Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (583)

Search Parameters:
Keywords = bakery product

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2670 KiB  
Review
Sodium Chloride in Food
by Sylwia Chudy, Agnieszka Makowska and Ryszard Kowalski
Foods 2025, 14(15), 2741; https://doi.org/10.3390/foods14152741 - 6 Aug 2025
Abstract
Sodium chloride is a chemical compound that has been encountered by people for thousands of years, and plays a significant role in their lives. The aim of this article is to provide a comprehensive review of table salt from the perspective of health, [...] Read more.
Sodium chloride is a chemical compound that has been encountered by people for thousands of years, and plays a significant role in their lives. The aim of this article is to provide a comprehensive review of table salt from the perspective of health, food technology, and cultural heritage. The article discusses salt extraction and production, its composition and consumption, and its effects on the human body. The authors draw attention to new trends, such as the use of micronized salt, microencapsulated salt, and salt with colors and shapes that differ from those of typical table salt. Scientific studies on the presence of undesirable substances and the use of salt additives were reviewed. The role of salt in dairy, meat, and bakery technology was illustrated. Gaps in research on salt were highlighted. In the last part, all types of salt with geographical indications are shown. The paper suggests that producers with a long tradition in the salt sector should apply for the European geographical indications to enhance their national and cultural heritage and promote their region. The review highlights the need for further research on all aspects discussed. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

13 pages, 487 KiB  
Article
From Waste to Worth: Utilizing Downgraded Greek Chestnuts in Gluten-Free Functional Biscuits
by Vasiliki Kossyva, Mariastela Vrontaki, Vasileios Manouras, Anastasia Tzereme, Ermioni Meleti, Lamprini Dimitriou, Ioannis Maisoglou, Maria Alexandraki, Michalis Koureas, Eleni Malissiova and Athanasios Manouras
Sci 2025, 7(3), 106; https://doi.org/10.3390/sci7030106 - 2 Aug 2025
Viewed by 171
Abstract
This study investigates the potential of using downgraded chestnuts, which are unsuitable for commercial sale, from five distinct Greek regions to produce chestnut flour and formulate gluten-free biscuits. Chestnuts were dried and milled into flour, which was then used as the sole flour [...] Read more.
This study investigates the potential of using downgraded chestnuts, which are unsuitable for commercial sale, from five distinct Greek regions to produce chestnut flour and formulate gluten-free biscuits. Chestnuts were dried and milled into flour, which was then used as the sole flour ingredient in the biscuit formulation, in order to assess its nutritional and functional contribution. The moisture, lipid, protein, and ash contents were analyzed in chestnut flour samples, which showed significant regional differences. Chestnut flour biscuits (CFB) were compared to wheat flour biscuits (WFB). CFB exhibited significantly higher ash content (3.01% compared to 0.94% in WFB) and greater antioxidant capacity, with DPPH scavenging activity reaching 70.83%, as opposed to 61.67% in WFB, while maintaining similar moisture and lipid levels. Although CFB showed slightly lower protein content, the elevated mineral and phenolic compound levels contributed to its functional value. These findings indicate that downgraded chestnuts can be upcycled into gluten-free bakery products with improved functional characteristics. Given their antioxidant activity and mineral content, chestnut flour biscuits may serve as a valuable option for gluten-free diets, supporting circular economy principles and reducing food waste. Full article
Show Figures

Figure 1

19 pages, 618 KiB  
Article
Application of Microwaves to Reduce Checking in Low-Fat Biscuits: Impact on Sensory Characteristics and Energy Consumption
by Raquel Rodríguez, Xabier Murgui, Yolanda Rios, Eduardo Puértolas and Izaskun Pérez
Foods 2025, 14(15), 2693; https://doi.org/10.3390/foods14152693 - 30 Jul 2025
Viewed by 186
Abstract
The use of microwaves (MWs) has been proposed as an energy-efficient method for reducing checking. Along with understanding moisture distribution, it is essential to consider structural characteristics to explain how MWs reduce checking. The influence of MWs on these characteristics depends on the [...] Read more.
The use of microwaves (MWs) has been proposed as an energy-efficient method for reducing checking. Along with understanding moisture distribution, it is essential to consider structural characteristics to explain how MWs reduce checking. The influence of MWs on these characteristics depends on the food matrix’s dielectric and viscoelastic properties, which vary significantly between fresh and pre-baked dough. This study investigates the effects of MW treatment applied before (MW-O) or after conventional oven baking (O-MW) on low-fat biscuits that are prone to checking. Color (CIELab), thickness, moisture content and distribution, checking rate, texture, sensory properties, energy consumption and baking time were analyzed. The findings suggest that MWs reduce checking rate by eliminating internal moisture differences, while also changing structural properties, as evidenced by increased thickness and hardness. MW-O eliminated checking (control samples showed 100%) but negatively affected color, texture (increased hardness and breaking work), and sensory quality. The O-MW checking rate (3.41%) was slightly higher than in MW-O, probably due to the resulting different structural properties (less thickness, less hardness and breaking work). O-MW biscuits were the most preferred by consumers (54.76% ranked them first), with color and texture close to the control samples. MW-O reduced total energy consumption by 16.39% and baking time by 25.00%. For producers, these improvements could compensate for the lower biscuit quality. O-MW did not affect energy consumption but reduced baking time by 14.38%. The productivity improvement, along with the reduction in checking and the satisfactory sensory quality, indicates that O-MW could be beneficial for the bakery sector. Full article
(This article belongs to the Special Issue Cereal Processing and Quality Control Technology)
Show Figures

Figure 1

18 pages, 7224 KiB  
Article
Exploring Sorghum Flour as a Sustainable Ingredient in Gluten-Free Cookie Production
by Simona Bukonja, Jelena Tomić, Mladenka Pestorić, Nikola Maravić, Saša Despotović, Zorica Tomičić, Biljana Kiprovski and Nebojša Đ. Pantelić
Foods 2025, 14(15), 2668; https://doi.org/10.3390/foods14152668 - 29 Jul 2025
Viewed by 198
Abstract
In this study, whole grain sorghum flour was used to partially substitute the gluten-free flour blend in cookie formulation at 20% (C20) and 40% (C40) replacement levels. The goal was to explore its potential to improve the nutritional value and sensory appeal of [...] Read more.
In this study, whole grain sorghum flour was used to partially substitute the gluten-free flour blend in cookie formulation at 20% (C20) and 40% (C40) replacement levels. The goal was to explore its potential to improve the nutritional value and sensory appeal of cookies relative to conventional and commercially available gluten-free alternatives. Nutritional analysis revealed that cookies with added sorghum flour showed increased levels of protein, ash, and polyphenolic compounds, while maintaining favorable macronutrient profiles. Notably, several bioactive compounds, such as gallic acid, caffeic acid, and apigenin, were detected exclusively in sorghum-containing samples, suggesting enhanced functional properties. Despite these compositional changes, textural measurements showed no significant differences in hardness or fracturability compared with the control. Sensory profiling using the Rate-All-That-Apply (RATA) method demonstrated that both samples (C20 and C40) achieved balanced results in terms of aroma as well as texture and were generally well accepted by the panel. The results indicate that moderate inclusion of sorghum flour (20% and 40%) can improve the sensory and nutritional profiles of gluten-free cookies without compromising product acceptability. Sorghum thus offers a promising pathway for the development of high-quality, health-oriented, gluten-free bakery products. Full article
(This article belongs to the Special Issue Formulation and Nutritional Aspects of Cereal-Based Functional Foods)
Show Figures

Figure 1

23 pages, 2900 KiB  
Review
Type I Sourdough Preservation Strategies and the Contribution of Microbial Biological Resource Centers to Biodiversity Protection: A Narrative Review
by Roberta Coronas, Angela Bianco, Anna Maria Laura Sanna, Giacomo Zara and Marilena Budroni
Foods 2025, 14(15), 2624; https://doi.org/10.3390/foods14152624 - 26 Jul 2025
Viewed by 216
Abstract
Traditional type I sourdoughs are being rediscovered and increasingly used in artisanal and industrial bakeries due to the unique taste and texture, potential health benefits, and longer shelf life they confer on to baked products. These unique properties are attributed to the diverse [...] Read more.
Traditional type I sourdoughs are being rediscovered and increasingly used in artisanal and industrial bakeries due to the unique taste and texture, potential health benefits, and longer shelf life they confer on to baked products. These unique properties are attributed to the diverse microbial communities of sourdough, comprising both yeasts and bacteria. The traditional preservation method for type I sourdough (i.e., continuous backslopping) may lead, over time, to taxonomic and functional rearrangements of its microbial communities. Consequently, significant deviations in the characteristics of baked products can occur. In this context, this review aims to summarize the recent literature on the long-term preservation and maintenance strategies for type I sourdough and highlight the essential role that microbial biological resource centers (mBRCs) could play in the preservation and sharing of sourdough microbiomes. Specifically, the identification of appropriate preservation methods, implementation of well-defined access and benefit-sharing protocols, and development of microbiome-specific datasets, should be encouraged within the context of mBRCs. These infrastructures are expected to play a pivotal role in preserving the microbiota of fermented foods, serving as a crucial element for innovation and the safeguarding of traditional foods and culinary heritage. Full article
(This article belongs to the Special Issue Feature Reviews on Food Microbiology)
Show Figures

Figure 1

17 pages, 1522 KiB  
Article
Investigating the Microstructural and Textural Properties of Cookies Using Plant-Based Bigel as an Alternative to Commercial Solid Fat
by Ingrid Contardo, Sonia Millao, Eduardo Morales, Mónica Rubilar and Marcela Quilaqueo
Gels 2025, 11(8), 571; https://doi.org/10.3390/gels11080571 - 23 Jul 2025
Viewed by 300
Abstract
In response to the growing demand for improving the nutritional profile of widely consumed products, such as cookies, there has been an increasing interest in fat replacers that preserve sensory attributes and have a more positive health effect. Among the novel fat replacement [...] Read more.
In response to the growing demand for improving the nutritional profile of widely consumed products, such as cookies, there has been an increasing interest in fat replacers that preserve sensory attributes and have a more positive health effect. Among the novel fat replacement strategies, the incorporation of bigels into food formulations has been studied; however, the impact of Arabic gum hydrogel-based bigels on microstructural properties and their correlation with the texture and quality of bakery products remains underexplored. In this study, cookies were formulated using a plant-based bigel (canola oil-carnauba wax oleogel mixed with Arabic gum hydrogel) as a fat substitute, and their microstructural, textural, and quality parameters were compared with those of commercial butter-based cookies. Compared to butter (firmness of 29,102 g, spreadability of 59,624 g∙s, and adhesiveness of 2282 g), bigel exhibited a softer (firmness of 576 g), more spreadable (spreadability of 457 g∙s), and less adhesive texture (adhesiveness of 136 g), while its rheological properties showed similar behavior but at a lower magnitude. Bigel exhibited high thermal stability and good elastic and thixotropic behaviors, indicating reversible structural breakdown and recovery. Cookies prepared with bigels instead of butter exhibited a similar proximate composition, with a slight increase in lipid content (11.7%). The physical dimensions and density were similar across the formulations. However, the microstructural analysis revealed differences when bigels were incorporated into cookies, reducing porosity (55%) and increasing the mean pore size (1781 µm); in contrast, mean wall thickness remained unaffected. Despite these structural modifications, the potential of bigels as viable and nutritionally enhanced substitutes for conventional fats in bakery products was demonstrated. Full article
(This article belongs to the Special Issue Food Gels: Structure and Function)
Show Figures

Graphical abstract

20 pages, 2541 KiB  
Article
Nutritional Enhancement of Crackers Through the Incorporation of By-Products from the Frozen Pumpkin Industry
by Miguel A. Gallardo, M. Esther Martínez-Navarro, Irene García Panadero, José E. Pardo and Manuel Álvarez-Ortí
Foods 2025, 14(14), 2548; https://doi.org/10.3390/foods14142548 - 21 Jul 2025
Viewed by 281
Abstract
The agri-food sector faces the challenge of valorizing by-products and reducing waste. The frozen pumpkin industry generates substantial amounts of by-products rich in nutritional value, especially β-carotene. This study evaluates the nutritional and physical impact of incorporating pumpkin pulp flour (dehydrated and freeze-dried) [...] Read more.
The agri-food sector faces the challenge of valorizing by-products and reducing waste. The frozen pumpkin industry generates substantial amounts of by-products rich in nutritional value, especially β-carotene. This study evaluates the nutritional and physical impact of incorporating pumpkin pulp flour (dehydrated and freeze-dried) obtained from by-products into cracker formulation. Crackers were prepared by replacing 10% and 20% of wheat flour with pumpkin flour, assessing the effects based on drying method. Physical parameters (expansion, color, and texture parameters) were measured, in the dough and in the baked products. Furthermore, β-carotene content was analyzed by HPLC-DAD, antioxidant capacity was measured with DPPH, ABTS, and ORAC, and total phenolic content was evaluated with the Folin–Ciocalteu method. Proximate composition and mineral content were also analyzed. Additionally, a preliminary sensory evaluation was conducted with 50 untrained consumer judges to assess acceptability of external appearance, texture, and taste. The inclusion of pumpkin flour significantly increased β-carotene content (up to 2.36 mg/100 g), total phenolics, and antioxidant activity of the baked crackers. Proximate analysis showed a marked improvement in fiber content and a slight reduction in energy value compared to wheat flour. Mineral analysis revealed that pumpkin flours exhibited significantly higher levels of K, Ca, Mg, and P, with improved but not always statistically significant retention in the final crackers. Freeze-dried flour retained more bioactive compounds and enhanced color. However, it also increased cracker hardness, particularly with dehydrated flour. Only the 10% freeze-dried formulation showed mechanical properties similar to those of the control. Sensory analysis indicated that all formulations were positively accepted, with the 10% freeze-dried sample showing the best balance in consumer preference across all evaluated attributes. Frozen pumpkin by-products can be effectively valorized through their incorporation into bakery products such as crackers, enhancing their nutritional and functional profile. Freeze-drying better preserves antioxidants and β-carotene, while a 10% substitution offers a balance between nutritional enrichment and technological performance and sensory acceptability. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

33 pages, 4464 KiB  
Article
Physicochemical and Structural Characteristics of Date Seed and Starch Composite Powder as Prepared by Heating at Different Temperatures
by Muna Al-Mawali, Maha Al-Khalili, Mohammed Al-Khusaibi, Myo Tay Zar Myint, Htet Htet Kyaw, Mohammad Shafiur Rahman, Abdullahi Idris Muhammad and Nasser Al-Habsi
Polymers 2025, 17(14), 1993; https://doi.org/10.3390/polym17141993 - 21 Jul 2025
Viewed by 535
Abstract
Date seeds, a by-product of the pitted-date industry, are often discarded as waste. This study investigated the interaction between date seed powder and starch at different concentrations (0, 1, 5, 10, and 20 g/25 g composite) and temperatures (40 °C and 70 °C). [...] Read more.
Date seeds, a by-product of the pitted-date industry, are often discarded as waste. This study investigated the interaction between date seed powder and starch at different concentrations (0, 1, 5, 10, and 20 g/25 g composite) and temperatures (40 °C and 70 °C). The results revealed that the hygroscopicity of date seed powder (9.94 g/100 g) was lower than starch (13.39 g/100 g), and its water absorption (75.8%) was also lower than starch (88.3%), leading to a reduced absorbance capacity in composites. However, the solubility increased with a higher date seed content due to its greater solubility (17.8 g/L) compared to starch (1.6 g/L). A morphological analysis showed rough, agglomerated particles in date seed powder, while starch had smooth, spherical shapes. This study also found that the composites formed larger particles at 40 °C and porous structures at 70 °C. Crystallinity decreased from 41.6% to 12.8% (40 °C) and from 24.0% to 11.3% (70 °C). A thermal analysis revealed three endothermic peaks (glass transitions and solid melting), with an additional oil-melting peak in high-seed samples. FTIR spectra showed changes in peak intensities and locations upon seed incorporation. Overall, these findings revealed that, the incorporation of date seed powder–starch composites into bakery formulations offers a promising strategy for developing fiber-enriched products, positioning them as functional ingredients with added nutritional value. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

21 pages, 2852 KiB  
Article
Effect of Apple, Chestnut, and Acorn Flours on the Technological and Sensory Properties of Wheat Bread
by Fryderyk Sikora, Ireneusz Ochmian, Magdalena Sobolewska and Robert Iwański
Appl. Sci. 2025, 15(14), 8067; https://doi.org/10.3390/app15148067 - 20 Jul 2025
Viewed by 472
Abstract
The increasing interest in fibre-enriched and functional bakery products has led to the exploration of novel plant-based ingredients with both technological functionality and consumer acceptance. This study evaluates the effects of incorporating flours derived from apple (Malus domestica cv. Oberländer Himbeerapfel), sweet [...] Read more.
The increasing interest in fibre-enriched and functional bakery products has led to the exploration of novel plant-based ingredients with both technological functionality and consumer acceptance. This study evaluates the effects of incorporating flours derived from apple (Malus domestica cv. Oberländer Himbeerapfel), sweet chestnut (Castanea sativa), horse chestnut (Aesculus hippocastanum), and red, sessile, and pedunculate oak (Quercus rubra, Q. petraea, and Q. robur) into wheat bread at 5%, 10%, and 15% substitution levels. The impact on crumb structure, crust colour, textural parameters (hardness, adhesiveness, springiness), and sensory attributes was assessed. The inclusion of apple and sweet chestnut flours resulted in a softer crumb, lower adhesiveness, and higher sensory scores related to flavour, aroma, and crust appearance. In contrast, higher levels of oak- and horse-chestnut-derived flours increased crumb hardness and reduced overall acceptability due to bitterness or excessive density. Apple flour preserved crumb brightness and contributed to warm tones, while oak flours caused more intense crust darkening. These findings suggest that selected non-traditional flours, especially apple and sweet chestnut, can enhance the sensory and physical properties of wheat bread, supporting the development of fibre-rich, clean-label formulations aligned with consumer trends in sustainable and functional baking. Full article
Show Figures

Figure 1

18 pages, 2803 KiB  
Article
Single-Gelator Structuring of Hemp Oil Using Agarose: Comparative Assembly, Electronic Nose Profiling, and Functional Performance of Hydroleogels Versus Oleogels in Shortbread Cookies
by Oliwia Paroń and Joanna Harasym
Polymers 2025, 17(14), 1988; https://doi.org/10.3390/polym17141988 - 20 Jul 2025
Viewed by 331
Abstract
This study demonstrates an innovative single-gelator approach using agarose (1% and 2% w/w) to structure cold-pressed hemp oil into functional fat replacers for shortbread cookies, achieving a 40% reduction in saturated fatty acids compared to butter. Comprehensive characterization revealed that hydroleogels exhibited [...] Read more.
This study demonstrates an innovative single-gelator approach using agarose (1% and 2% w/w) to structure cold-pressed hemp oil into functional fat replacers for shortbread cookies, achieving a 40% reduction in saturated fatty acids compared to butter. Comprehensive characterization revealed that hydroleogels exhibited superior crispiness (45.67 ± 3.86 N for 2% agarose hydroleogel—HOG 2%) but problematic water activity (0.39–0.61), approaching microbial growth thresholds. Conversely, oleogels showed lower crispiness (2.27–3.43 N) but optimal moisture control (aw = 0.12–0.16) and superior color stability during 10-day storage. Electronic nose analysis using 10 metal oxide sensors revealed that oleogel systems preserved characteristic aroma profiles significantly better than hydroleogels, with 2% agarose oleogel (OG 2%) showing 34% less aroma decay than pure hemp oil. The 2% agarose oleogel demonstrated optimal performance with minimal baking loss (5.87 ± 0.20%), excellent structural integrity, and stable volatile compound retention over storage. Morphological analysis showed that hemp oil cookies achieved the highest specific volume (2.22 ± 0.07 cm3/g), while structured systems ranged from 1.12 to 1.31 cm3/g. This work establishes agarose as a versatile single gelator for hemp oil structuring and validates electronic nose technology for the objective quality assessment of fat-replaced bakery products, advancing healthier food design through molecular approaches. Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Figure 1

39 pages, 1423 KiB  
Review
Sourdough Microbiota for Improving Bread Preservation and Safety: Main Directions and New Strategies
by Yelena Oleinikova, Alma Amangeldi, Aizada Zhaksylyk, Margarita Saubenova and Amankeldy Sadanov
Foods 2025, 14(14), 2443; https://doi.org/10.3390/foods14142443 - 11 Jul 2025
Viewed by 601
Abstract
Bread is consumed daily throughout the world as an important source of nutrients. However, bakery products are highly susceptible to spoilage, especially fungal, which is a source of bread losses and a threat to food security and consumer health. The use of sourdough [...] Read more.
Bread is consumed daily throughout the world as an important source of nutrients. However, bakery products are highly susceptible to spoilage, especially fungal, which is a source of bread losses and a threat to food security and consumer health. The use of sourdough is the best alternative to chemical preservatives, while providing a number of advantages to baked bread. This review highlights the main areas in the field of bread protection and covers the principal representatives of sourdough microbiota and their contribution to protecting bread from spoilage. The review is mainly based on publications in the field of research over the last five years, identifying new directions and strategies for bread protection related to the use of sourdoughs. A list of the main compounds produced by lactic acid bacteria of the sourdough, which contribute to the protection of bread from fungal spoilage, is presented. The contribution of other microorganisms to the antifungal effect is also considered. Finally, some prospects for the development of research in the field of sourdoughs are determined. Full article
Show Figures

Figure 1

18 pages, 588 KiB  
Review
Digital Twin for Energy-Intelligent Bakery Operations: Concepts and Applications
by Tsega Y. Melesse, Mohamed Shameer Peer, Suganthi Ramasamy, Vigneselvan Sivasubramaniyam, Mattia Braggio and Pier Francesco Orrù
Energies 2025, 18(14), 3660; https://doi.org/10.3390/en18143660 - 10 Jul 2025
Viewed by 361
Abstract
The bakery industry is undergoing a profound digital transformation driven by the increasing need for enhanced energy efficiency, operational resilience, and a commitment to environmental sustainability. Digital Twin (DT) technology, recognized as a fundamental component of Industry 4.0, provides advanced capabilities for intelligent [...] Read more.
The bakery industry is undergoing a profound digital transformation driven by the increasing need for enhanced energy efficiency, operational resilience, and a commitment to environmental sustainability. Digital Twin (DT) technology, recognized as a fundamental component of Industry 4.0, provides advanced capabilities for intelligent energy management across bakery operations. This paper utilizes a narrative and integrative review approach, conceptually integrating emerging developments in using DT with respect toenergy management in the baking industry, including real-time energy monitoring, predictive maintenance, dynamic optimization of production processes, and the seamless integration of renewable energy sources. The study underscores the transformative benefits of adopting DT technologies, such as improvements in energy utilization, greater equipment reliability, increased operational transparency, and stronger alignment with global sustainability objectives. It also critically examines the technical, organizational, and financial barriers limiting broader adoption, particularly among small and medium-sized enterprises (SMEs). Future research directions are identified, emphasizing the potential of artificial intelligence-driven DTs, the adoption of edge computing, the development of scalable and modular platforms, and the necessity of supportive policy frameworks. By integrating DT technologies, bakeries can shift from traditional reactive energy practices to proactive, data-driven strategies, paving the way for greater competitiveness, operational excellence, and a sustainable future. Full article
Show Figures

Figure 1

25 pages, 845 KiB  
Review
Edible Tubers as a Source of Bioactive Compounds in Baked Goods: Benefits and Drawbacks
by Rafał Wiśniewski, Ewa Pejcz and Joanna Harasym
Molecules 2025, 30(13), 2838; https://doi.org/10.3390/molecules30132838 - 2 Jul 2025
Viewed by 483
Abstract
Root and tuber vegetables—such as beetroot (Beta vulgaris), carrot (Daucus carota), cassava (Manihot esculenta), potato (Solanum tuberosum), taro (Colocasia esculenta), and Jerusalem artichoke (Helianthus tuberosus)—are increasingly recognized not only for their [...] Read more.
Root and tuber vegetables—such as beetroot (Beta vulgaris), carrot (Daucus carota), cassava (Manihot esculenta), potato (Solanum tuberosum), taro (Colocasia esculenta), and Jerusalem artichoke (Helianthus tuberosus)—are increasingly recognized not only for their nutritional value but also for their richness in bioactive compounds, including polyphenols, dietary fiber, resistant starch, and prebiotic carbohydrates that exhibit varying levels of antioxidant, anti-inflammatory, and glycemic-regulating properties. Incorporating these vegetables into baked goods offers both functional and technological benefits, such as improved moisture retention, reduced acrylamide formation, and suitability for gluten-free formulations. The processing conditions can significantly influence the stability and bioavailability of these bioactive components, while the presence of antinutritional factors—such as phytates, cyanogenic glycosides, and FODMAPs (fermentable oligo-, di-, monosaccharides, and polyols)—needs careful optimization. The structured narrative literature review approach allowed collecting studies that examine both the beneficial and potential drawbacks of tuber-based ingredients. This review provides a comprehensive overview of the chemical composition, health-promoting effects, and technological roles of edible tubers in bakery applications, also addressing current challenges related to processing, formulation, and consumer acceptance. Special emphasis is placed on the valorization of tuber by-products, enhancement of functional properties, and the promotion of sustainable food systems using zero-waste strategies. Full article
(This article belongs to the Special Issue Food Bioactive Components in Functional Foods and Nutraceuticals)
Show Figures

Graphical abstract

20 pages, 534 KiB  
Review
Extraction and Valorization of Oilseed Cakes for Value-Added Food Components—A Review for a Sustainable Foodstuff Production in a Case Process Approach
by Nada Grahovac, Milica Aleksić, Biljana Trajkovska, Ana Marjanović Jeromela and Gjore Nakov
Foods 2025, 14(13), 2244; https://doi.org/10.3390/foods14132244 - 25 Jun 2025
Viewed by 545
Abstract
Oilseed cakes, by-products of oil extraction, represent an underutilized resource with significant potential for sustainable food and pharmaceutical applications. This comprehensive review examines the valorization strategies for oilseed cakes, focusing on their rich protein (up to 56%) and fiber (up to 66%) content. [...] Read more.
Oilseed cakes, by-products of oil extraction, represent an underutilized resource with significant potential for sustainable food and pharmaceutical applications. This comprehensive review examines the valorization strategies for oilseed cakes, focusing on their rich protein (up to 56%) and fiber (up to 66%) content. We analyze both conventional and innovative extraction methods, highlighting the advantages of ultrasound-assisted (96.64% phenolic compound yield), enzymatic (82–83% protein recovery), and subcritical water extraction techniques in improving efficiency while reducing environmental impact. This review demonstrates diverse applications of oilseed cake components from gluten-free bakery products and plant-based meat alternatives to advanced nanoencapsulation systems for bioactive compounds. Each major oilseed type (soybean, rapeseed, sunflower and flaxseed) exhibits unique nutritional and functional properties that can be optimized through appropriate processing. Despite technological advances, challenges remain in scaling extraction methods and balancing yield with functionality. This paper identifies key research directions, including the development of integrated biorefinery approaches and the further exploration of health-promoting peptides and fibers. By addressing these challenges, oilseed cakes can play a crucial role in sustainable food systems and the circular economy, transforming agricultural by-products into high-value ingredients while reducing waste. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Graphical abstract

17 pages, 1675 KiB  
Article
Assisted Extraction of Hemp Oil and Its Application to Design Functional Gluten-Free Bakery Foods
by Noemi Baldino, Mario F. O. Paleologo, Mariateresa Chiodo, Olga Mileti, Francesca R. Lupi and Domenico Gabriele
Molecules 2025, 30(12), 2665; https://doi.org/10.3390/molecules30122665 - 19 Jun 2025
Viewed by 558
Abstract
Cannabis sativa L. is known for its high-value compounds, like Cannabidiol (CBD) and Cannabidiolic Acid (CBDA). It is widely used in the pharmaceutical and food industries. Different extraction methods, like Soxhlet and maceration, are commonly employed to obtain its extracts. High temperature and [...] Read more.
Cannabis sativa L. is known for its high-value compounds, like Cannabidiol (CBD) and Cannabidiolic Acid (CBDA). It is widely used in the pharmaceutical and food industries. Different extraction methods, like Soxhlet and maceration, are commonly employed to obtain its extracts. High temperature and long extraction time can influence the yield and the purity of the extracts, affecting the quality of the final product. This study focused on optimizing CBD oil extraction from hemp inflorescences and its incorporation into a gluten-free bakery product for functionalization. Dynamic maceration (DME), assisted by ultrasound and microwave irradiation, was used. Our study explored the impact of varying sonication times (three distinct durations) and microwave powers (three levels, applied for two different irradiation times) on the resulting extracts. HPLC analysis was performed on these extracts. Subsequently, we used hemp flour and hemp oil to bake gluten-free cupcakes, which were fortified with the extracted CBD oil. Rheological characterization was used to investigate the cupcake properties, along with stereoscopic, color and puncture analysis performed on the baked samples. The most effective extraction parameters identified were 30 s of microwave irradiation at 700 W, yielding 45.2 ± 2.0 g of CBD extract, and 15 min of sonication, which resulted in 53.2 ± 2.5 g. Subsequent rheological characterization indicated that the product exhibited mechanical properties and a temperature profile comparable to a benchmark, evidenced by a height of 4.1 ± 0.2 cm and a hardness of 1.9 ± 0.2 N. These promising values demonstrate that hemp oil and hemp flour are viable ingredients for traditional cakes and desserts, notably contributing increased nutritional value through the CBD-enriched hemp oil and the beneficial profile of hemp flour. Full article
Show Figures

Graphical abstract

Back to TopTop