Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (805)

Search Parameters:
Keywords = ball wear

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 8202 KiB  
Article
Structure and Texture Synergies in Fused Deposition Modeling (FDM) Polymers: A Comparative Evaluation of Tribological and Mechanical Properties
by Patricia Isabela Brăileanu, Marius-Teodor Mocanu, Tiberiu Gabriel Dobrescu, Nicoleta Elisabeta Pascu and Dan Dobrotă
Polymers 2025, 17(15), 2159; https://doi.org/10.3390/polym17152159 (registering DOI) - 7 Aug 2025
Abstract
This study investigates the interplay between infill structure and surface texture in Fused Deposition Modeling (FDM)-printed polymer specimens and their combined influence on tribological and mechanical performance. Unlike previous works that focus on single-variable analysis, this work offers a comparative evaluation of Shore [...] Read more.
This study investigates the interplay between infill structure and surface texture in Fused Deposition Modeling (FDM)-printed polymer specimens and their combined influence on tribological and mechanical performance. Unlike previous works that focus on single-variable analysis, this work offers a comparative evaluation of Shore D hardness and coefficient of friction (COF) for PLA and Iglidur materials, incorporating diverse infill patterns. The results reveal that specific combinations (e.g., grid infill with 90% density) optimize hardness and minimize friction, offering practical insights for design optimization in functional parts. Our aim is to provide design insights for enhanced wear resistance and hardness through tailored structural configurations. Carbon Fiber-reinforced PLA (PLA CF), aramid fiber-reinforced Acrylonitrile Styrene Acrylate (Kevlar), and Iglidur I180-BL tribofilament. Disc specimens were fabricated with gyroid infill densities ranging from 10% to 100%. Experimental methodologies included Ball-on-Disc tests conducted under dry sliding conditions (5 N normal load, 150 mm/s sliding speed) to assess friction and wear characteristics. These tribological evaluations were complemented by profilometric and microscopic analyses and Shore D hardness testing. The results show that Iglidur I180-BL achieved the lowest friction coefficients (0.141–0.190) and negligible wear, while PLA specimens with 90% infill demonstrated a polishing-type wear with minimal material loss and a friction coefficient (COF) of ~0.108. In contrast, PLA CF and Kevlar exhibited higher wear depths (up to 154 µm for Kevlar) and abrasive mechanisms due to fiber detachment. Shore hardness values increased with infill density, with PLA reaching a maximum of 82.7 Shore D. These findings highlight the critical interplay between infill architecture and surface patterning and offer actionable guidelines for the functional design of durable FDM components in load-bearing or sliding applications. Full article
(This article belongs to the Collection Mechanical Behavior of Polymer-Based Materials)
Show Figures

Figure 1

26 pages, 8019 KiB  
Article
Tribo-Dynamic Investigation of Cryogenic Ball Bearings Considering Varying Traction Parameters
by Shijie Zhang, Shuangshuang Jia, Yuhao Zhao, Jing Wei and Yanyang Zi
Lubricants 2025, 13(8), 352; https://doi.org/10.3390/lubricants13080352 - 5 Aug 2025
Abstract
The traction behavior in cryogenic solid-lubricated ball bearings (CSLBBs) used in liquid rocket engines (LREs) affects not only the dynamic response of the bearing but also the lubricity and wear characteristics of the solid lubrication coating. The traction coefficient between the ball and [...] Read more.
The traction behavior in cryogenic solid-lubricated ball bearings (CSLBBs) used in liquid rocket engines (LREs) affects not only the dynamic response of the bearing but also the lubricity and wear characteristics of the solid lubrication coating. The traction coefficient between the ball and raceway depends on factors such as contact material, relative sliding velocity, and contact pressure. However, existing traction curve models for CSLBBs typically consider only one or two of these factors, limiting the accuracy and applicability of theoretical predictions. In this study, a novel traction model for CSLBBs is proposed, which incorporates the combined effects of contact material, relative sliding velocity, and contact pressure. Based on this model, a tribo-dynamic framework is developed to investigate the tribological and dynamic behavior of CSLBBs. The model is validated through both theoretical analysis and experimental data. Results show that the inclusion of solid lubricant effects significantly alters the relative sliding and frictional forces between the rolling elements and the raceway. These changes in turn influence the impact dynamics between the rolling elements and the cage, leading to notable variations in the bearing’s vibrational response. The findings may offer valuable insights for the wear resistance and vibration reduction design of CSLBBs. Full article
(This article belongs to the Special Issue Tribological Characteristics of Bearing System, 3rd Edition)
Show Figures

Figure 1

22 pages, 24500 KiB  
Article
Ambient to Elevated Temperature: Ecotribology of Water-Based Lubricants Incorporating hBN/TiO2 Nanoadditives
by Afshana Morshed, Fei Lin, Hui Wu, Zhao Xing, Sihai Jiao and Zhengyi Jiang
Lubricants 2025, 13(8), 344; https://doi.org/10.3390/lubricants13080344 - 1 Aug 2025
Viewed by 238
Abstract
Ecotribology focuses on both saving energy resources and reducing environmental pollution. Considering environmental concerns, water-based nanolubricants have gained significant attention over conventional oil-based ones. Non-ecotoxic and highly environmentally friendly nanoadditives were chosen for nanolubricant synthesis, especially considering their use at elevated temperatures. In [...] Read more.
Ecotribology focuses on both saving energy resources and reducing environmental pollution. Considering environmental concerns, water-based nanolubricants have gained significant attention over conventional oil-based ones. Non-ecotoxic and highly environmentally friendly nanoadditives were chosen for nanolubricant synthesis, especially considering their use at elevated temperatures. In this study, hexagonal boron nitride nanosheets (hBNNSs) and titanium dioxide nanoparticles (TiO2 NPs) were used to prepare water-based lubricants with glycerol and surfactant sodium dodecyl benzene sulfonate (SDBS) in water under ultrasonication. An Rtec ball-on-disk tribometer was used to investigate the tribological performance of the synthesised water-based lubricants containing different nano-hBN/TiO2 concentrations, with dry and water conditions used as benchmarks. The results indicated that the water-based nanolubricant containing 0.5 wt% hBN and 0.5 wt% TiO2 exhibited the best tribological performance at both ambient (25 °C) and elevated (500 °C) temperatures. This optimal concentration leads to a reduction in the coefficient of friction (COF) by 72.9% and 37.5%, wear of disk by 62.5% and 49%, and wear of ball by 74% and 69% at ambient and elevated temperatures, respectively, compared to that of distilled water. Lubrication mechanisms were attributed to the rolling, mending, tribofilm, solid layer formation, and synergistic effects of hBNNSs and TiO2 NPs. Full article
(This article belongs to the Special Issue Tribology in Manufacturing Engineering)
Show Figures

Figure 1

19 pages, 4045 KiB  
Article
Response Surface Optimization Design for High-Speed Ball Bearing Double-Lip Seals Considering Wear Characteristics
by Hengdi Wang, Yulu Yue, Yongcun Cui, Lina Lou and Chang Li
Lubricants 2025, 13(8), 343; https://doi.org/10.3390/lubricants13080343 - 1 Aug 2025
Viewed by 219
Abstract
This paper focuses on the sealing failure problem of double-lip seal rings for high-speed ball bearings used in unmanned aerial vehicles. By using ANSYS 2023R1 software, a thermal–stress–wear coupled finite element model was established. Taking the contact pressure and volume loss due to [...] Read more.
This paper focuses on the sealing failure problem of double-lip seal rings for high-speed ball bearings used in unmanned aerial vehicles. By using ANSYS 2023R1 software, a thermal–stress–wear coupled finite element model was established. Taking the contact pressure and volume loss due to wear as indicators to evaluate sealing performance, this study analyzed the influence of lip seal structural parameters on sealing performance, performed response surface optimization of the seal structure parameters and conducted a comparative test on lip seals before and after optimization. The research results show that the contact pressure at the main lip of the lip seal was the greatest, which was 0.79 MPa, and the volume loss due to wear lip seal was 7.94 × 10−7 mm3. Optimal sealing performance is achieved when the seal lip inclination angle is 41.68°, the middle width of the lip seal is 0.153 mm, the main lip height is 0.179 mm, the spring center distance is 0.37 mm and the radial interference is 0.0034 mm. After optimization, the grease leakage rate of the sealing ring decreased by 48% compared to before optimization. Full article
Show Figures

Figure 1

22 pages, 6823 KiB  
Article
Design Optimization of Valve Assemblies in Downhole Rod Pumps to Enhance Operational Reliability in Oil Production
by Seitzhan Zaurbekov, Kadyrzhan Zaurbekov, Doszhan Balgayev, Galina Boiko, Ertis Aksholakov, Roman V. Klyuev and Nikita V. Martyushev
Energies 2025, 18(15), 3976; https://doi.org/10.3390/en18153976 - 25 Jul 2025
Viewed by 290
Abstract
This study focuses on the optimization of valve assemblies in downhole rod pumping units (DRPUs), which remain the predominant artificial lift technology in oil production worldwide. The research addresses the critical issue of premature failures in DRPUs caused by leakage in valve pairs, [...] Read more.
This study focuses on the optimization of valve assemblies in downhole rod pumping units (DRPUs), which remain the predominant artificial lift technology in oil production worldwide. The research addresses the critical issue of premature failures in DRPUs caused by leakage in valve pairs, i.e., a problem that accounts for approximately 15% of all failures, as identified in a statistical analysis of the 2022 operational data from the Uzen oilfield in Kazakhstan. The leakage is primarily attributed to the accumulation of mechanical impurities and paraffin deposits between the valve ball and seat, leading to concentrated surface wear and compromised sealing. To mitigate this issue, a novel valve assembly design was developed featuring a flow turbulizer positioned beneath the valve seat. The turbulizer generates controlled vortex motion in the fluid flow, which increases the rotational frequency of the valve ball during operation. This motion promotes more uniform wear across the contact surfaces and reduces the risk of localized degradation. The turbulizers were manufactured using additive FDM technology, and several design variants were tested in a full-scale laboratory setup simulating downhole conditions. Experimental results revealed that the most effective configuration was a spiral plate turbulizer with a 7.5 mm width, installed without axis deviation from the vertical, which achieved the highest ball rotation frequency and enhanced lapping effect between the ball and the seat. Subsequent field trials using valves with duralumin-based turbulizers demonstrated increased operational lifespans compared to standard valves, confirming the viability of the proposed solution. However, cases of abrasive wear were observed under conditions of high mechanical impurity concentration, indicating the need for more durable materials. To address this, the study recommends transitioning to 316 L stainless steel for turbulizer fabrication due to its superior tensile strength, corrosion resistance, and wear resistance. Implementing this design improvement can significantly reduce maintenance intervals, improve pump reliability, and lower operating costs in mature oilfields with high water cut and solid content. The findings of this research contribute to the broader efforts in petroleum engineering to enhance the longevity and performance of artificial lift systems through targeted mechanical design improvements and material innovation. Full article
(This article belongs to the Special Issue Petroleum and Natural Gas Engineering)
Show Figures

Figure 1

12 pages, 7595 KiB  
Article
Reactive Sintering of Cemented Carbides
by Victor I. Stanciu, Alexandre Mégret, Anne Mouftiez, Véronique Vitry and Fabienne Delaunois
Alloys 2025, 4(3), 15; https://doi.org/10.3390/alloys4030015 - 25 Jul 2025
Viewed by 136
Abstract
Cemented carbides are among the primary materials for tools and wear parts. Today, energy prices and carbon emissions have become key concerns worldwide. Cemented carbides consist of tungsten carbide combined with a binder, typically cobalt, nickel, or more recently, various high-entropy alloys. Producing [...] Read more.
Cemented carbides are among the primary materials for tools and wear parts. Today, energy prices and carbon emissions have become key concerns worldwide. Cemented carbides consist of tungsten carbide combined with a binder, typically cobalt, nickel, or more recently, various high-entropy alloys. Producing tungsten carbide involves reducing tungsten oxide, followed by carburization of tungsten at 1400 °C under a hydrogen atmosphere. The tungsten carbide produced is then mixed with the binder, milled to achieve the desired particle size, and granulated to ensure proper flow for pressing and shaping. This study aims to bypass the tungsten carburizing step by mixing tungsten, carbon, and cobalt; shaping the mixture; and then applying reactive sintering, which will convert tungsten into carbide and consolidate the parts. The mixtures were prepared by planetary ball milling for 10 h under different conditions. Tests demonstrated that tungsten carburization successfully occurs during sintering at 1450 °C for 1 h. The samples exhibit a typical cemented carbide microstructure, characterized by prismatic grains with an average size of 0.32 μm. Densification reached 92%, hardness is approximately 1800 HV30, and toughness is 10.9 ± 1.15 MPa·m1/2. Full article
(This article belongs to the Special Issue New Alloys for Surface Engineered Coatings, Interfaces and Films)
Show Figures

Figure 1

20 pages, 7139 KiB  
Article
Synergistic Effects of CuO and ZnO Nanoadditives on Friction and Wear in Automotive Base Oil
by Ádám István Szabó and Rafiul Hasan
Appl. Sci. 2025, 15(15), 8258; https://doi.org/10.3390/app15158258 - 24 Jul 2025
Viewed by 373
Abstract
Efficient lubrication lowers friction, wear, and energy losses in automotive drivetrain components. Advanced lubricants are key to sustainable transportation performance, durability, and efficiency. This study analyzes the tribological performance of Group III base oil with CuO and ZnO nanoadditive mixtures. These additives enhance [...] Read more.
Efficient lubrication lowers friction, wear, and energy losses in automotive drivetrain components. Advanced lubricants are key to sustainable transportation performance, durability, and efficiency. This study analyzes the tribological performance of Group III base oil with CuO and ZnO nanoadditive mixtures. These additives enhance the performance of Group III base oils, making them highly relevant for automotive lubricant applications. An Optimol SRV5 tribometer performed ball-on-disk sliding contact tests with 100Cr6 steel specimens subjected to a 50 N force and a temperature of 100 °C. The test settings are designed to mimic the boundary and mixed lubrication regimes commonly seen in the automobile industry. During the tests, the effect of nanoparticles on friction was measured. Microscopic wear analysis was performed on the worn specimens. The results demonstrate that adding 0.3 wt% CuO nanoparticles to Group III base oil achieves a 19% reduction in dynamic friction and a 47% decrease in disk wear volume compared to additive-free oil. Notably, a 2:1 CuO-to-ZnO mixture produced synergy, delivering up to a 27% friction reduction and a 54% decrease in disk wear. The results show the synergistic effect of CuO and ZnO in reducing friction and wear on specimens. This study highlights the potential of nanoparticles for lubricant development and automotive applications. Full article
(This article belongs to the Special Issue Sustainable Mobility and Transportation (SMTS 2025))
Show Figures

Figure 1

20 pages, 3625 KiB  
Article
Improvement in the Corrosion and Wear Resistance of ZrO2-Ag Coatings on 316LVM Stainless Steel Under Tribocorrosive Conditions
by Willian Aperador and Giovany Orozco-Hernández
Coatings 2025, 15(8), 862; https://doi.org/10.3390/coatings15080862 - 22 Jul 2025
Viewed by 346
Abstract
This study investigates the development of silver (Ag)-doped zirconia (ZrO2) coatings deposited on 316LVM stainless steel via the unbalanced magnetron sputtering technique. The oxygen content in the Ar/O2 gas mixture was systematically varied (12.5%, 25%, 37.5%, and 50%) to assess [...] Read more.
This study investigates the development of silver (Ag)-doped zirconia (ZrO2) coatings deposited on 316LVM stainless steel via the unbalanced magnetron sputtering technique. The oxygen content in the Ar/O2 gas mixture was systematically varied (12.5%, 25%, 37.5%, and 50%) to assess its influence on the resulting coating properties. In response to the growing demand for biomedical implants with improved durability and biocompatibility, the objective was to develop coatings that enhance both wear and corrosion resistance in physiological environments. The effects of silver incorporation and oxygen concentration on the structural, tribological, and electrochemical behavior of the coatings were systematically analyzed. X-ray diffraction (XRD) was employed to identify crystalline phases, while atomic force microscopy (AFM) was used to characterize surface topography prior to wear testing. Wear resistance was evaluated using a ball-on-plane tribometer under simulated prosthetic motion, applying a 5 N load with a bone pin as the counter body. Corrosion resistance was assessed through electrochemical impedance spectroscopy (EIS) in a physiological solution. Additionally, tribocorrosive performance was investigated by coupling tribological and electrochemical tests in Ringer’s lactate solution, simulating dynamic in vivo contact conditions. The results demonstrate that Ag doping, combined with increased oxygen content in the sputtering atmosphere, significantly improves both wear and corrosion resistance. Notably, the ZrO2-Ag coating deposited with 50% O2 exhibited the lowest wear volume (0.086 mm3) and a minimum coefficient of friction (0.0043) under a 5 N load. This same coating also displayed superior electrochemical performance, with the highest charge transfer resistance (38.83 kΩ·cm2) and the lowest corrosion current density (3.32 × 10−8 A/cm2). These findings confirm the high structural integrity and outstanding tribocorrosive behavior of the coating, highlighting its potential for application in biomedical implant technology. Full article
Show Figures

Figure 1

12 pages, 395 KiB  
Article
Effects of Translucency-Enhancing Coloring Liquids on the Mechanical Properties of 3Y- and 4Y-TZP Zirconia Ceramics
by Andreas Pfeffer, Sebastian Hahnel, Angelika Rauch and Martin Rosentritt
Ceramics 2025, 8(3), 92; https://doi.org/10.3390/ceramics8030092 - 22 Jul 2025
Viewed by 276
Abstract
The aim of translucency-enhancing liquids (TEL) is to locally influence the phase composition of zirconia in order to increase its translucency. This study aimed to determine the influence of TEL on 3Y- and 4Y-TZP zirconia concerning roughness, hardness, wear, flexural strength, dynamic stability [...] Read more.
The aim of translucency-enhancing liquids (TEL) is to locally influence the phase composition of zirconia in order to increase its translucency. This study aimed to determine the influence of TEL on 3Y- and 4Y-TZP zirconia concerning roughness, hardness, wear, flexural strength, dynamic stability and fracture force of fixed dental prostheses after thermal cycling and mechanical loading. Two zirconia materials (4Y-TZP; 3Y-TZP-LA, n = 8 per material and test) were investigated with and without prior application of TEL. Two-body wear tests were performed in a pneumatic pin-on-block design (50 N, 120,000 cycles, 1.6 Hz) with steatite balls (r = 1.5 mm) as antagonists. Mean and maximum vertical loss as well as roughness (Ra, Rz) were measured with a 3D laser-scanning microscope (KJ 3D, Keyence, J). Antagonist wear was determined as percent area of the projected antagonist area. Martens hardness (HM; ISO 14577-1) and biaxial flexural strength (BFS; ISO 6872) were investigated. The flexural fatigue limit BFSdyn was determined under cyclic loading in a staircase approach with a piston-on-three-ball-test. Thermal cycling and mechanical loading (TCML: 2 × 3000 × 5 °C/55 °C, 2 min/cycle, H2O dist., 1.2 × 106 force á 50 N) was performed on four-unit fixed dental prostheses (FDPs) (n = 8 per group) and the fracture force after TCML was determined. Statistics: ANOVA, Bonferroni test, Kaplan–Meier survival, Pearson correlation; α = 0.05. TEL application significantly influences roughness, hardness, biaxial flexural strength, dynamic performance, as well as fracture force after TCML in 3Y-TZP. For 4Y-TZP, a distinct influence of TEL was only identified for BFS. The application of TEL on 3Y- or 4Y-TZP did not affect wear. TEL application has a strong effect on the mechanical properties of 3Y-TZP and minor effects on 4Y-TZP. All effects of the TEL application are of a magnitude that is unlikely to restrict clinical application. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Graphical abstract

17 pages, 3902 KiB  
Article
Electrical Potential-Induced Lubricity Changes in an Ionic Liquid-Lubricated Friction Pair
by Raimondas Kreivaitis, Audrius Žunda and Albinas Andriušis
Lubricants 2025, 13(7), 311; https://doi.org/10.3390/lubricants13070311 - 17 Jul 2025
Viewed by 337
Abstract
The control of lubricity induced by electric potential is appealing for numerous applications. On the other hand, the high polarity of ionic liquids facilitates the adsorption of equally charged molecules onto polar surfaces. This phenomenon and its consequences are well understood at the [...] Read more.
The control of lubricity induced by electric potential is appealing for numerous applications. On the other hand, the high polarity of ionic liquids facilitates the adsorption of equally charged molecules onto polar surfaces. This phenomenon and its consequences are well understood at the nanoscale; however, they have recently garnered significant attention at the macroscale. This study investigates the lubricity of trihexyltetradecylphosphonium dicyanamide, a phosphonium ionic liquid, when used as a neat lubricant in reciprocating sliding under electrically charged conditions. Two different polarities with the same potential were applied to the friction pair of bearing steel against bearing steel while monitoring electrical contact resistance. The lubricity was evaluated through measurements of friction, wear, surface morphology, and composition. It was found that the application of electric potential significantly alters the lubricity of the investigated ionic liquid where a positive potential applied to the ball resulted in the least damaging situation. The recorded electrical contact resistance enabled the monitoring of tribofilm formation during reciprocation. It was found that there was minimal to no separation between interacting surfaces when the ball was changing direction. Full article
Show Figures

Figure 1

22 pages, 10008 KiB  
Article
Design and Testing of a Device to Investigate Dynamic Performance of Aero-Engine Rotor–Stator Rubbing Dynamics
by Qinqin Mu, Qun Yan, Peng Sun, Yonghui Chen, Jiaqi Chang and Shiyu Huo
Eng 2025, 6(7), 162; https://doi.org/10.3390/eng6070162 - 17 Jul 2025
Viewed by 215
Abstract
To analyze the wear performance induced by rotor–stator rubbing in an aero-engine sealing structure under authentic operating conditions, a transonic rotor system with double bearing is constructed. This system incorporates the disk, shaft, blades, joint bolts, and auxiliary support structure. The system was [...] Read more.
To analyze the wear performance induced by rotor–stator rubbing in an aero-engine sealing structure under authentic operating conditions, a transonic rotor system with double bearing is constructed. This system incorporates the disk, shaft, blades, joint bolts, and auxiliary support structure. The system was evaluated in terms of its critical speed, vibration characteristics, component strength under operational conditions, and response characteristics in abnormal extreme scenarios. A ball screw-type feeding system is employed to achieve precise rotor–stator rubbing during rotation by controlling the coating feed. Additionally, a quartz lamp heating system is used to apply thermal loads to coating specimens, and the appropriate heat insulation and cooling measures are implemented. Furthermore, a high-frequency rubbing force test platform is developed to capture the key characteristics caused by rubbing. The test rig can conduct response tests of the system with rotor–stator rubbing and abrasion tests with tip speeds reaching 425 m/s, feed rates ranging from 2 to 2000 μm/s, and heating temperatures up to 1200 °C. Test debugging has confirmed these specifications and successfully executed rubbing tests, which demonstrate stability throughout the process and provide reliable rubbing force test results. This designed test rig and analysis methodology offers valuable insights for developing high-speed rotating machinery. Full article
Show Figures

Figure 1

24 pages, 6089 KiB  
Article
An Optimized 1-D CNN-LSTM Approach for Fault Diagnosis of Rolling Bearings Considering Epistemic Uncertainty
by Onur Can Kalay
Machines 2025, 13(7), 612; https://doi.org/10.3390/machines13070612 - 16 Jul 2025
Viewed by 284
Abstract
Rolling bearings are indispensable but also the most fault-prone components of rotating machinery, typically used in fields such as industrial aircraft, production workshops, and manufacturing. They encounter diverse mechanical stresses, such as vibration and friction during operation, which may lead to wear and [...] Read more.
Rolling bearings are indispensable but also the most fault-prone components of rotating machinery, typically used in fields such as industrial aircraft, production workshops, and manufacturing. They encounter diverse mechanical stresses, such as vibration and friction during operation, which may lead to wear and fatigue cracks. From this standpoint, the present study combined a 1-D convolutional neural network (1-D CNN) with a long short-term memory (LSTM) algorithm for classifying different ball-bearing health conditions. A physics-guided method that adopts fault characteristics frequencies was used to calculate an optimal input size (sample length). Moreover, grid search was utilized to optimize (1) the number of epochs, (2) batch size, and (3) dropout ratio and further enhance the efficacy of the proposed 1-D CNN-LSTM network. Therefore, an attempt was made to reduce epistemic uncertainty that arises due to not knowing the best possible hyper-parameter configuration. Ultimately, the effectiveness of the physics-guided optimized 1-D CNN-LSTM was tested by comparing its performance with other state-of-the-art models. The findings revealed that the average accuracies could be enhanced by up to 20.717% with the help of the proposed approach after testing it on two benchmark datasets. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

21 pages, 13173 KiB  
Article
Surface Modification by Plasma Electrolytic Oxidation of Friction Surfacing 4043 Aluminum-Based Alloys Deposited onto Structural S235 Steel Substrate
by Roxana Muntean and Ion-Dragoș Uțu
Materials 2025, 18(14), 3302; https://doi.org/10.3390/ma18143302 - 13 Jul 2025
Viewed by 467
Abstract
The friction surfacing (FS) process has emerged over the past few years as a method for joining both similar and dissimilar materials, for volume damage repair of defective components, and for corrosion protection. The possibility to produce a metallic coating by FS, without [...] Read more.
The friction surfacing (FS) process has emerged over the past few years as a method for joining both similar and dissimilar materials, for volume damage repair of defective components, and for corrosion protection. The possibility to produce a metallic coating by FS, without melting the material, classifies this technique as distinct from other standard methods. This unconventional deposition method is based on the severe plastic deformation that appears on a rotating metallic rod (consumable material) pressed against the substrate under an axial load. The present study aims to investigate the tribological properties and corrosion resistance provided by the aluminum-based FS coatings deposited onto a structural S235 steel substrate and further modified by plasma electrolytic oxidation (PEO). During the PEO treatment, the formation of a ceramic film is enabled, while the hardness, chemical stability, corrosion, and wear resistance of the modified surfaces are considerably increased. The morpho-structural characteristics and chemical composition of the PEO-modified FS coatings are further investigated using scanning electron microscopy combined with energy dispersive spectroscopy analysis and X-ray diffraction. Dry sliding wear testing of the PEO-modified aluminum-based coatings was carried out using a ball-on-disc configuration, while the corrosion resistance was electrochemically evaluated in a 3.5 wt.% NaCl solution. The corrosion rates of the aluminum-based coatings decreased significantly when the PEO treatment was applied, while the wear rate was substantially reduced compared to the untreated aluminum-based coating and steel substrate, respectively. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

24 pages, 5982 KiB  
Article
Study on Friction and Wear Performance of Bionic Function Surface in High-Speed Ball Milling
by Youzheng Cui, Xinmiao Li, Minli Zheng, Haijing Mu, Chengxin Liu, Dongyang Wang, Bingyang Yan, Qingwei Li, Fengjuan Wang and Qingming Hu
Machines 2025, 13(7), 597; https://doi.org/10.3390/machines13070597 - 10 Jul 2025
Viewed by 463
Abstract
During the service life of automotive panel stamping dies, the surface is often subjected to high loads and repeated friction, resulting in excessive wear. This leads to die failure, reduced machining accuracy, and decreased production efficiency. To enhance the anti-friction and wear-resistant performance [...] Read more.
During the service life of automotive panel stamping dies, the surface is often subjected to high loads and repeated friction, resulting in excessive wear. This leads to die failure, reduced machining accuracy, and decreased production efficiency. To enhance the anti-friction and wear-resistant performance of die steel surfaces, this study introduces the concept of biomimetic engineering in surface science. By mimicking microstructural configurations found in nature with outstanding wear resistance, biomimetic functional surfaces were designed and fabricated. Specifically, quadrilateral dimples inspired by the back of dung beetles, pentagonal scales from armadillo skin, and hexagonal scales from the belly of desert vipers were selected as biological prototypes. These surface textures were fabricated on Cr12MoV die steel using high-speed ball-end milling. Finite element simulations and dry sliding wear tests were conducted to systematically investigate the tribological behavior of surfaces with different dimple geometries. The results showed that the quadrilateral dimple surface derived from the dung beetle exhibited the best performance in reducing friction and wear. Furthermore, the milling parameters for this surface were optimized using response surface methodology. After optimization, the friction coefficient was reduced by 21.3%, and the wear volume decreased by 38.6% compared to a smooth surface. This study confirms the feasibility of fabricating biomimetic functional surfaces via high-speed ball-end milling and establishes an integrated surface engineering approach combining biomimetic design, efficient manufacturing, and parameter optimization. The results provide both theoretical and methodological support for improving the service life and surface performance of large automotive panel dies. Full article
(This article belongs to the Section Friction and Tribology)
Show Figures

Figure 1

22 pages, 8872 KiB  
Article
Comprehensive Sliding Wear Analysis of 3D-Printed ABS, PLA, and HIPS: ANOVA, SEM Examination, and Wear Volume Measurements with Varying Layer Thickness
by Sinan Fidan, Satılmış Ürgün, Alp Eren Şahin, Mustafa Özgür Bora, Taner Yılmaz and Mehmet İskender Özsoy
Polymers 2025, 17(14), 1899; https://doi.org/10.3390/polym17141899 - 9 Jul 2025
Viewed by 436
Abstract
This study discusses the frictional wear performance of three 3D-printed materials, acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), and high-impact polystyrene (HIPS), while evaluating different layer thickness levels. The materials were subjected to wear volume and rate tests by ball-on-disc wear tests at [...] Read more.
This study discusses the frictional wear performance of three 3D-printed materials, acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), and high-impact polystyrene (HIPS), while evaluating different layer thickness levels. The materials were subjected to wear volume and rate tests by ball-on-disc wear tests at various thickness levels (0.1, 0.2, and 0.3 mm) and sliding distances. Lastly, SEM analysis was carried out to study the wear tracks and debris developed during the testing. Quantitatively, ABS maintained a mean wear volume below 0.15 mm3 across all test conditions (e.g., 0.05 ± 0.01 mm3 at 0.1 mm layer thickness and 150 m sliding distance), whereas PLA and HIPS recorded much higher averages of 1.5 mm3 and 3.0 mm3, respectively. With the increase in layer thickness, which caused an upward trend in the obtained results, the wear volume of the investigated materials also increased. ABS exhibited the smallest material loss of all three polymers; for example, at 0.1 mm layer thickness and a 150 m sliding distance, the mean wear volume was only 0.05 mm3, and even under the harshest condition tested (0.3 mm layer thickness, 300 m), the value remained below 0.15 mm3. PLA and HIPS showed higher wear volumes, while HIPS had the lowest resistance among the three materials. The multifunctional wear behavior difference contributed by material type was 59.76%, as shown through ANOVA, and that by layer thickness was 21.32%. Among the parameters investigated, material type had the largest control in wear behavior due to inherent variation in the structural characteristics of the material such as interlayer adhesion, toughness, and brittleness. For instance, the amorphous nature of ABS and its good layer adhesion provided significantly superior wear resistance compared to the brittle PLA and the poorly adhered HIPS. It is highlighted in this research that selecting appropriate material and layer thickness combinations can improve the durability of 3D-printed components. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

Back to TopTop