes, decay classes, and types have changed significantly in the three forests. Our study suggests that the expansion of Moso bamboo is increasingly strengthening the intraspecific and interspecific competition and accelerating the death of neighboring trees. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

12 pages, 1102 KiB  
Article
What Are the Effects of Moso Bamboo Expansion into Japanese Cedar on Arbuscular Mycorrhizal Fungi: Altering the Community Composition Rather than the Diversity
by Guiwu Zou, Binsheng Wu, Baodong Chen, Yaying Yang, Yan Feng, Jiahui Huang, Yuanqiu Liu, Philip J. Murray and Wei Liu
J. Fungi 2023, 9(2), 273; https://doi.org/10.3390/jof9020273 - 18 Feb 2023
Cited by 5 | Viewed by 2527
Abstract
The unbridled expansion of moso bamboo (Phyllostachys edulis) occurs throughout the world and has a series of consequences. However, the effect of bamboo expansion on arbuscular mycorrhizal fungi (AMF) is still poorly understood. We assessed the changes in the AMF community [...] Read more.
The unbridled expansion of moso bamboo (Phyllostachys edulis) occurs throughout the world and has a series of consequences. However, the effect of bamboo expansion on arbuscular mycorrhizal fungi (AMF) is still poorly understood. We assessed the changes in the AMF community during bamboo expansion into Japanese cedar (Cryptomeria japonica) forests by analyzing AMF in three forest types—Japanese cedar (JC), bamboo-cedar mixed (BC) and moso bamboo (MB)—using 454 pyrosequencing technology. We found that the AMF community composition differed significantly among forest types. The relative abundance of Glomerales decreased from 74.0% in JC to 61.8% in BC and 42.5% in MB, whereas the relative abundance of Rhizophagus increased from 24.9% in JC to 35.9% in BC and 56.7% in MB. Further analysis showed that soil characteristics explained only 19.2% of the AMF community variation among forest types. Hence, vegetation is presumably the main driver of the alteration of the AMF community. The α diversity of AMF was similar between JC and MB, although it was higher in BC. Overall, this research sheds more light on AMF community dynamics during moso bamboo expansion. Our results highlight that the consequences of bamboo expansion in monoculture forests differ from those in mixed forests. Full article
(This article belongs to the Special Issue Fungal Diversity in Various Environments)
Show Figures

Figure 1

17 pages, 6215 KiB  
Article
Application of Advanced Analytical Techniques in Organic Cultural Heritage: A Case Study of Ancient Architecture Relics in the Palace Museum (Beijing)
by Le Wei, Yue Ma, Zhimou Guo, Junjie Ding, Gaowa Jin, An Gu and Yong Lei
Coatings 2022, 12(5), 636; https://doi.org/10.3390/coatings12050636 - 5 May 2022
Cited by 9 | Viewed by 3216
Abstract
Multilayer objects with different interfaces are quite typical for architectural heritage, and from them may be inferred the age, production process, and deterioration mechanism through analyzing characteristic compositions with advanced analytical techniques. The Meiwu ceiling in the Hall of Mental Cultivation of the [...] Read more.
Multilayer objects with different interfaces are quite typical for architectural heritage, and from them may be inferred the age, production process, and deterioration mechanism through analyzing characteristic compositions with advanced analytical techniques. The Meiwu ceiling in the Hall of Mental Cultivation of the Palace Museum was found to contain many paper-based layers during conservation. Once several surface strata were detached, a colorful layer of printed fabric textile was discovered integrally. Through microscopic observation and micro-attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) imaging, the overall structure consisted of 11 layers, namely, bast paper, cotton wiring, xuan paper, cotton printed fabric, two yellow board papers, bamboo paper, three wood pulp paper and surface coatings, and starch was considered as an organic adhesive. For identification of the printed fabric’s color palette, ultra-performance liquid chromatography (UPLC) combined with high-resolution quadrupole time-of-flight (QTOF) technology, non-invasive macro X-ray fluorescence (MA-XRF) and desorption electrospray ionization mass spectrometry imaging (DESI-MSI) were applied in situ. Seven industrial synthetic dyes, including auramine O, malachite green, and eosin Y with corresponding by-products, as well as chromium-based pigments considered as dark draft line, were confirmed. By X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), and micro Fourier transform infrared spectroscopy (micro FTIR, other results showed chalk soil and talc for the outermost coating. According to the synthetic time of industrial dyes and degradation degree of paper, there were at least four occurrences and their specific time periods were speculated. Full article
Show Figures

Figure 1

18 pages, 4222 KiB  
Article
Unlocking the Changes of Phyllosphere Fungal Communities of Fishscale Bamboo (Phyllostachys heteroclada) under Rhombic-Spot Disease Stressed Conditions
by Lijuan Liu, Chunlin Yang, Xiulan Xu, Xue Wang, Ming Liu, Renhua Chen, Feichuan Tan, Yufeng Liu, Tiantian Lin and Yinggao Liu
Forests 2022, 13(2), 185; https://doi.org/10.3390/f13020185 - 26 Jan 2022
Cited by 7 | Viewed by 3341
Abstract
As an important nonwood bioresource, fishscale bamboo (Phyllostachys heteroclada Oliver) is widely distributed in the subtropical region of China. Rhombic-spot disease, caused by Neostagonosporella sichuanensis, is one of the most serious diseases that threatens fishscale bamboo health. However, there is limited [...] Read more.
As an important nonwood bioresource, fishscale bamboo (Phyllostachys heteroclada Oliver) is widely distributed in the subtropical region of China. Rhombic-spot disease, caused by Neostagonosporella sichuanensis, is one of the most serious diseases that threatens fishscale bamboo health. However, there is limited knowledge about how rhombic-spot disease influences the diversity and structures of phyllosphere fungal communities. In this study, we investigated the phyllosphere fungal communities from stems, branches, and leaves of fishscale bamboo during a rhombic-spot disease outbreak using 18S rRNA sequencing. We found that only the phyllosphere fungal community from stems was significantly affected by pathogen invasion in terms of community richness, diversity, and structure. FUNGuild analysis revealed that the major classifications of phyllosphere fungi based on trophic modes in stems, branches, and leaves changed from symbiotroph-pathotroph, no obvious dominant trophic mode, and symbiotroph to saprotroph, saprotroph–pathotroph–symbiotroph, and saprotroph–symbiotroph, respectively, after pathogen invasion. The fungal community composition of the three tissues displayed significant differences at the genus level between healthy and diseased plants. The associations among fungal species in diseased samples showed more complex co-occurrence network structures than those of healthy samples. Taken together, our results highlight the importance of plant pathological conditions for the assembly of phyllosphere fungal communities in different tissues. Full article
(This article belongs to the Special Issue Tree Host – Microbial Interactions)
Show Figures

Figure 1

Back to TopTop