Acrylamide- and Hydroxymethylfurfural-Forming Capacity of Alternative Flours in Heated Dough Systems †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Samples
2.3. Determination of Moisture
2.4. Determination of Water-Holding Capacity (WHC)
2.5. Determination of pH
2.6. Determination of Color
2.7. Determination of Reducing Sugars
2.8. Determination of Acrylamide by LC-ESI-MS/MS
2.9. Determination of Asparagine
2.10. Determination of Hydroxymethylfurfural (HMF) by HPLC-DAD
2.11. Statistical Analysis
3. Results and Discussion
Limitations of the Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AOAC | Association of Official Analytical Chemists |
EFSA | European Food Safety Authority |
FAPAS | Food Analysis Performance Assessment Scheme |
HMF | Hydroxymethylfurfural |
HPLC-DAD | High-performance liquid chromatography with diode-array detection |
LC-ESI-MS/MS | Liquid chromatography coupled with electrospray ionization tandem mass spectrometry |
SD | Standard deviation |
WHC | Water-holding capacity |
References
- Scherf, C.A. Health concerns related to plant-based foods. In Handbook of Plant-Based Food and Drinks Design; Boukid, F., Rosell, C.M., Gasparre, N., Eds.; Academic Press: London, UK, 2024; pp. 371–390. [Google Scholar]
- Vidaurre-Ruiz, J.; Bender, D.; Schönlechner, R. Exploiting pseudocereals as novel high protein grains. J. Cereal Sci. 2023, 114, 103795. [Google Scholar] [CrossRef]
- Martínez-Villaluenga, C.; Peñas, E.; Hernández-Ledesma, B. Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods. Food Chem. Toxicol. 2020, 137, 111178. [Google Scholar] [CrossRef]
- Lai, H.M.; Lin, T.C. Bakery products: Science and Technology. In Bakery Products. Science and Technology; Hui, H.Y., Ed.; Blackwell Publishing Professional: Ames, IA, USA, 2006; pp. 3–65. [Google Scholar]
- Žilić, S.; Aktağ, I.G.; Dodiga, D.; Filipovića, M.; Gökmen, V. Acrylamide formation in biscuits made of different wholegrain flours depending on their free asparagine content and baking conditions. Food Res. Int. 2019, 132, 109109. [Google Scholar] [CrossRef] [PubMed]
- Mesías, M.; Morales, F.J. Acrylamide in commercial potato crisps from Spanish market: Trends from 2004 to 2014 and assessment of the dietary exposure. Food Chem. Toxicol. 2015, 81, 104–110. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer (IARC). Monographs on the Evaluation of Carcinogenic Risks to Humans (Volume 60). Available online: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Some-Industrial-Chemicals-1994 (accessed on 7 February 2025).
- EFSA (European Food Safety Authority). Scientific Opinion on acrylamide in food. EFSA J. 2015, 13, 4104. [Google Scholar]
- Elmore, J.S.; Xu, F.; Maveddat, A.; Kapetanou, R.; Qi, H.; Oruna-Concha, M.J. Acrylamide content of vegetable chips. In Food-Borne Toxicants: Formation, Analysis, and Toxicology; Granvogl, M., MacMahon, S., Eds.; American Chemical Society: Washington, DC, USA, 2019; pp. 15–26. [Google Scholar]
- Guerra-Hernández, E. Acrylamide in battered foods. In Acrylamide in Food. Analysis, Content and Potential Health Effects; Gökmen, V., Ed.; Academic Press: Oxford, UK, 2016; pp. 253–274. [Google Scholar]
- Mesías, M.; Palenzuela, C.; Olombrada, E.; Holgado, F.; Morales, F.J. Acrylamide and hydroxymethylfurfural formation in roasted almonds (Prunus dulcis). Food Control 2024, 156, 110140. [Google Scholar] [CrossRef]
- Badoud, F.; Goeckener, B.; Severin, K.; Ernest, M.; Romero, R.; Alzieu, T.; Glabasnia, A.; Hamel, J.; Buecking, M.; Delatour, T. Fate of acrylamide during coffee roasting and in vitro digestion assessed with carbon 14- and carbon 13-labeled materials. Food Chem. 2020, 320, 126601. [Google Scholar] [CrossRef]
- EC (European Commission). Commission regulation (EU) 2017/2158 of 20 November 2017 establishing mitigation measures and benchmark levels for the reduction of the presence of acrylamide in food. OJEC 2017, L304, 24–44. [Google Scholar]
- European Commission. Commission recommendation (EU) 2019/1888 of 7 November 2019 on the monitoring of the presence of acrylamide in certain foods (C/2019/7876). OJEC 2019, L290, 31–33. [Google Scholar]
- Høie, A.H.; Svendsen, C.; Brunborg, G.; Glatt, H.; Alexander, J.; Meinl, W.; Husøy, T. Genotoxicity of three food processing contaminants in transgenic mice expressing human sulfotransferases 1A1 and 1A2 as assessed by the in vivo alkaline single cell gel electrophoresis assay. Environ. Mol. Mutagen. 2015, 56, 709–714. [Google Scholar] [CrossRef]
- Pastoriza de la Cueva, S.; Álvarez, J.; Végvári, Á.; Montilla-Gómez, J.; Cruz-López, O.; Delgado-Andrade, C.; Rufián-Henares, J.A. Relationship between HMF intake and SMF formation in vivo: An animal and human study. Mol. Nutr. Food Res. 2017, 61, 1600773–1600781. [Google Scholar] [CrossRef]
- Mesías, M.; Holgado, F.; Márquez-Ruiz, G.; Morales, F.J. Effect of sodium replacement in cookies on the formation of process contaminants and lipid oxidation. LWT Food Sci. Technol. 2015, 62, 633–639. [Google Scholar] [CrossRef]
- FDE (FoodDrinkEurope). Acrylamide Toolbox 2019. Available online: https://www.fooddrinkeurope.eu/uploads/publications_documents/FoodDrinkEurope_Acrylamide_Toolbox_2019.pdf (accessed on 7 February 2025).
- Association of Official Analytical Chemists. Official Method of Analysis of AOAC International, 16th ed.; AOAC: Rockville, MD, USA, 1999. [Google Scholar]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Taş, N.G.; Kocadağlı, T.; Balagiannis, D.P.; Gökmen, V.; Parker, J.K. Effect of salts on the formation of acrylamide, 5-hydroxymethylfurfural and flavour compounds in a crust-like glucose/wheat flour dough system during heating. Food Chem. 2023, 410, 135358. [Google Scholar]
- Rydberg, P.; Eriksson, S.; Tareke, E.; Karlsson, P.; Ehrenberg, L.; Törnqvist, M. Investigations of Acrylamide Formation and Possible Pathways for Formation in Heat-Treated Foodstuffs. J. Agric. Food Chem. 2003, 51, 7012–7018. [Google Scholar] [CrossRef] [PubMed]
- Muttucumaru, N.; Halford, N.G.; Elmore, J.S.; Dodson, A.T.; Parry, M.; Shewry, P.R.; Mottram, D.S. Formation of high levels of acrylamide during the processing of flour derived from sulfate-deprived wheat. J. Agric. Food Chem. 2006, 54, 8951–8955. [Google Scholar] [CrossRef]
- Postles, J.; Powers, S.J.; Elmore, J.S.; Mottram, D.S.; Halford, N.G. Effects of variety and nutrient availability on the acrylamide-forming potential of rye grain. J. Cereal Sci. 2013, 57, 463–470. [Google Scholar] [CrossRef]
- Huang, S.; Martínez, M.M.; Bohrer, B.M. The compositional and Functional Attributes of Commercial Flours from Tropical Fruits (Breadfruit and Banana). Foods 2019, 8, 586. [Google Scholar] [CrossRef]
- Silva, J.S.; Ortiz, D.W. Physicochemical and technological evaluation of flours made from fruit co-products for use in food products. Res. Soc. Dev. 2020, 9, e192932742. [Google Scholar] [CrossRef]
- Daviädek, T.; Robert, F.; Devaud, S.; Vera, F.A.; Blank, I. Sugar Fragmentation in the Maillard Reaction Cascade: Formation of Short-Chain Carboxylic Acids by a New Oxidative r-Dicarbonyl Cleavage Pathway. J. Agric. Food Chem. 2006, 54, 6677–6684. [Google Scholar] [CrossRef]
- Çelik, E.E.; Gökmen, V. Formation of Maillard reaction products in bread crust-like model system made of different whole cereal flours. Eur. Food Res. Technol. 2020, 246, 1207–1218. [Google Scholar] [CrossRef]
- Starowicz, M.; Zieliński, H. How Maillard Reaction Influences Sensorial Properties (Color, Flavor and Texture) of Food Products? Food Rev. Int. 2019, 35, 707–725. [Google Scholar] [CrossRef]
- Verma, V.; Yadav, N. Acrylamide content in starch based commercial foods by using high performance liquid chromatography and its association with browning index. Curr. Res. Food Sci. 2020, 5, 464–470. [Google Scholar] [CrossRef]
- Mottram, D.S.; Wedzicha, B.L.; Dodson, A.T. Acrylamide is formed in the Maillard reaction. Nature 2002, 419, 448–449. [Google Scholar] [CrossRef]
- Stadler, R.H.; Blank, I.; Varga, N.; Robert, F.; Hau, J.; Guy, P.A.; Robert, M.C.; Riediker, S. Acrylamide from Maillard reaction products. Nature 2002, 419, 449–450. [Google Scholar] [CrossRef]
- Ciesarová, Z.; Kukurová, K.; Torbica, A.; Belović, M.; Horváthová, J.; Daško, L.; Jelemenská, V. Acrylamide and 5-hydroxymethylfurfural in thermally treated non-wheat flours and respective breads. Food Chem. 2021, 365, 130491. [Google Scholar] [CrossRef]
- Sá, A.G.A.; House, J.D. Adding pulse flours to cereal-based snacks and bakery products: An overview of free asparagine quantification methods and mitigation strategies of acrylamide formation in foods. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13260. [Google Scholar] [CrossRef] [PubMed]
- Portman, D.; Maharjan, P.; Blanchard, C.; Naiker, M.; Panozzo, J.F. Impact of thermal processing on levels of acrylamide in a wheat-lentil flour matrix. Legum. Sci. 2021, 3, e78. [Google Scholar] [CrossRef]
- Galani, J.H.I.; Patel, N.J.; Talati, J.G. Acrylamide-forming potential of cereals, legumes and roots and tubers analyzed by UPLC-UV. Food Chem. Toxicol. 2017, 108, 244–248. [Google Scholar] [CrossRef]
- Miśkiewicz, K.; Rosicka-Kaczmarek, J.; Nebesny, E. Effects of chickpea protein on carbohydrate reactivity in acrylamide formation in low humidity model systems. Foods 2020, 9, 167. [Google Scholar] [CrossRef]
- Streekstra, H.; Livingston, A. Acrylamide in bread and baked products. In Breadmaking, 3rd ed.; Cauvain, S.P., Ed.; Woodhead Publishing: Cambridge, UK, 2020; pp. 289–321. [Google Scholar]
- Amrein, T.M.; Schönbächler, B.; Escher, F.; Amado, R. Acrylamide in gingerbread: Critical factors for formation and possible ways for reduction. J. Agric. Food Chem. 2004, 52, 4282–4288. [Google Scholar] [CrossRef] [PubMed]
- Capuano, E.; Ferrigno, A.; Acampa, I.; Ait-Ameur, L.; Fogliano, V. Characterization of the Maillard reaction in bread crisps. Eur. Food Res. Technol. 2008, 228, 311–319. [Google Scholar] [CrossRef]
- Shen, Y.T.; Chen, G.J.; Li, Y.H. Effect of added sugars and amino acids on acrylamide formation in white pan bread. Cereal Chem. 2019, 96, 545–553. [Google Scholar] [CrossRef]
- Lea, P.J.; Sodek, L.; Parry, M.A.J.; Shewry, P.R.; Halford, N.G. Asparagine in plants. Ann. Appl. Biol. 2007, 150, 1–26. [Google Scholar] [CrossRef]
- Capuano, E.; Flogliano, V. Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT Food Sci. Technol. 2011, 44, 793–810. [Google Scholar] [CrossRef]
- Gökmen, V.; Açar, O.C.; Köksel, H.; Açar, J. Effects of dough formula and baking conditions on acrylamide and hydroxymethylfurfural formation in cookies. Food Chem. 2007, 104, 1136–1142. [Google Scholar] [CrossRef]
- Jahreis, G.; Brese, M.; Leiterer, M.; Schäfer, U.; Böhm, V. Legume flours: Nutritionally important sources of protein and dietary fiber. Ernahr. Umsch. 2016, 63, 36–42. [Google Scholar]
- Gökmen, V.; Kocadağlı, T.; Göncüoğlu, N.; Mogol, B.A. Model studies on the role of 5-hydroxymethyl-2-furfural in acrylamide formation from asparagine. Food Chem. 2012, 132, 168–174. [Google Scholar] [CrossRef]
Samples | Moisture | WHC | Free Reducing Sugars | Total Reducing Sugars | Asparagine |
---|---|---|---|---|---|
Cereals | |||||
Wheat | 10.3 ± 0.0 g | 83.6 ± 3.4 b | 17.1 ± 0.3 l | 30.0 ± 0.3 bc | 141 ± 31 ab |
Corn | 10.8 ± 0.1 h | 141.3 ± 0.4 g | 7.5 ± 0.1 g | 26.0 ± 0.5 b | 172 ± 14 ab |
Durum wheat | 10.6 ± 0.0 gh | 76.3 ± 0.8 ab | 10.1 ± 0.2 h | 30.2 ± 1.1 b | 188 ± 9 ab |
Oat | 9.9 ± 0.1 f | 97.1 ± 0.6 c | 0.7 ± 0.0 a | 11.0 ± 0.2 a | 309 ± 21 abc |
Rice | 10.8 ± 0.1 f | 107.5 ± 0.4 fg | 1.6 ± 0.0 j | 6.7 ± 0.1 a | 27 ± 2 d |
Rye | 10.0 ± 0.1 h | 136.6 ± 0.8 cd | 13.5 ± 0.2 b | 95.5 ± 2.1 f | 741 ± 41 a |
Spelt | 10.5 ± 0.0 g | 65.2 ± 0.6 a | 5.9 ± 0.2 e | 36.6 ± 0.5 c | 370 ± 0 bc |
Pseudocereals | |||||
Buckwheat | 11.7 ± 0.0 i | 134.0 ± 0.0 fg | 4.0 ± 0.4 d | 25.1 ± 0.2 b | 122 ± 14 ab |
Quinoa | 9.6 ± 0.0 e | 108.9 ± 0.5 cd | 25.8 ± 0.3 m | 48.8 ± 1.8 d | 49 ± 4 a |
Teff | 9.9 ± 0.0 f | 116.6 ± 0.3 de | 6.6 ± 0.1 e | 26.7 ± 0.4 b | 264 ± 4 ab |
Legumes | |||||
Chickpea | 8.9 ± 0.0 d | 106.4 ± 0.6 cd | 7.5 ± 0.2 g | 74.3 ± 1.1 e | 211 ± 12 ab |
Lentils | 9.9± 0.0 f | 123.9 ± 1.3 ef | 6.8 ± 0.0 f | 72.3 ± 2.9 e | 1195 ± 57 e |
Soybean | 6.7 ± 0.0 b | 212.8 ± 2.9 h | 2.7 ± 0.0 c | 124.7 ± 2.5 g | 190 ± 0 ab |
Fruits | |||||
Chestnut | 5.7 ± 0.0 a | 463.2 ± 1.6 j | 11.3 ± 0.1 i | 229.0 ± 4.2 h | 270 ± 2 ab |
Coconut | 7.0 ± 0.0 c | 424.6 ± 8.3 i | 16.1 ± 0.1 k | 251.1 ± 1.9 i | 571 ± 71 cd |
Roots | |||||
Cassava | 10.8 ± 0.0 h | 75.4 ± 1.6 ab | <LOQ | <LOQ | <LOQ |
Samples | Flour | Water | Glucose |
---|---|---|---|
Cereals | |||
Wheat | 6.1 ± 0.0 a | 6.2 ± 0.0 bcdef | 5.6 ± 0.0 e |
Corn | 6.2 ± 0.0 ab | 6.1 ± 0.0 abcde | 5.4 ± 0.0 cde |
Durum wheat | 6.7 ± 0.0 e | 6.2 ± 0.0 cdef | 5.4 ± 0.1 de |
Oat | 6.2 ± 0.0 ab | 6.3 ±4 0.2 f | 5.5 ± 0.0 e |
Rice | 6.6 ± 0.0 cde | 6.2 ± 0.0 cdef | 5.2 ± 0.0 bc |
Rye | 6.5 ± 0.0 de | 6.3 ± 0.0 ef | 6.1 ± 0.0 f |
Spelt | 6.2 ± 0.0 ab | 6.3 ± 0.1 def | 4.9 ± 0.0 ab |
Pseudocereals | |||
Buckwheat | 6.7 ± 0.0 e | 5.9 ± 0.0 abcd | 5.3 ± 0.1 cd |
Quinoa | 6.5 ± 0.0 cde | 6.0 ± 0.3 abc | 5.4 ± 0.1 de |
Teff | 6.7 ± 0.0 e | 6.3 ± 0.0 ef | 5.4 ± 0.0 cde |
Legumes | |||
Chickpea | 6.3 ± 0.0 abc | 6.0 ± 0.3 abcd | 4.9 ± 0.0 ab |
Lentils | 6.3 ± 0.0 abc | 5.7 ± 0.2 abc | 5.4 ± 0.0 cde |
Soybean | 7.0 ± 0.0 f | 5.8 ± 0.1 abc | 5.4 ± 0.0 cde |
Fruits | |||
Chestnut | 6.4 ± 0.0 bcd | 5.7 ± 0.1 a | 4.9 ± 0.1 a |
Coconut | 6.3 ± 0.0 abc | 5.7 ± 0.1 ab | 5.3 ± 0.1 cd |
Roots | |||
Cassava | 6.6 ± 0.1 de | 5.8 ± 0.2 def | 5.2 ± 0.0 cd |
Acrylamide | HMF | |||
---|---|---|---|---|
Samples | Water | Glucose | Water | Glucose |
Cereals | ||||
Wheat | 23 ± 1 a | 33 ± 1 abc | 2.5 ± 0.2 bcde | 121.9 ± 1.01 bcd |
Corn | <LOQ | 20 ± 1 a | 1.0 ± 0.1 ab | 94.8 ± 2.4 abc |
Durum wheat | <LOQ | 33 ± 0 abc | 1.9 ± 0.1 abcd | 99.3 ± 1.2 abc |
Oat | <LOQ | 30 ± 3 ab | 0.5 ± 0.0 ab | 126.5 ± 9.4 bcde |
Rice | <LOQ | 27 ± 1 ab | 0.1 ± 0.0 a | 80.3 ± 4.4 ab |
Rye | 37 ± 4 a | 93 ± 15 ef | 7.3 ± 0.5 f | 139.5 ± 9.2 cdef |
Spelt | <LOQ | 31 ± 0 ab | 1.6 ± 0.2 abc | 151.9 ± 0.3 defg |
Pseudocereals | ||||
Buckwheat | <LOQ | 38 ± 2 abc | 1.2 ± 0.0 ab | 139.7 ± 8.9 cdef |
Quinoa | <LOQ | 31 ± 2 ab | 11.7 ± 1.0 g | 176.6 ± 9.7 fg |
Teff | <LOQ | 39 ± 2 abc | 3.9 ± 0.2 de | 180.1 ± 12.4 fg |
Legumes | ||||
Chickpea | <LOQ | 59 ± 4 cd | 1.5 ± 0.2 abc | 193.4 ± 6.0 gh |
Lentils | <LOQ | 154 ± 4 g | 1.6 ± 0.1 abc | 232.3 ± 16.9 h |
Soybean | <LOQ | 48 ± 1 bcd | 0.1 ± 0.0 a | 170.5 ± 9.2 efg |
Fruits | ||||
Chestnut | <LOQ | 70 ± 3 de | 3.6 ± 0.5 cde | 67.7 ± 0.6 a |
Coconut | 61 ± 8 b | 109 ± 4 f | 4.4 ± 0.6 e | 64.1 ± 2.3 a |
Roots | ||||
Cassava | <LOQ | <LOQ | 0.1 ± 0.0 a | 69.0 ± 4.5 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mesias, M.; Morales, F.J. Acrylamide- and Hydroxymethylfurfural-Forming Capacity of Alternative Flours in Heated Dough Systems. Foods 2025, 14, 1597. https://doi.org/10.3390/foods14091597
Mesias M, Morales FJ. Acrylamide- and Hydroxymethylfurfural-Forming Capacity of Alternative Flours in Heated Dough Systems. Foods. 2025; 14(9):1597. https://doi.org/10.3390/foods14091597
Chicago/Turabian StyleMesias, Marta, and Francisco J. Morales. 2025. "Acrylamide- and Hydroxymethylfurfural-Forming Capacity of Alternative Flours in Heated Dough Systems" Foods 14, no. 9: 1597. https://doi.org/10.3390/foods14091597
APA StyleMesias, M., & Morales, F. J. (2025). Acrylamide- and Hydroxymethylfurfural-Forming Capacity of Alternative Flours in Heated Dough Systems. Foods, 14(9), 1597. https://doi.org/10.3390/foods14091597