Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = bacterial cell division process

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2843 KiB  
Article
Targeting Bacterial Cell Division with Benzodioxane–Benzamide FtsZ Inhibitors as a Novel Strategy to Fight Gram-Positive Ovococcal Pathogens
by Berenice Furlan, Marta Sobrinos-Sanguino, Marcella Sammartino, Begoña Monterroso, Silvia Zorrilla, Alessia Lanzini, Lorenzo Suigo, Ermanno Valoti, Orietta Massidda and Valentina Straniero
Int. J. Mol. Sci. 2025, 26(2), 714; https://doi.org/10.3390/ijms26020714 - 16 Jan 2025
Cited by 1 | Viewed by 1542
Abstract
The widespread emergence of antimicrobial resistance (AMR) is a serious threat to global public health and among Gram-positive cocci, Streptococcus pneumoniae constitutes a priority in the list of AMR-threatening pathogens. To counteract this fundamental problem, the bacterial cell division cycle and the crucial [...] Read more.
The widespread emergence of antimicrobial resistance (AMR) is a serious threat to global public health and among Gram-positive cocci, Streptococcus pneumoniae constitutes a priority in the list of AMR-threatening pathogens. To counteract this fundamental problem, the bacterial cell division cycle and the crucial proteins involved in this process emerged as novel attractive targets. FtsZ is an essential cell division protein, and FtsZ inhibitors, especially the benzamide derivatives, have been exploited in the last decade. In this work, we identified, for the first time, some benzodioxane–benzamide inhibitors capable of targeting FtsZ in Streptococcus pneumoniae, in addition to their previously demonstrated activity against other bacteria. These promising benzamides, with minimal inhibitory concentrations (MICs) ranging from 25 to 80 µg/mL, demonstrated bactericidal activity against S. pneumoniae. This was evidenced by their ability to dramatically affect growth and viability, further supported by the morphological changes observed through microscopy. Moreover, the compounds were characterized in vitro, combining turbidity measurements and confocal imaging, and significant alteration of a GTP-induced FtsZ assembly was found, in line with our previous data from other microorganisms. Full article
Show Figures

Figure 1

16 pages, 3054 KiB  
Article
Calcium Rescues Streptococcus pneumoniae D39 ΔmntE Manganese-Sensitive Growth Phenotype
by Reuben Opoku, Edgar Carrasco, Nicholas R. De Lay and Julia E. Martin
Microorganisms 2024, 12(9), 1810; https://doi.org/10.3390/microorganisms12091810 - 1 Sep 2024
Viewed by 1737
Abstract
Calcium (Ca2+) functions as a universal signal messenger in eukaryotes but in bacteria, the physiological roles for Ca2+ are limited. Here, we examine the role of Ca2+ in Streptococcus pneumoniae during manganese (Mn2+) intoxication. S. pneumoniae mntE [...] Read more.
Calcium (Ca2+) functions as a universal signal messenger in eukaryotes but in bacteria, the physiological roles for Ca2+ are limited. Here, we examine the role of Ca2+ in Streptococcus pneumoniae during manganese (Mn2+) intoxication. S. pneumoniae mntE mutants, lacking the Mn2+ efflux transporter, exhibit impaired growth due to accumulation of Mn2+ when exposed to elevated exogenous Mn2+. This Mn2+-sensitive growth defect is restored to wild-type growth level by exogenous Ca2+, in a Ca2+-dependent manner. Despite growth restoration of the mntE mutant to wild-type levels, cellular Mn2+ remains elevated in this strain. Bacterial capsule production is also increased for the mntE mutant, resulting in reduced adherence capacity to surfaces and poor biofilm formation, which is consistent with it experiencing Mn2+ intoxication. Ca2+ presence did not significantly impact bacterial capsule production or biofilm formation. Further analysis of the cell morphology demonstrates that Ca2+ contributes to cell division and reduces cell chain lengths. Together, these data describe the first role of Ca in S. pneumoniae that has potential implications in bacterial virulence since Ca affects cell division and likely Mn2+-associated cellular processes. Full article
(This article belongs to the Special Issue Advance Research on Bacterial Biofilm)
Show Figures

Figure 1

16 pages, 1565 KiB  
Article
Berry Pomace Extracts as a Natural Washing Aid to Mitigate Enterohaemorrhagic E. coli in Fresh Produce
by Kanchan Thapa, Dita Julianingsih, Chuan-Wei Tung, Anna Phan, Muhammad Abrar Hashmi, Kayla Bleich and Debabrata Biswas
Foods 2024, 13(17), 2746; https://doi.org/10.3390/foods13172746 - 29 Aug 2024
Cited by 2 | Viewed by 1154
Abstract
Enterohemorrhagic Escherichia coli (EHEC) outbreaks have been frequently linked to the consumption of produce. Furthermore, produce grown on organic farms possess a higher risk, as the farmers avoid antibiotics and chemicals. This study sets out to evaluate the effectiveness of advanced postharvest disinfection [...] Read more.
Enterohemorrhagic Escherichia coli (EHEC) outbreaks have been frequently linked to the consumption of produce. Furthermore, produce grown on organic farms possess a higher risk, as the farmers avoid antibiotics and chemicals. This study sets out to evaluate the effectiveness of advanced postharvest disinfection processes using berry pomace extracts (BPEs) in reducing EHEC load in two common leafy greens, spinach and lettuce. Spinach and lettuce were inoculated with ~5 log CFU/leaf EHEC EDL-933 and then treated with three different concentrations of BPE (1, 1.5, and 2 gallic acid equivalent, GAE mg/mL) for increasing periods of time. After the wash, the bacteria were quantified. Changes in the relative expression of virulence genes and the genes involved in cell division and replication and response against stress/antibiotics were studied. We observed a significant reduction in EHEC EDL933, ranging from 0.5 to 1.6 log CFU/spinach leaf (p < 0.05) washed with BPE water. A similar trend of reduction, ranging from 0.3 to 1.3 log CFU/mL, was observed in pre-inoculated lettuce washed with BPE water. We also quantified the remaining bacterial population in the residual treatment solutions and found the survived bacterial cells (~3 log CFU/mL) were low despite repeated washing with the same solution. In addition, we evaluated the phenolic concentration in leftover BPE, which did not change significantly, even after multiple uses. Alterations in gene expression levels were observed, with downregulation ranging from 1 to 3 log folds in the genes responsible for the adhesion and virulence of EHEC EDL933 and significant upregulation of genes responsible for survival against stress. All other genes were upregulated, ranging from 2 to 7 log folds, with a dose-dependent decrease in expression. This finding shows the potential of BPE to be used for sanitation of fresh produce as a natural and sustainable approach. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

16 pages, 11125 KiB  
Article
The Influence of L-Lysine-Alpha-Oxidase on the Biofilm Formation of Opportunistic Microorganisms Associated with Inflammatory Diseases of the Urinary Tract
by Alexandr Senyagin, Nadezhda Sachivkina, Milana Das, Anna Arsenyuk, Ramziya Mannapova, Alfir Mannapov, Tursumbai Kubatbekov, Dmitriy Svistunov, Olesya Petrukhina, Andrey Zharov and Natallia Zhabo
Pathogens 2024, 13(3), 252; https://doi.org/10.3390/pathogens13030252 - 15 Mar 2024
Cited by 1 | Viewed by 2771
Abstract
Urinary tract infections occupy a special niche among diseases of infectious etiology. Many microorganisms associated with urinary tract infections, such as Klebsiella oxytoca, Enterococcus spp., Morganella morganii, Moraxella catarrhalis, Pseudomonas aeruginosa, Proteus mirabilis, Staphylococcus aureus, Staphylococcus spp., [...] Read more.
Urinary tract infections occupy a special niche among diseases of infectious etiology. Many microorganisms associated with urinary tract infections, such as Klebsiella oxytoca, Enterococcus spp., Morganella morganii, Moraxella catarrhalis, Pseudomonas aeruginosa, Proteus mirabilis, Staphylococcus aureus, Staphylococcus spp., and Candida spp., can form biofilms. The aim of this research was to study the effect of the enzyme L-lysine-Alpha-oxidase (LO) produced by the fungus Trichoderma harzianum Rifai on the biofilm formation process of microorganisms associated with urinary tract infections. Homogeneous LO showed a more pronounced effect than the culture liquid concentrate (cCL). When adding samples at the beginning of incubation, the maximum inhibition was observed in relation to Enterococcus faecalis 5960—cCL 86%, LO 95%; Enterococcus avium 1669—cCL 85%, LO 94%; Enterococcus cloacae 6392—cCL 83%, LO—98%; and Pseudomonas aeruginosa 3057—cCL 70%, LO—82%. The minimum inhibition was found in Candida spp. Scanning electron microscopy was carried out, and numerous morphological and structural changes were observed in the cells after culturing the bacterial cultures in a medium supplemented with homogeneous LO. For example, abnormal division was detected, manifesting as the appearance of joints in places where the bacteria diverge. Based on the results of this work, we can draw conclusions about the possibility of inhibiting microbial biofilm formation with the use of LO; especially significant inhibition was achieved when the enzyme was added at the beginning of incubation. Thus, LO can be a promising drug candidate for the treatment or prevention of infections associated with biofilm formation. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

17 pages, 4959 KiB  
Article
A Transient π–π or Cation–π Interaction between Degron and Degrader Dual Residues: A Key Step for the Substrate Recognition and Discrimination in the Processive Degradation of SulA by ClpYQ (HslUV) Protease in Escherichia coli
by Chu-Hsuan Lin, Chih-Hsuan Tsai, Chun-Chi Chou and Whei-Fen Wu
Int. J. Mol. Sci. 2023, 24(24), 17353; https://doi.org/10.3390/ijms242417353 - 11 Dec 2023
Viewed by 1721
Abstract
The Escherichia coli ATP-dependent ClpYQ protease constitutes ClpY ATPase/unfoldase and ClpQ peptidase. The Tyr91st residue within the central pore-I site of ClpY-hexamer is important for unfolding and translocating substrates into the catalytic site of ClpQ. We have identified the degron site (GFIMRP [...] Read more.
The Escherichia coli ATP-dependent ClpYQ protease constitutes ClpY ATPase/unfoldase and ClpQ peptidase. The Tyr91st residue within the central pore-I site of ClpY-hexamer is important for unfolding and translocating substrates into the catalytic site of ClpQ. We have identified the degron site (GFIMRP147th) of SulA, a cell-division inhibitor recognized by ClpYQ and that the Phe143rd residue in degron site is necessary for SulA native folded structure. However, the functional association of this degron site with the ClpYQ degrader is unknown. Here, we investigated the molecular insights into substrate recognition and discrimination by the ClpYQ protease. We found that the point mutants ClpYY91FQ, ClpYY91HQ, and ClpYY91WQ, carrying a ring structure at the 91st residue of ClpY, efficiently degraded their natural substrates, evidenced by the suppressed bacterial methyl-methane-sulfonate (MMS) sensitivity, the reduced β-galactosidase activity of cpsB::lacZ, and the lowest amounts of MBP-SulA in both in vivo and in vitro degradation analyses. Alternatively, mimicking the wild-type SulA, SulAF143H, SulAF143K and SulAF143W, harboring a ring structure or a cation side-group in 143rd residue of SulA, were efficiently degraded by ClpYQ in the bacterial cells, also revealing shorter half-lives at 41 °C and higher binding affinities towards ClpY in pull-down assays. Finally, ClpYY91FQ and ClpYY91HQ, were capable of effectively degrading SulAF143H and SulAF143K, highlighting a correspondingly functional interaction between the SulA 143rd and ClpY 91st residues. According to the interchangeable substituted amino acids, our results uniquely indicate that a transient π–π or cation−π interaction between the SulA 143rd and ClpY 91st residues could be aptly gripped between the degron site of substrates and the pore site of proteases (degraders) for substrate recognition and discrimination of the processive degradation. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

23 pages, 3506 KiB  
Article
Benzodioxane–Benzamides as FtsZ Inhibitors: Effects of Linker’s Functionalization on Gram-Positive Antimicrobial Activity
by Lorenzo Suigo, William Margolin, Eugenia Ulzurrun, Martina Hrast Rambaher, Carlo Zanotto, Victor Sebastián-Pérez, Nuria E. Campillo, Valentina Straniero and Ermanno Valoti
Antibiotics 2023, 12(12), 1712; https://doi.org/10.3390/antibiotics12121712 - 8 Dec 2023
Cited by 3 | Viewed by 2075
Abstract
FtsZ is an essential bacterial protein abundantly studied as a novel and promising target for antimicrobials. FtsZ is highly conserved among bacteria and mycobacteria, and it is crucial for the correct outcome of the cell division process, as it is responsible for the [...] Read more.
FtsZ is an essential bacterial protein abundantly studied as a novel and promising target for antimicrobials. FtsZ is highly conserved among bacteria and mycobacteria, and it is crucial for the correct outcome of the cell division process, as it is responsible for the division of the parent bacterial cell into two daughter cells. In recent years, the benzodioxane–benzamide class has emerged as very promising and capable of targeting both Gram-positive and Gram-negative FtsZs. In this study, we explored the effect of including a substituent on the ethylenic linker between the two main moieties on the antimicrobial activity and pharmacokinetic properties. This substitution, in turn, led to the generation of a second stereogenic center, with both erythro and threo isomers isolated, characterized, and evaluated. With this work, we discovered how the hydroxy group slightly affects the antimicrobial activity, while being an important anchor for the exploitation and development of prodrugs, probes, and further derivatives. Full article
Show Figures

Figure 1

17 pages, 7213 KiB  
Article
Robust ParB Binding to Half-parS Sites in Pseudomonas aeruginosa—A Mechanism for Retaining ParB on the Nucleoid?
by Adam Kawalek, Aneta Agnieszka Bartosik and Grazyna Jagura-Burdzy
Int. J. Mol. Sci. 2023, 24(15), 12517; https://doi.org/10.3390/ijms241512517 - 7 Aug 2023
Cited by 1 | Viewed by 1901
Abstract
Chromosome segregation in Pseudomonas aeruginosa is assisted by the tripartite ParAB–parS system, composed of an ATPase (ParA), a DNA-binding protein (ParB) and its target parS sequence(s). ParB forms a nucleoprotein complex around four parSs (parS1–parS4) that overlaps oriC and [...] Read more.
Chromosome segregation in Pseudomonas aeruginosa is assisted by the tripartite ParAB–parS system, composed of an ATPase (ParA), a DNA-binding protein (ParB) and its target parS sequence(s). ParB forms a nucleoprotein complex around four parSs (parS1–parS4) that overlaps oriC and facilitates relocation of newly synthesized ori domains inside the cells by ParA. Remarkably, ParB of P. aeruginosa also binds to numerous heptanucleotides (half-parSs) scattered in the genome. Here, using chromatin immunoprecipitation-sequencing (ChIP-seq), we analyzed patterns of ParB genome occupancy in cells growing under conditions of coupling or uncoupling between replication and cell division processes. Interestingly, a dissipation of ParB–parS complexes and a shift of ParB to half-parSs were observed during the transition from the exponential to stationary phase of growth on rich medium, suggesting the role of half-parSs in retaining ParB on the nucleoid within non-dividing P. aeruginosa cells. The ChIP-seq analysis of strains expressing ParB variants unable to dislocate from parSs showed that the ParB spreading ability is not required for ParB binding to half-parSs. Finally, a P. aeruginosa strain with mutated 25 half-parSs of the highest affinity towards ParB was constructed and analyzed. It showed altered ParB coverage of the oriC region and moderate changes in gene expression. Overall, this study characterizes a novel aspect of conserved bacterial chromosome segregation machinery. Full article
(This article belongs to the Collection Feature Papers in Molecular Microbiology)
Show Figures

Figure 1

9 pages, 1136 KiB  
Communication
Obtainment of Threo and Erythro Isomers of the 6-Fluoro-3-(2,3,6,7,8,9-hexahydronaphtho[2,3-b][1,4]dioxin-2-yl)-2,3-dihydrobenzo[b][1,4]dioxine-5-carboxamide
by Valentina Straniero, Lorenzo Suigo, Giulia Lodigiani and Ermanno Valoti
Molbank 2023, 2023(1), M1559; https://doi.org/10.3390/M1559 - 18 Jan 2023
Cited by 2 | Viewed by 2004
Abstract
2,6-difluorobenzamides have been deeply investigated as antibacterial drugs in the last few decades. Several 3-substituted-2,6-difluorobenzamides have proved their ability to interfere with the bacterial cell division cycle by inhibiting the protein FtsZ, the key player of the whole process. Recently, we developed a [...] Read more.
2,6-difluorobenzamides have been deeply investigated as antibacterial drugs in the last few decades. Several 3-substituted-2,6-difluorobenzamides have proved their ability to interfere with the bacterial cell division cycle by inhibiting the protein FtsZ, the key player of the whole process. Recently, we developed a novel family of 1,4-tetrahydronaphthodioxane benzamides, having an ethoxy linker, which reached sub-micromolar MICs towards Gram-positive Staphylococcus aureus and Bacillus subtilis. A further investigation of their mechanism of action should require the development of a fluorescent probe, and the consequent definition of a synthetic pathway for its obtainment. In the present work, we report the obtainment of an unexpected bicyclic side product, 6-fluoro-3-(2,3,6,7,8,9-hexahydronaphtho[2,3-b][1,4]dioxin-2-yl)-2,3-dihydrobenzo[b][1,4]dioxine-5-carboxamide, coming from the substitution of one aromatic fluorine by the in situ formed alkoxy group, in the final opening of an epoxide intermediate. This side product was similarly achieved, in good yields, by opening the ring of both erythro and threo epoxides, and the two compounds were fully characterized using HRMS, 1H-NMR, 13C-NMR, HPLC and DSC. Full article
(This article belongs to the Collection Molecules from Side Reactions)
Show Figures

Figure 1

20 pages, 2390 KiB  
Article
Transcriptome Analysis Reveals Modulation of Human Stem Cells from the Apical Papilla by Species Associated with Dental Root Canal Infection
by Yelyzaveta Razghonova, Valeriia Zymovets, Philip Wadelius, Olena Rakhimova, Lokeshwaran Manoharan, Malin Brundin, Peyman Kelk and Nelly Romani Vestman
Int. J. Mol. Sci. 2022, 23(22), 14420; https://doi.org/10.3390/ijms232214420 - 20 Nov 2022
Cited by 10 | Viewed by 2987
Abstract
Interaction of oral bacteria with stem cells from the apical papilla (SCAP) can negatively affect the success of regenerative endodontic treatment (RET). Through RNA-seq transcriptomic analysis, we studied the effect of the oral bacteria Fusobacterium nucleatum and Enterococcus faecalis, as well as [...] Read more.
Interaction of oral bacteria with stem cells from the apical papilla (SCAP) can negatively affect the success of regenerative endodontic treatment (RET). Through RNA-seq transcriptomic analysis, we studied the effect of the oral bacteria Fusobacterium nucleatum and Enterococcus faecalis, as well as their supernatants enriched by bacterial metabolites, on the osteo- and dentinogenic potential of SCAPs in vitro. We performed bulk RNA-seq, on the basis of which differential expression analysis (DEG) and gene ontology enrichment analysis (GO) were performed. DEG analysis showed that E. faecalis supernatant had the greatest effect on SCAPs, whereas F. nucleatum supernatant had the least effect (Tanimoto coefficient = 0.05). GO term enrichment analysis indicated that F. nucleatum upregulates the immune and inflammatory response of SCAPs, and E. faecalis suppresses cell proliferation and cell division processes. SCAP transcriptome profiles showed that under the influence of E. faecalis the upregulation of VEGFA, Runx2, and TBX3 genes occurred, which may negatively affect the SCAP’s osteo- and odontogenic differentiation. F. nucleatum downregulates the expression of WDR5 and TBX2 and upregulates the expression of TBX3 and NFIL3 in SCAPs, the upregulation of which may be detrimental for SCAPs’ differentiation potential. In conclusion, the present study shows that in vitro, F. nucleatum, E. faecalis, and their metabolites are capable of up- or downregulating the expression of genes that are necessary for dentinogenic and osteogenic processes to varying degrees, which eventually may result in unsuccessful RET outcomes. Transposition to the clinical context merits some reservations, which should be approached with caution. Full article
(This article belongs to the Special Issue Molecular Advances in Dental Pulp Tissue Engineering)
Show Figures

Figure 1

16 pages, 6666 KiB  
Article
Discovery of 2′,6-Bis(4-hydroxybenzyl)-2-acetylcyclohexanone, a Novel FtsZ Inhibitor
by Hsuan-Yu J. Lin, Rachana Rao Battaje, Jinlong Tan, Munikumar Doddareddy, Hemendra Pal Singh Dhaked, Shalini Srivastava, Bryson A. Hawkins, Laith Mohammad Hilal Al-Shdifat, David E. Hibbs, Dulal Panda and Paul W. Groundwater
Molecules 2022, 27(20), 6993; https://doi.org/10.3390/molecules27206993 - 18 Oct 2022
Cited by 3 | Viewed by 2347
Abstract
Multi-drug resistance is increasing in the pathogenic bacterium S. pneumoniae, which is mainly responsible for meningitis and community-acquired pneumonia (CAP), highlighting the need for new anti-pneumococcal agents. We have identified a potential anti-pneumococcal agent, enol 3, which acts by hindering the [...] Read more.
Multi-drug resistance is increasing in the pathogenic bacterium S. pneumoniae, which is mainly responsible for meningitis and community-acquired pneumonia (CAP), highlighting the need for new anti-pneumococcal agents. We have identified a potential anti-pneumococcal agent, enol 3, which acts by hindering the cell division process by perturbing Z-ring dynamics inside the cell. Enol 3 was also shown to inhibit FtsZ polymerization and induce its aggregation in vitro but does not affect the activity of tubulin and alkaline phosphatase. Docking studies show that 3 binds near the T7 loop, which is the catalytic site of FtsZ. Similar effects on Z-ring and FtsZ assembly were observed in B. subtilis, indicating that 3 could be a broad-spectrum anti-bacterial agent useful in targeting Gram-positive bacteria. In conclusion, compound 3 shows strong anti-pneumococcal activity, prompting further pre-clinical studies to explore its potential. Full article
Show Figures

Figure 1

16 pages, 2586 KiB  
Article
A Self-Controlled and Self-Healing Model of Bacterial Cells
by Max Garzon, Petr Sosik, Jan Drastík and Omar Skalli
Membranes 2022, 12(7), 678; https://doi.org/10.3390/membranes12070678 - 30 Jun 2022
Cited by 2 | Viewed by 1998
Abstract
A new kind of self-assembly model, morphogenetic (M) systems, assembles spatial units into larger structures through local interactions of simpler components and enables discovery of new principles for cellular membrane assembly, development, and its interface function. The model is based on interactions among [...] Read more.
A new kind of self-assembly model, morphogenetic (M) systems, assembles spatial units into larger structures through local interactions of simpler components and enables discovery of new principles for cellular membrane assembly, development, and its interface function. The model is based on interactions among three kinds of constitutive objects such as tiles and protein-like elements in discrete time and continuous 3D space. It was motivated by achieving a balance between three conflicting goals: biological, physical-chemical, and computational realism. A recent example is a unified model of morphogenesis of a single biological cell, its membrane and cytoskeleton formation, and finally, its self-reproduction. Here, a family of dynamic M systems (Mbac) is described with similar characteristics, modeling the process of bacterial cell formation and division that exhibits bacterial behaviors of living cells at the macro-level (including cell growth that is self-controlled and sensitive to the presence/absence of nutrients transported through membranes), as well as self-healing properties. Remarkably, it consists of only 20 or so developmental rules. Furthermore, since the model exhibits membrane formation and septic mitosis, it affords more rigorous definitions of concepts such as injury and self-healing that enable quantitative analyses of these kinds of properties. Mbac shows that self-assembly and interactions of living organisms with their environments and membrane interfaces are critical for self-healing, and that these properties can be defined and quantified more rigorously and precisely, despite their complexity. Full article
Show Figures

Figure 1

23 pages, 6185 KiB  
Article
Subcellular Dynamics of a Conserved Bacterial Polar Scaffold Protein
by Giacomo Giacomelli, Helge Feddersen, Feng Peng, Gustavo Benevides Martins, Manuela Grafemeyer, Fabian Meyer, Benjamin Mayer, Peter L. Graumann and Marc Bramkamp
Genes 2022, 13(2), 278; https://doi.org/10.3390/genes13020278 - 30 Jan 2022
Cited by 12 | Viewed by 5044
Abstract
In order to survive, bacterial cells rely on precise spatiotemporal organization and coordination of essential processes such as cell growth, chromosome segregation, and cell division. Given the general lack of organelles, most bacteria are forced to depend on alternative localization mechanisms, such as, [...] Read more.
In order to survive, bacterial cells rely on precise spatiotemporal organization and coordination of essential processes such as cell growth, chromosome segregation, and cell division. Given the general lack of organelles, most bacteria are forced to depend on alternative localization mechanisms, such as, for example, geometrical cues. DivIVA proteins are widely distributed in mainly Gram-positive bacteria and were shown to bind the membrane, typically in regions of strong negative curvature, such as the cell poles and division septa. Here, they have been shown to be involved in a multitude of processes: from apical cell growth and chromosome segregation in actinobacteria to sporulation and inhibition of division re-initiation in firmicutes. Structural analyses revealed that DivIVA proteins can form oligomeric assemblies that constitute a scaffold for recruitment of other proteins. However, it remained unclear whether interaction with partner proteins influences DivIVA dynamics. Using structured illumination microscopy (SIM), single-particle tracking (SPT) microscopy, and fluorescent recovery after photobleaching (FRAP) experiments, we show that DivIVA from Corynebacterium glutamicum is mobilized by its binding partner ParB. In contrast, we show that the interaction between Bacillus subtilis DivIVA and its partner protein MinJ reduces DivIVA mobility. Furthermore, we show that the loss of the rod-shape leads to an increase in DivIVA dynamics in both organisms. Taken together, our study reveals the modulation of the polar scaffold protein by protein interactors and cell morphology. We reason that this leads to a very simple, yet robust way for actinobacteria to maintain polar growth and their rod-shape. In B. subtilis, however, the DivIVA protein is tailored towards a more dynamic function that allows quick relocalization from poles to septa upon division. Full article
(This article belongs to the Special Issue Bacterial DNA Organization and Segregation)
Show Figures

Figure 1

18 pages, 20566 KiB  
Article
Bacteriostatic and Cytotoxic Properties of Composite Material Based on ZnO Nanoparticles in PLGA Obtained by Low Temperature Method
by Dmitriy E. Burmistrov, Alexander V. Simakin, Veronika V. Smirnova, Oleg V. Uvarov, Petr I. Ivashkin, Roman N. Kucherov, Vladimir E. Ivanov, Vadim I. Bruskov, Mihail A. Sevostyanov, Alexander S. Baikin, Valery A. Kozlov, Maksim B. Rebezov, Anastasia A. Semenova, Andrey B. Lisitsyn, Maria V. Vedunova and Sergey V. Gudkov
Polymers 2022, 14(1), 49; https://doi.org/10.3390/polym14010049 - 23 Dec 2021
Cited by 30 | Viewed by 4312
Abstract
A low-temperature technology was developed for producing a nanocomposite based on poly (lactic-co-glycolic acid) and zinc oxide nanoparticles (ZnO-NPs), synthesized by laser ablation. Nanocomposites were created containing 0.001, 0.01, and 0.1% of zinc oxide nanoparticles with rod-like morphology and a size of 40–70 [...] Read more.
A low-temperature technology was developed for producing a nanocomposite based on poly (lactic-co-glycolic acid) and zinc oxide nanoparticles (ZnO-NPs), synthesized by laser ablation. Nanocomposites were created containing 0.001, 0.01, and 0.1% of zinc oxide nanoparticles with rod-like morphology and a size of 40–70 nm. The surface of the films from the obtained nanomaterial was uniform, without significant defects. Clustering of ZnO-NPs in the PLGA matrix was noted, which increased with an increase in the concentration of the dopant in the polymer. The resulting nanomaterial was capable of generating reactive oxygen species (ROS), such as hydrogen peroxide and hydroxyl radicals. The rate of ROS generation increased with an increase in the concentration of the dopant. It was shown that the synthesized nanocomposite promotes the formation of long-lived reactive protein species, and is also the reason for the appearance of a key biomarker of oxidative stress, 8-oxoguanine, in DNA. The intensity of the process increased with an increase in the concentration of nanoparticles in the matrix. It was found that the nanocomposite exhibits significant bacteriostatic properties, the severity of which depends on the concentration of nanoparticles. In particular, on the surface of the PLGA–ZnO-NPs composite film containing 0.001% nanoparticles, the number of bacterial cells was 50% lower than that of pure PLGA. The surface of the composite is non-toxic to eukaryotic cells and does not interfere with their adhesion, growth, and division. Due to its low cytotoxicity and bacteriostatic properties, this nanocomposite can be used as coatings for packaging in the food industry, additives for textiles, and also as a material for biomedicine. Full article
(This article belongs to the Special Issue Advance in Functional Biological Polymer Membranes)
Show Figures

Figure 1

21 pages, 4412 KiB  
Article
Comparative Phenotypic, Proteomic, and Phosphoproteomic Analysis Reveals Different Roles of Serine/Threonine Phosphatase and Kinase in the Growth, Cell Division, and Pathogenicity of Streptococcus suis
by Qiao Hu, Lun Yao, Xia Liao, Liang-Sheng Zhang, Hao-Tian Li, Ting-Ting Li, Qing-Gen Jiang, Mei-Fang Tan, Lu Li, Roger R. Draheim, Qi Huang and Rui Zhou
Microorganisms 2021, 9(12), 2442; https://doi.org/10.3390/microorganisms9122442 - 26 Nov 2021
Cited by 7 | Viewed by 3091
Abstract
Eukaryote-like serine/threonine kinases (STKs) and cognate phosphatases (STPs) comprise an important regulatory system in many bacterial pathogens. The complexity of this regulatory system has not been fully understood due to the presence of multiple STKs/STPs in many bacteria and their multiple substrates involved [...] Read more.
Eukaryote-like serine/threonine kinases (STKs) and cognate phosphatases (STPs) comprise an important regulatory system in many bacterial pathogens. The complexity of this regulatory system has not been fully understood due to the presence of multiple STKs/STPs in many bacteria and their multiple substrates involved in many different physiological and pathogenetic processes. Streptococci are the best materials for the study due to a single copy of the gene encoding STK and its cognate STP. Although several studies have been done to investigate the roles of STK and STP in zoonotic Streptococcus suis, respectively, few studies were performed on the coordinated regulatory roles of this system. In this study, we carried out a systemic study on STK/STP in S. suis by using a comparative phenotypic, proteomic, and phosphoproteomic analysis. Mouse infection assays revealed that STK played a much more important role in S. suis pathogenesis than STP. The ∆stk and ∆stpstk strains, but not ∆stp, showed severe growth retardation. Moreover, both ∆stp and ∆stk strains displayed defects in cell division, but they were abnormal in different ways. The comparative proteomics and phosphoproteomics revealed that deletion of stk or stp had a significant influence on protein expression. Interestingly, more virulence factors were found to be downregulated in ∆stk than ∆stp. In ∆stk strain, a substantial number of the proteins with a reduced phosphorylation level were involved in cell division, energy metabolism, and protein translation. However, only a few proteins showed increased phosphorylation in ∆stp, which also included some proteins related to cell division. Collectively, our results show that both STP and STK are critical regulatory proteins for S. suis and that STK seems to play more important roles in growth, cell division, and pathogenesis. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

16 pages, 7529 KiB  
Article
Interaction of Temporin-L Analogues with the E. coli FtsZ Protein
by Angela Di Somma, Carolina Canè, Antonio Moretta and Angela Duilio
Antibiotics 2021, 10(6), 704; https://doi.org/10.3390/antibiotics10060704 - 11 Jun 2021
Cited by 11 | Viewed by 3100
Abstract
The research of new therapeutic agents to fight bacterial infections has recently focused on the investigation of antimicrobial peptides (AMPs), the most common weapon that all organisms produce to prevent invasion by external pathogens. Among AMPs, the amphibian Temporins constitute a well-known family [...] Read more.
The research of new therapeutic agents to fight bacterial infections has recently focused on the investigation of antimicrobial peptides (AMPs), the most common weapon that all organisms produce to prevent invasion by external pathogens. Among AMPs, the amphibian Temporins constitute a well-known family with high antibacterial properties against Gram-positive and Gram-negative bacteria. In particular, Temporin-L was shown to affect bacterial cell division by inhibiting FtsZ, a tubulin-like protein involved in the crucial step of Z-ring formation at the beginning of the division process. As FtsZ represents a leading target for new antibacterial compounds, in this paper we investigated in detail the interaction of Temporin L with Escherichia coli FtsZ and designed two TL analogues in an attempt to increase peptide-protein interactions and to better understand the structural determinants leading to FtsZ inhibition. The results demonstrated that the TL analogues improved their binding to FtsZ, originating stable protein-peptide complexes. Functional studies showed that both peptides were endowed with a high capability of inhibiting both the enzymatic and polymerization activities of the protein. Moreover, the TL analogues were able to inhibit bacterial growth at low micromolar concentrations. These observations may open up the way to the development of novel peptide or peptidomimetic drugs tailored to bind FtsZ, hampering a crucial process of bacterial life that might be proposed for future pharmaceutical applications. Full article
Show Figures

Figure 1

Back to TopTop