Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (355)

Search Parameters:
Keywords = baking evaluation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 18761 KiB  
Article
The Influence of Recipe Modification and the Technological Method on the Properties of Multigrain Snack Bars
by Hanna Kowalska, Ewelina Masiarz, Elżbieta Hać-Szymańczuk, Anna Żbikowska, Agata Marzec, Agnieszka Salamon, Mariola Kozłowska, Anna Ignaczak, Małgorzata Chobot, Wioletta Sobocińska and Jolanta Kowalska
Molecules 2025, 30(15), 3160; https://doi.org/10.3390/molecules30153160 - 29 Jul 2025
Viewed by 244
Abstract
This study aimed to assess the use of selected raw materials, such as whole-grain oat flakes, pumpkin seeds, sunflower seeds, and flaxseeds, to obtain bars using baking and drying methods. Modifying the bars’ composition involved selecting the fibre preparation, replacing water with NFC [...] Read more.
This study aimed to assess the use of selected raw materials, such as whole-grain oat flakes, pumpkin seeds, sunflower seeds, and flaxseeds, to obtain bars using baking and drying methods. Modifying the bars’ composition involved selecting the fibre preparation, replacing water with NFC juice, and using fresh apple juice and apple pomace. The Psyllium fibre preparation, also in the form of a mixture with apple fibre, was the most useful in dough cohesion and the quality of the bars. Baked bars were characterised by higher sensory quality than those obtained by drying. Microwave–convection drying was a good alternative to baking, primarily due to the lower temperature resulting in a lower acrylamide content and comparable product quality. The basic grain ingredients and fibre preparations mainly shaped the nutritional and energy value and the sensory and microbiological quality. Modifying the recipe using NFC or fresh juice and apple pomace allowed the bars to develop new properties and quality characteristics. The use of NFC juices resulted in a reduction in the pH of the bars, which is associated with a higher microbiological quality of the bars. All bars had low acrylamide content, significantly lower than the permissible level. Using fresh pomace or fibre preparations made from by-products is a possibility to increase the fibre content in the bars and a method of managing by-products. Full article
Show Figures

Figure 1

29 pages, 2969 KiB  
Review
Oleogels: Uses, Applications, and Potential in the Food Industry
by Abraham A. Abe, Iolinda Aiello, Cesare Oliviero Rossi and Paolino Caputo
Gels 2025, 11(7), 563; https://doi.org/10.3390/gels11070563 - 21 Jul 2025
Viewed by 313
Abstract
Oleogels are a subclass of organogels that present a healthier alternative to traditional saturated and trans solid fats in food products. The unique structure and composition that oleogels possess make them able to provide desirable sensory and textural features to a range of [...] Read more.
Oleogels are a subclass of organogels that present a healthier alternative to traditional saturated and trans solid fats in food products. The unique structure and composition that oleogels possess make them able to provide desirable sensory and textural features to a range of food products, such as baked goods, processed meats, dairy products, and confectionery, while also improving the nutritional profiles of these food products. The fact that oleogels have the potential to bring about healthier food products, thereby contributing to a better diet, makes interest in the subject ever-increasing, especially due to the global issue of obesity and related health issues. Research studies have demonstrated that oleogels can effectively replace conventional fats without compromising flavor or texture. The use of plant-based gelators brings about a reduction in saturated fat content, as well as aligns with consumer demands for clean-label and sustainable food options. Oleogels minimize oil migration in foods due to their high oil-binding capacity, which in turn enhances food product shelf life and stability. Although oleogels are highly advantageous, their adoption in the food industry presents challenges, such as oil stability, sensory acceptance, and the scalability of production processes. Concerns such as mixed consumer perceptions of taste and mouthfeel and oxidative stability during processing and storage evidence the need for further research to optimize oleogel formulations. Addressing these limitations is fundamental for amplifying the use of oleogels and fulfilling their promise as a sustainable and healthier fat alternative in food products. As the oleogel industry continues to evolve, future research directions will focus on enhancing understanding of their properties, improving sensory evaluations, addressing regulatory challenges, and promoting sustainable production practices. The present report summarizes and updates the state-of-the-art about the structure, the properties, and the applications of oleogels in the food industry to highlight their full potential. Full article
(This article belongs to the Special Issue Functionality of Oleogels and Bigels in Foods)
Show Figures

Figure 1

20 pages, 2541 KiB  
Article
Nutritional Enhancement of Crackers Through the Incorporation of By-Products from the Frozen Pumpkin Industry
by Miguel A. Gallardo, M. Esther Martínez-Navarro, Irene García Panadero, José E. Pardo and Manuel Álvarez-Ortí
Foods 2025, 14(14), 2548; https://doi.org/10.3390/foods14142548 - 21 Jul 2025
Viewed by 232
Abstract
The agri-food sector faces the challenge of valorizing by-products and reducing waste. The frozen pumpkin industry generates substantial amounts of by-products rich in nutritional value, especially β-carotene. This study evaluates the nutritional and physical impact of incorporating pumpkin pulp flour (dehydrated and freeze-dried) [...] Read more.
The agri-food sector faces the challenge of valorizing by-products and reducing waste. The frozen pumpkin industry generates substantial amounts of by-products rich in nutritional value, especially β-carotene. This study evaluates the nutritional and physical impact of incorporating pumpkin pulp flour (dehydrated and freeze-dried) obtained from by-products into cracker formulation. Crackers were prepared by replacing 10% and 20% of wheat flour with pumpkin flour, assessing the effects based on drying method. Physical parameters (expansion, color, and texture parameters) were measured, in the dough and in the baked products. Furthermore, β-carotene content was analyzed by HPLC-DAD, antioxidant capacity was measured with DPPH, ABTS, and ORAC, and total phenolic content was evaluated with the Folin–Ciocalteu method. Proximate composition and mineral content were also analyzed. Additionally, a preliminary sensory evaluation was conducted with 50 untrained consumer judges to assess acceptability of external appearance, texture, and taste. The inclusion of pumpkin flour significantly increased β-carotene content (up to 2.36 mg/100 g), total phenolics, and antioxidant activity of the baked crackers. Proximate analysis showed a marked improvement in fiber content and a slight reduction in energy value compared to wheat flour. Mineral analysis revealed that pumpkin flours exhibited significantly higher levels of K, Ca, Mg, and P, with improved but not always statistically significant retention in the final crackers. Freeze-dried flour retained more bioactive compounds and enhanced color. However, it also increased cracker hardness, particularly with dehydrated flour. Only the 10% freeze-dried formulation showed mechanical properties similar to those of the control. Sensory analysis indicated that all formulations were positively accepted, with the 10% freeze-dried sample showing the best balance in consumer preference across all evaluated attributes. Frozen pumpkin by-products can be effectively valorized through their incorporation into bakery products such as crackers, enhancing their nutritional and functional profile. Freeze-drying better preserves antioxidants and β-carotene, while a 10% substitution offers a balance between nutritional enrichment and technological performance and sensory acceptability. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

21 pages, 2852 KiB  
Article
Effect of Apple, Chestnut, and Acorn Flours on the Technological and Sensory Properties of Wheat Bread
by Fryderyk Sikora, Ireneusz Ochmian, Magdalena Sobolewska and Robert Iwański
Appl. Sci. 2025, 15(14), 8067; https://doi.org/10.3390/app15148067 - 20 Jul 2025
Viewed by 452
Abstract
The increasing interest in fibre-enriched and functional bakery products has led to the exploration of novel plant-based ingredients with both technological functionality and consumer acceptance. This study evaluates the effects of incorporating flours derived from apple (Malus domestica cv. Oberländer Himbeerapfel), sweet [...] Read more.
The increasing interest in fibre-enriched and functional bakery products has led to the exploration of novel plant-based ingredients with both technological functionality and consumer acceptance. This study evaluates the effects of incorporating flours derived from apple (Malus domestica cv. Oberländer Himbeerapfel), sweet chestnut (Castanea sativa), horse chestnut (Aesculus hippocastanum), and red, sessile, and pedunculate oak (Quercus rubra, Q. petraea, and Q. robur) into wheat bread at 5%, 10%, and 15% substitution levels. The impact on crumb structure, crust colour, textural parameters (hardness, adhesiveness, springiness), and sensory attributes was assessed. The inclusion of apple and sweet chestnut flours resulted in a softer crumb, lower adhesiveness, and higher sensory scores related to flavour, aroma, and crust appearance. In contrast, higher levels of oak- and horse-chestnut-derived flours increased crumb hardness and reduced overall acceptability due to bitterness or excessive density. Apple flour preserved crumb brightness and contributed to warm tones, while oak flours caused more intense crust darkening. These findings suggest that selected non-traditional flours, especially apple and sweet chestnut, can enhance the sensory and physical properties of wheat bread, supporting the development of fibre-rich, clean-label formulations aligned with consumer trends in sustainable and functional baking. Full article
Show Figures

Figure 1

23 pages, 6645 KiB  
Article
Encapsulation Process and Dynamic Characterization of SiC Half-Bridge Power Module: Electro-Thermal Co-Design and Experimental Validation
by Kaida Cai, Jing Xiao, Xingwei Su, Qiuhui Tang and Huayuan Deng
Micromachines 2025, 16(7), 824; https://doi.org/10.3390/mi16070824 - 19 Jul 2025
Viewed by 412
Abstract
Silicon carbide (SiC) half-bridge power modules are widely utilized in new energy power generation, electric vehicles, and industrial power supplies. To address the research gap in collaborative validation between electro-thermal coupling models and process reliability, this paper proposes a closed-loop methodology of “design-simulation-process-validation”. [...] Read more.
Silicon carbide (SiC) half-bridge power modules are widely utilized in new energy power generation, electric vehicles, and industrial power supplies. To address the research gap in collaborative validation between electro-thermal coupling models and process reliability, this paper proposes a closed-loop methodology of “design-simulation-process-validation”. This approach integrates in-depth electro-thermal simulation (LTspice XVII/COMSOL Multiphysics 6.3) with micro/nano-packaging processes (sintering/bonding). Firstly, a multifunctional double-pulse test board was designed for the dynamic characterization of SiC devices. LTspice simulations revealed the switching characteristics under an 800 V operating condition. Subsequently, a thermal simulation model was constructed in COMSOL to quantify the module junction temperature gradient (25 °C → 80 °C). Key process parameters affecting reliability were then quantified, including conductive adhesive sintering (S820-F680, 39.3 W/m·K), high-temperature baking at 175 °C, and aluminum wire bonding (15 mil wire diameter and 500 mW ultrasonic power/500 g bonding force). Finally, a double-pulse dynamic test platform was established to capture switching transient characteristics. Experimental results demonstrated the following: (1) The packaged module successfully passed the 800 V high-voltage validation. Measured drain current (4.62 A) exhibited an error of <0.65% compared to the simulated value (4.65 A). (2) The simulated junction temperature (80 °C) was significantly below the safety threshold (175 °C). (3) Microscopic examination using a Leica IVesta 3 microscope (55× magnification) confirmed the absence of voids at the sintering and bonding interfaces. (4) Frequency-dependent dynamic characterization revealed a 6 nH parasitic inductance via Ansys Q3D 2025 R1 simulation, with experimental validation at 8.3 nH through double-pulse testing. Thermal evaluations up to 200 kHz indicated 109 °C peak temperature (below 175 °C datasheet limit) and low switching losses. This work provides a critical process benchmark for the micro/nano-manufacturing of high-density SiC modules. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nanofabrication, 2nd Edition)
Show Figures

Figure 1

13 pages, 427 KiB  
Article
Impact of Thermal Processing on the Protein Digestibility of Sardines and Sprats
by Ivo Doskocil, Barbora Lampova, Petr Smid and Aneta Kopeć
Foods 2025, 14(12), 2096; https://doi.org/10.3390/foods14122096 - 14 Jun 2025
Viewed by 515
Abstract
Fish are a valuable source of high-quality protein and essential nutrients, making them an integral component of a healthy diet. However, protein digestibility, influenced by preparation methods, is a critical factor in assessing nutritional quality. This study aimed to evaluate the impact of [...] Read more.
Fish are a valuable source of high-quality protein and essential nutrients, making them an integral component of a healthy diet. However, protein digestibility, influenced by preparation methods, is a critical factor in assessing nutritional quality. This study aimed to evaluate the impact of various thermal processing methods on the protein digestibility of two commonly consumed small pelagic fish species: sardines (Sardina pilchardus) and sprats (Sprattus sprattus). Protein digestibility was assessed using two complementary approaches: total protein digestibility and the Digestible Indispensable Amino Acid Score (DIAAS). Fish samples were subjected to different cooking methods, including boiling, steaming, baking, and frying. All thermal treatments enhanced protein digestibility compared to raw fish. Fried samples exhibited the highest total protein digestibility, with sardines reaching 92.4 ± 4.3% and sprats reaching 89.5 ± 4.4%. DIAAS values corroborated these findings, indicating superior protein quality in fried fish. While frying yielded the highest digestibility scores, steaming and boiling provided a favourable balance between improved protein quality and lower potential health risks, with baking achieving comparable results. Full article
Show Figures

Figure 1

19 pages, 2458 KiB  
Article
Biomes Affect Baking Properties and Quality Parameters of Different Wheat Genotypes
by Larissa Alves Rodrigues, Lázaro da Costa Corrêa Cañizares, Silvia Leticia Rivero Meza, Newiton da Silva Timm, Igor Pirez Valério, Alison Lovegrove, Paulo Carteri Coradi and Maurício de Oliveira
Sustainability 2025, 17(12), 5236; https://doi.org/10.3390/su17125236 - 6 Jun 2025
Viewed by 468
Abstract
Wheat (Triticum aestivum L.) is predominantly cultivated in the Atlantic Forest biome. However, the recent expansion of agricultural frontiers in Brazil has led to its introduction into the Savannah biome. The commercial and technological quality parameters of wheat are determined by the [...] Read more.
Wheat (Triticum aestivum L.) is predominantly cultivated in the Atlantic Forest biome. However, the recent expansion of agricultural frontiers in Brazil has led to its introduction into the Savannah biome. The commercial and technological quality parameters of wheat are determined by the interaction between genotype and growing environment. In this context, the objective of this study was to evaluate the effects of six wheat genotypes cultivated in five distinct environments, three located in the Atlantic Forest biome and two in the Savannah biome. The results demonstrated that environmental conditions significantly influenced protein and starch contents, which in turn affected hectoliter weight and falling number. On the other hand, genotypic variation had a marked effect on thousand-grain weight, colorimetric parameters (L* and b*), water and sodium retention capacities, dough tenacity and extensibility, as well as gluten strength. Wheat genotypes cultivated in the Savannah biome exhibited superior baking performance and technological quality, characterized by elevated starch content, enhanced gluten strength (with the exception of the genotype Feroz), and greater dough tenacity (except for the genotype Guardião), when compared to those cultivated in the Atlantic Forest biome. These results highlight the potential for identifying more sustainable cultivation environments, considering the different biomes, for the production of wheat with superior nutritional and technological quality, promoting the efficient use of natural and economic resources throughout the production cycle. Full article
(This article belongs to the Section Sustainable Food)
Show Figures

Figure 1

23 pages, 1814 KiB  
Article
Repurposing Olive Oil Mill Wastewater into a Valuable Ingredient for Functional Bread Production
by Ignazio Restivo, Lino Sciurba, Serena Indelicato, Mario Allegra, Claudia Lino, Giuliana Garofalo, David Bongiorno, Salvatore Davino, Giuseppe Avellone, Luca Settanni, Luisa Tesoriere and Raimondo Gaglio
Foods 2025, 14(11), 1945; https://doi.org/10.3390/foods14111945 - 29 May 2025
Viewed by 542
Abstract
Untreated olive oil mill wastewater (OOMW) from conventionally farmed olives was used in bread production to create a new functional product. Two types of bread were developed with 50% OOMW (EXP-1) and 100% OOMW (EXP-2) replacing water. Two leavening processes were tested: sourdough [...] Read more.
Untreated olive oil mill wastewater (OOMW) from conventionally farmed olives was used in bread production to create a new functional product. Two types of bread were developed with 50% OOMW (EXP-1) and 100% OOMW (EXP-2) replacing water. Two leavening processes were tested: sourdough inoculum (S) vs. biga-like inoculum (B), with controls (CTR) without OOMW addition. The doughs were monitored throughout the acidification process by measuring pH, total titratable acidity, and the development of key fermentative microorganisms. To assess the hygienic quality during fermentation, plate count techniques were employed. After baking, the breads were evaluated for various quality parameters, including weight loss, specific volume, crumb and crust colors, image analysis, and the presence of spore-forming bacteria. Volatile compounds released from the breads were identified using solid-phase microextraction coupled with gas chromatography–mass spectrometry (SPME-GC/MS). Polyphenolic compounds were analyzed via liquid chromatography–mass spectrometry (LC-MS). To assess the functional properties of the final products, the breads were homogenized with synthetic human saliva and subjected to in vitro digestion. OOMW did not significantly affect the growth of yeasts and lactic acid bacteria (LAB) or the acidification process. However, in terms of the specific volume and alveolation, breads from the S process and OOMW had poor quality, while those from the B process had better quality. Experimental breads (EXPB-1 and EXPB-2) contained higher levels of alcohols (especially ethanol and isobutyl alcohol), carbonyl compounds (like benzaldehyde), esters (such as ethyl caproate and ethyl caprylate), and terpenes. OOMW introduced phenolic compounds like hydroxytyrosol, coumaric acid, caffeic acid, and trans-hydroxycinnamic acid, which were absent in CTRB breads. Functionalization of EXPB-1 and EXPB-2 breads was demonstrated by a 2.4- and 3.9-fold increase in Trolox equivalents, respectively. However, OOMW did not reduce post-prandial hyper-glycemia, as starch digestibility was similar between CTRB and EXPB breads. The sensory analysis, which focused solely on the visual, structural, and olfactory characteristics of the breads, excluding taste testing to prevent potential health risks from residual pesticides, showed a high appreciation for EXPB-1 and EXPB-2 breads, scoring higher than CTRB in the overall assessment. Full article
Show Figures

Figure 1

14 pages, 1907 KiB  
Article
Use of Agave Bagasse and Lactococcus lactis in Sourdough Production: Drying Effects on Bioactive Compounds
by Paola Itzel Bautista-Espinoza, Aniello Falciano, Rosalía Reynoso-Camacho, Everardo Mares-Mares, Silvia Lorena Amaya-Llamo, Carlos Regalado-González and Prospero Di Pierro
Foods 2025, 14(10), 1748; https://doi.org/10.3390/foods14101748 - 14 May 2025
Viewed by 352
Abstract
The wastage of by-products generated in the food industry is an issue that should be addressed by determining a second use for these products, with sourdough fermentation being the most popular technology used. The aim of this research was to evaluate the impact [...] Read more.
The wastage of by-products generated in the food industry is an issue that should be addressed by determining a second use for these products, with sourdough fermentation being the most popular technology used. The aim of this research was to evaluate the impact of adding agave bagasse (AB) and Lactococcus lactis NRRL B-50307 to sourdough that was later used in the formulation of bread rolls. Five treatments were tested: B1: wheat flour; BI2: wheat flour inoculated with L. lactis (1 × 106 CFU/mL); C10: wheat flour + AB (10% w/w); T5: 5% AB + wheat flour inoculated with L. lactis (1 × 106 CFU/mL); and T10: 10% AB + wheat flour inoculated with L. lactis (1 × 106 CFU/mL). Sourdoughs were back-slopped daily for 6 days, dried in a climatic chamber, reactivated, and left to ferment for 24 h. Samples of each treatment of dried and reactivated sourdough were collected and tests for antioxidant activity (DPPH and ABTS), total amino acid content (OPA), and phenolic and flavonoid content were performed. Phenolic compounds and flavonoids decreased when the sourdough was dried (1.5 to 2.0 mg/g of quercetin); however, an increase in bioactive compounds was observed after reactivation, with the treatments with AB recording the highest values (2.5 mg/g). The DPPH and ABTS tests showed that T10 had the highest activity (25% and 23%, respectively). The OPA results showed an increment in amino acid content (2.0 mg lysine/g), indicating proteolysis. The fermentation curves showed that leavening time was achieved after 600 min of fermentation. AB addition did not affect the viscosity of the sourdough rolls. Sourdough with added AB and L. lactis provided a novel approach to achieve more sustainable baked goods. The drying process decreased the sourdough’s bioactive compounds, which were recovered after reactivation. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

20 pages, 1539 KiB  
Article
The Effects of Sourdough Fermentation on the Biochemical Properties, Aroma Profile and Leavening Capacity of Carob Flour
by Gemma Sanmartín, Jose A. Prieto, Miguel Morard, Francisco Estruch, Josep Blasco-García and Francisca Randez-Gil
Foods 2025, 14(10), 1677; https://doi.org/10.3390/foods14101677 - 9 May 2025
Viewed by 687
Abstract
Roasted carob flour is a sustainable ingredient rich in dietary fiber, polyphenols, and pinitol, offering potential for both food and pharmaceutical applications. However, its high sugar content and the presence of undesirable compounds such as furans present challenges for its use in bread [...] Read more.
Roasted carob flour is a sustainable ingredient rich in dietary fiber, polyphenols, and pinitol, offering potential for both food and pharmaceutical applications. However, its high sugar content and the presence of undesirable compounds such as furans present challenges for its use in bread making. This study evaluated the effects of prolonged sourdough fermentation on roasted carob flour, with a focus on microbial dynamics and its functional and technological properties. Carob and carob–wheat sourdoughs were prepared using a mixed starter culture comprising three lactic acid bacteria (Lactiplantibacillus plantarum, Fructilactobacillus sanfranciscensis, and Lactobacillus helveticus) and three yeast species (Saccharomyces cerevisiae, Kazachstania humilis, and Torulaspora delbrueckii). The sourdoughs underwent six consecutive refreshment cycles and were analyzed to determine their pH, microbial and biochemical composition, gassing power, and volatile organic compounds (VOCs). The carob–wheat sourdough exhibited faster acidification and higher lactic acid bacteria (LAB) activity, resulting in a 90–98% reduction in the sugar content, compared to 60% in the carob sourdough. Microbial sequencing revealed that L. plantarum was the dominant species in all samples, while K. humilis and S. cerevisiae were enriched in carob and carob–wheat sourdough, respectively. Both types of sourdough demonstrated effective leavening in bread dough without the addition of commercial yeast. Fermentation also modified the VOC profiles, increasing esters and alcohols while reducing acids, aldehydes, ketones, and furans. While the antioxidant activity showed a slight decline, the pinitol content remained unchanged. These findings suggest that extended sourdough fermentation, supported by multiple refreshments, enhances the baking suitability of roasted carob flour and supports its application as a functional, sustainable ingredient. Full article
Show Figures

Graphical abstract

15 pages, 711 KiB  
Article
Acrylamide- and Hydroxymethylfurfural-Forming Capacity of Alternative Flours in Heated Dough Systems
by Marta Mesias and Francisco J. Morales
Foods 2025, 14(9), 1597; https://doi.org/10.3390/foods14091597 - 30 Apr 2025
Viewed by 457
Abstract
The use of alternative flours is becoming more common in the food industry to enhance the nutritional and sensory properties of baked goods. However, these changes may also affect the formation of acrylamide, a potentially carcinogenic and genotoxic compound generated in foods heated [...] Read more.
The use of alternative flours is becoming more common in the food industry to enhance the nutritional and sensory properties of baked goods. However, these changes may also affect the formation of acrylamide, a potentially carcinogenic and genotoxic compound generated in foods heated above 120 °C. This study evaluated the acrylamide-forming potential of 16 flours from cereals, pseudocereals, legumes, fruits, and roots. Samples were analyzed for acrylamide precursors—reducing sugars and free asparagine—and tested in model dough systems with and without added glucose. All samples were baked at 150 °C for 30 min. Hydroxymethylfurfural (HMF) was also determined as a marker of thermal damage. In water-hydrated systems, acrylamide was only detected in wheat, rye, and coconut flours (23–61 µg/kg). When glucose was added, acrylamide levels increased in all systems except cassava. Lentil flour produced the highest levels (154 µg/kg), while corn flour showed the lowest (20 µg/kg). HMF levels followed a similar trend, with lentil flour again showing the highest content (232.3 mg/kg). These results highlight the importance of evaluating acrylamide formation when using non-wheat flours, especially in formulations containing sugars. Additional mitigation strategies may be needed to ensure the safety of these innovative food products. Full article
Show Figures

Figure 1

12 pages, 1211 KiB  
Article
Impact of Microbial Leavening Agents and Fermentation Time on the In Vitro Digestibility of Neapolitan Pizza
by Luigia Di Stasio, Salvatore De Caro, Serena Marulo, Tiziana Di Renzo, Pasquale Ferranti, Anna Reale and Gianfranco Mamone
Foods 2025, 14(8), 1418; https://doi.org/10.3390/foods14081418 - 20 Apr 2025
Viewed by 550
Abstract
Baking leavening agents and fermentation conditions may influence the gastrointestinal fate of nutrients in baked goods, thereby affecting their bioavailability. This study aimed to evaluate the digestibility of sourdough pizza fermented with lactic acid bacteria species (Levilactobacillus brevis, Fructilactobacillus sanfranciscensis, Leuconostoc pseudomesenteroides [...] Read more.
Baking leavening agents and fermentation conditions may influence the gastrointestinal fate of nutrients in baked goods, thereby affecting their bioavailability. This study aimed to evaluate the digestibility of sourdough pizza fermented with lactic acid bacteria species (Levilactobacillus brevis, Fructilactobacillus sanfranciscensis, Leuconostoc pseudomesenteroides) and yeast, compared to traditional pizza fermented with baker′s yeast. The effects of leavening time (up to 48 h) and microbial leavening agents on the nutritional profile and digestibility of baked pizzas were investigated by examining the microbiological and physico-chemical changes in the doughs, with a particular focus on the sugar content. Additionally, the degree of protein hydrolysis and the levels of FODMAPs (fermentable oligosaccharides, disaccharides, monosaccharides, and polyols) were quantified on the cooked pizzas both before and after in vitro gastrointestinal digestion. In vitro protein digestibility was not significantly influenced by the type of microbial leavening agent used or fermentation time. However, extended fermentation, particularly with lactic acid bacteria sourdough, resulted in a notable decrease in FODMAPs, thereby enhancing the digestibility and overall health profile of the pizza for individuals sensitive to these compounds. Future research should further explore the mechanisms behind these changes and their implications for dietary recommendations. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

17 pages, 5369 KiB  
Article
Analysis of the Impact of the Addition of Alphitobius diaperinus Larval Powder on the Physicochemical, Textural, and Sensorial Properties of Shortbread Cookies
by Sylwia Mierzejewska, Zdzisław Domiszewski, Joanna Piepiórka-Stepuk, Anna Bielicka, Arkadiusz Szpicer and Iwona Wojtasik-Kalinowska
Appl. Sci. 2025, 15(8), 4269; https://doi.org/10.3390/app15084269 - 12 Apr 2025
Cited by 1 | Viewed by 508
Abstract
Based on the EFSA opinion dated 4 July 2022, the safety of frozen and freeze-dried larvae of Alphitobius diaperinus for human consumption was confirmed, leading to their approval as a novel food in the European Union. Given the increasing demand for sustainable protein [...] Read more.
Based on the EFSA opinion dated 4 July 2022, the safety of frozen and freeze-dried larvae of Alphitobius diaperinus for human consumption was confirmed, leading to their approval as a novel food in the European Union. Given the increasing demand for sustainable protein sources and alternative foods, studies explored the application of A. diaperinus larval powder as an additive in shortbread cookie production. In this experiment, wheat flour was partially replaced with insect powder at varying levels (10%, 20%, 30%, and 50% w/w), while butter was substituted with margarine. The analysis covered the protein content, moisture, ash, color, textural properties, and sensorial evaluation of the baked products. The results indicated that increasing the proportion of insect powder significantly raised the protein content and reduced moisture, impacting the cookie structure and brittleness. The sensorial evaluation indicated that incorporating up to 20% insect powder produced cookies with an optimal flavor, aroma, and texture balance, assessed at the level of 4.5 points and 11.7 N, respectively. Storage studies revealed that higher insect powder levels slowed moisture loss and reduced hardness over a 14-day period, stabilizing texture. However, excessive insect powder incorporation led to reduced consumer acceptability. These findings confirm the potential of A. diaperinus powder as an innovative additive to enhance the nutritional value of traditional baked goods, while also underscoring the need to modify technological parameters during production. Full article
Show Figures

Figure 1

17 pages, 1440 KiB  
Article
Development of Gluten-Free Cakes Using Protein Concentrate Obtained from Cold-Pressed Terebinth (Pistacia terebinthus L.) Oil By-Products
by Muhammed Ozgolet, Salih Karasu and Muhammed Zahid Kasapoglu
Foods 2025, 14(6), 1049; https://doi.org/10.3390/foods14061049 - 19 Mar 2025
Viewed by 738
Abstract
The present research aimed to incorporate terebinth seed protein into gluten-free cakes in order to increase their protein content and improve their technological properties. The terebinth protein replaced the rice flour–corn starch mixture used in control cakes at varying levels (3%, 6%, 9%, [...] Read more.
The present research aimed to incorporate terebinth seed protein into gluten-free cakes in order to increase their protein content and improve their technological properties. The terebinth protein replaced the rice flour–corn starch mixture used in control cakes at varying levels (3%, 6%, 9%, and 12%). The rheological properties of the cake batters were evaluated, along with the physicochemical attributes, textural properties, sensory attributes, and oxidative stability of the baked cakes. As the protein concentration increased, the consistency index of the cake batters also increased. All batters showed shear-thinning behavior, indicating pseudoplastic fluid behavior, and showed a viscoelastic nature reflected by the storage modulus (G′) exceeding the loss modulus (G″). Both G′ and G″ values increase with increasing protein content. The softest texture was observed in the control cake produced with wheat flour, followed by the cakes with 3% and 6% protein addition, while higher protein levels (9% and 12%) resulted in firmer cakes. Furthermore, oxidative stability improved with a higher level of protein. The addition of protein did not negatively affect sensory quality across all measured parameters. This study demonstrates the potential of terebinth protein to enhance the protein content and oxidative stability of gluten-free cakes that maintain their sensory attributes. Full article
Show Figures

Graphical abstract

17 pages, 4188 KiB  
Article
Two-Material-Based Transtibial Socket Designs for Enhanced Load-Bearing Capacity Using FEA
by Prashant Jindal, Prashant Prakash, Harsh Bassal, Prashant Singh, Muhammad Arsh M. Din, Cleveland T. Barnett and Philip Breedon
Prosthesis 2025, 7(2), 30; https://doi.org/10.3390/prosthesis7020030 - 13 Mar 2025
Cited by 2 | Viewed by 1349
Abstract
Background: Transtibial prosthetic sockets are critical components in the complete assembly of a prosthetic, as they form the major load-bearing parts by housing the residual limb of a prosthesis user. Conventional procedures for manufacturing these sockets require repeated iterations and manual casting, baking, [...] Read more.
Background: Transtibial prosthetic sockets are critical components in the complete assembly of a prosthetic, as they form the major load-bearing parts by housing the residual limb of a prosthesis user. Conventional procedures for manufacturing these sockets require repeated iterations and manual casting, baking, and drying, which often lead to longer processing and waiting times. Additive Manufacturing (AM) enables the creation of bespoke designs with meticulous control over the socket’s shape, thickness, and material composition. Method: To design and propose an optimal socket design to a lower-limb prosthetic user based on their preference of activity such as walking, running, and jumping, we investigated seven materials—Polypropylene (PP) standard material for conventional socket fabrication, Polylactic-acid-plus (PLA+), Polyamide (PA) Natural, Polyamide-6-Glass-Fiber (PA6-GF), Polyamide-copolymer (CoPA), Polyamide-6-Carbon-Fiber (PA6-CF), and Polyamide-12-Carbon-Fiber (PA12-CF)—that have AM compatibility by subjecting them to heavy external loading and evaluating their von Mises stress–strain behavior. Result: Using Finite Element Analysis (FEA), we evaluated a single-material design and a combination design with two materials—one major (low cost) and one minor (higher cost)—to optimize a composition that would bear heavy external loads without yielding. A maximum load-bearing capacity of 3650 N was achieved with the combination of PLA+ and 31.54 vol% PA6-CF (30.23 weight%, 99.13 g), costing about USD 14 for the total socket material. Similarly, a combination of PLA+ with 31.54 vol% PA6-GF (30.76 weight%, 101.67 g) exhibited a maximum load-bearing capacity of 2528.91 N. Conclusions: The presence of high-strength CF and GF in minor compositions and at critical locations within the transtibial socket are the suggested reasons for these enhanced load-bearing capacities, due to which these sockets could be used for undertaking a wider range of activities by the prosthesis users. Full article
Show Figures

Figure 1

Back to TopTop