Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,936)

Search Parameters:
Keywords = bacteria removal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 294 KB  
Systematic Review
The Impact of Disinfecting Non-Sterile Disposable Gloves on the Level of Microbiological Contamination in Clinical Practice
by Anna Gajkiewicz, Julia Szymczyk, Sandra Lange and Wioletta Mędrzycka-Dąbrowska
Microorganisms 2026, 14(2), 286; https://doi.org/10.3390/microorganisms14020286 - 26 Jan 2026
Abstract
Gloves, used in conjunction with hand hygiene, are designed to protect healthcare personnel from direct contact with blood, body fluids, and other potentially infectious materials, which is critical for reducing the transmission of microorganisms. The aim of this systematic review was to analyze [...] Read more.
Gloves, used in conjunction with hand hygiene, are designed to protect healthcare personnel from direct contact with blood, body fluids, and other potentially infectious materials, which is critical for reducing the transmission of microorganisms. The aim of this systematic review was to analyze available studies on the disinfection of disposable, non-sterile gloves as a method of reducing the risk of microbial contamination in everyday clinical practice. A systematic review was conducted in the fourth quarter of 2025. A total of 317 records were initially retrieved from the five databases (EBSCO, PubMed, Scopus, Web of Science, Ovid). Interventions included alcohol-based hand rubs (ABHR), sodium hypochlorite wipes or solutions, quaternary ammonium wipes, and sporicidal ethanol. Across all studies, glove disinfection consistently reduced bacterial, viral, and spore contamination. Hypochlorite-based agents and sporicidal ethanol demonstrated the highest efficacy against spore-forming organisms such as Clostridioides difficile. Alcohol-based hand rubs were effective against bacteria and enveloped viruses but showed reduced activity against non-enveloped viruses and spores. Conclusions from studies conducted in both laboratory and clinical conditions clearly emphasize the key role of hand hygiene after removing gloves, even when using multiple layers of protection, while also indicating that glove disinfection can be a useful supplement to protection against particularly virulent pathogens (EVD, CDI). Full article
(This article belongs to the Section Public Health Microbiology)
Show Figures

Figure 1

16 pages, 1831 KB  
Article
Microbiological and Chemical Insights into Plasma-Assisted Disinfection of Liquid Digestate from Wastewater Treatment Plant “Kubratovo”
by Lyubomira Gelanova, Polina Ilieva, Irina Schneider, Nora Dinova, Yovana Todorova, Elmira Daskalova, Margita Aleksova, Plamena Marinova, Evgenia Benova and Yana Topalova
Environments 2026, 13(2), 67; https://doi.org/10.3390/environments13020067 - 24 Jan 2026
Viewed by 104
Abstract
Liquid digestate, a by-product of excess sludge in wastewater treatment plants (WWTPs), contains high concentrations of organic matter and essential nutrients that could promote plant growth. However, it also contains a significant number of pathogenic and opportunistic pathogenic microorganisms, which present major challenges [...] Read more.
Liquid digestate, a by-product of excess sludge in wastewater treatment plants (WWTPs), contains high concentrations of organic matter and essential nutrients that could promote plant growth. However, it also contains a significant number of pathogenic and opportunistic pathogenic microorganisms, which present major challenges in terms of its safe application. A sample taken from WWTP “Kubratovo” was treated using plasma devices. The aim was to evaluate the effect of treatment by two types of plasma sources on the content of pathogenic bacteria as well as the chemical composition of the liquid digestate. The Surfaguide plasma source demonstrated a higher disinfection effectiveness (100% for E. coli, Clostridium sp.; over 99% for fecal and total coliforms; 98% for Salmonella sp.). The β-device effectively removed (100%) the following groups: E. coli and Clostridium sp. However, its effectiveness was significantly lower for the other groups. The obtained results show that plasma treatment induces the transformation of nitrogen and phosphorus compounds, resulting in increased nitrite and phosphate concentrations. The application of cold atmospheric plasma disinfection significantly improved the sanitary and compositional characteristics of the liquid digestate. The Surfaguide achieved significantly better results than the β-device, confirming its suitability for sustainable resource recovery and safe agricultural use. Full article
Show Figures

Graphical abstract

16 pages, 2709 KB  
Article
Occurrence, Seasonal Variation, and Microbial Drivers of Antibiotic Resistance Genes in a Residential Secondary Water Supply System
by Huaiyu Tian, Yu Zhou, Dawei Zhang and Weiying Li
Water 2026, 18(2), 281; https://doi.org/10.3390/w18020281 - 22 Jan 2026
Viewed by 56
Abstract
The widespread use of antibiotics has led to the persistence of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in drinking water systems, posing potential public health risks at the point of use. In this study, a residential secondary water supply system (SWSS) [...] Read more.
The widespread use of antibiotics has led to the persistence of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in drinking water systems, posing potential public health risks at the point of use. In this study, a residential secondary water supply system (SWSS) in eastern China was investigated over one year to characterize microbial communities, ARB and ARG occurrence, and their associations with water quality in bulk water and biofilms. Culture-based methods, flow cytometry, quantitative PCR, and high-throughput 16S rRNA and ITS sequencing were applied. Although conventional treatment removed 94.8% of total bacteria, significant microbial regrowth occurred during secondary distribution, with the highest heterotrophic plate counts observed in rooftop storage tanks (up to 4718 CFU/mL). ARG concentrations increased along the distribution line, and the class 1 integron intI1 was enriched in downstream locations, indicating enhanced horizontal gene transfer potential. Sulfonamide resistance genes dominated the resistome, accounting for more than 60% of total ARG abundance in water samples. Seasonally, ARG levels were higher in autumn and winter, coinciding with elevated disinfectant residuals and lower temperatures. Chlorine was negatively associated with total bacterial abundance, while positive correlations were observed with the relative abundance of several ARGs when normalized to bacterial biomass, suggesting selective pressure under oxidative stress. Turbidity and bacterial abundance were positively correlated with ARB, particularly sulfonamide-resistant bacteria. Biofilms exhibited more stable microbial communities and provided microhabitats that facilitated microbial persistence. Notably, fungal abundance showed strong positive correlations with multiple ARGs, implying that microbial interactions may indirectly contribute to ARG persistence in SWSSs. These findings highlight the role of secondary distribution conditions, disinfectant pressure, and microbial interactions in shaping resistance risks in residential water supply systems, and provide insights for improving microbial risk management at the point of consumption. Full article
(This article belongs to the Special Issue Advances in Control Technologies for Emerging Contaminants in Water)
Show Figures

Figure 1

17 pages, 2179 KB  
Article
Truncated Equinin B Variants Reveal the Sequence Determinants of Antimicrobial Selectivity
by Mariele Staropoli, Theresa Schwaiger, Jasmina Tuzlak, Renata Biba, Lukas Petrowitsch, Johannes Fessler, Marin Roje, Matteo Cammarata, Nermina Malanović and Andreja Jakas
Mar. Drugs 2026, 24(1), 46; https://doi.org/10.3390/md24010046 - 17 Jan 2026
Viewed by 256
Abstract
Equinin B (GQCQRKCLGHCSKKCPKHPQCRKRCIRRCFGYCL), a marine peptide from Actinia equina exhibits antibacterial activity against both Gram-positive and Gram-negative bacteria. To identify a smaller active region and explore tunable properties, three peptide fragments were synthesized: GQCQRKCLGHCS (EB1), KKCPKHPQCRK (EB2), and RCIRRCFGYCL [...] Read more.
Equinin B (GQCQRKCLGHCSKKCPKHPQCRKRCIRRCFGYCL), a marine peptide from Actinia equina exhibits antibacterial activity against both Gram-positive and Gram-negative bacteria. To identify a smaller active region and explore tunable properties, three peptide fragments were synthesized: GQCQRKCLGHCS (EB1), KKCPKHPQCRK (EB2), and RCIRRCFGYCL (EB3), yielding peptides with key AMP-like properties, including the most positively charged and most hydrophobic regions. Only the 11-residue C-terminal fragment showed selective activity against Gram-positive bacteria, including Staphylococcus epidermidis, Bacillus subtilis, and Enterococcus hirae, while remaining inactive against Escherichia coli. Peptide modifications, achieved by replacing cysteine residues with arginine, generally did not enhance activity, but in the C-terminal fragment EB3 they reduced hemolytic activity and increased bacterial specificity. Membrane depolarization assays confirmed that the unmodified fragment EB3 strongly compromises bacterial membranes, whereas the modified variant showed minimal depolarization, highlighting its markedly reduced membrane-perturbing potential. In silico modelling revealed that the EB3 can adopt multiple membrane-disruption modes, from transient shallow pores to carpet-like mechanisms, while the cysteine-to-arginine variant interacts mainly via partial insertion anchored by arginine residues. Phenylalanine appears to interact with the membrane, and reducing hydrophobicity by its removal abolished antibacterial activity. These findings highlight the 11-residue C-terminal fragment as a tunable, membrane-targeting motif with mechanistic novelty, offering a blueprint for developing safer, selective antimicrobial peptides with reduced cytotoxicity. Full article
(This article belongs to the Section Marine Pharmacology)
Show Figures

Graphical abstract

16 pages, 1150 KB  
Article
Guess Who’s Back: Persistence and Circulation of Salmonella Infantis on Broiler Farms with a History of Contamination
by Lisa De Witte, Koen De Reu, Maxim Van der Eycken, Joke Van Raemdonck, Nadine Botteldoorn, Filip Van Immerseel and Geertrui Rasschaert
Foods 2026, 15(2), 339; https://doi.org/10.3390/foods15020339 - 17 Jan 2026
Viewed by 270
Abstract
For several years, Infantis was the most common Salmonella serovar circulating in the Belgian broiler sector and persisting on broiler farms. To gain insight into its prevalence and circulation on broiler farms in Belgium, five farms (14 flocks) with a S. Infantis contamination [...] Read more.
For several years, Infantis was the most common Salmonella serovar circulating in the Belgian broiler sector and persisting on broiler farms. To gain insight into its prevalence and circulation on broiler farms in Belgium, five farms (14 flocks) with a S. Infantis contamination history were monitored during two consecutive production rounds. In total, ten sampling events were conducted using moist sponge sticks after cleaning and disinfection, during the delivery of the one-day-old chicks and during production until slaughter or until positive for S. Infantis. Salmonella presence on samples was determined based on the ISO 6579:2017 standard, and the isolated strains were typed using PFGE. The results showed that current cleaning and disinfection practices were unable to completely remove S. Infantis from the farms. Cleaning equipment (3 out of 9 sample times) and the floor (5 out of 10 sample times) were particularly contaminated. Furthermore, external environmental samples were also frequently contaminated (e.g., mortality containers, concrete driveway). During production, 12 of the 28 sampled flocks were colonized with S. Infantis after one week, indicating that S. Infantis quickly spreads throughout the broiler house, which raises the hypothesis that feeding and/or drinking water systems play a critical role in the circulation of the bacteria. This study gives insights into the circulation and difficulty of controlling S. Infantis in persistently contaminated broiler farms, highlighting the importance of thorough cleaning and disinfection and biosecurity. Full article
(This article belongs to the Special Issue Quality of Eggs, Poultry Meat and Egg Products)
Show Figures

Figure 1

15 pages, 2366 KB  
Article
Identification of a Novel Dihydroneopterin Aldolase as a Key Enzyme for Patulin Biodegradation in Lactiplantibacillus plantarum 6076
by Yixiang Shi, Wenli Yang, Aidi Ding, Yuan Wang, Yu Wang and Qianqian Li
Toxins 2026, 18(1), 48; https://doi.org/10.3390/toxins18010048 - 16 Jan 2026
Viewed by 161
Abstract
Patulin (PAT) is a fatal mycotoxin that exerts serious threats to human and animal health. Biodegradation of PAT is considered to be one of the promising ways for controlling its contamination. In this study, Lactiplantibacillus plantarum 6076 (LP 6076) with reliable removal efficiency [...] Read more.
Patulin (PAT) is a fatal mycotoxin that exerts serious threats to human and animal health. Biodegradation of PAT is considered to be one of the promising ways for controlling its contamination. In this study, Lactiplantibacillus plantarum 6076 (LP 6076) with reliable removal efficiency on PAT was screened out from three lactic acid bacteria (LAB) strains. It was found that the PAT was eliminated through degradation by LP 6076, and the intracellular proteins played a crucial role in PAT degradation with the induction of PAT. The proteomic analysis showed that the response of LP 6076 to PAT was by a concerted effort to repair DNA damage, in parallel to adaptive changes in cell wall biosynthesis and central metabolism. Eleven differentially expressed proteins with high fold changes were picked out and identified as PAT degradation candidate enzymes. The 3D structures of the candidate enzymes were predicted, and molecular docking between the enzymes and PAT was performed. Five enzymes, including Acetoin utilization AcuB protein (AU), GHKL domain-containing protein (GHLK), Dihydroneopterin aldolase (DA), YdeI/OmpD-associated family protein (YDEL), and Transcription regulator protein (TR), could dock with PAT with lower affinity and shorter distance. Through molecular docking analysis, DA was ultimately identified as a potential key degrading enzyme. The choice of DA was substantiated by its superior combination of strong binding affinity and a productive binding pose with PAT. VAL84 and GLN51 residues of DA were likely the active sites, forming four hydrogen bonds with PAT. Our study could accelerate the commercial application of biodegradation toward PAT decontamination. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

16 pages, 3163 KB  
Article
Functional Dissection of Leishmania major Membrane Components in Resistance to Cholesterol-Dependent Cytolysins
by Chaitanya S. Haram, Sebastian J. Salinas, Coleman Wilson, Salma Waheed Sheikh, Kai Zhang and Peter A. Keyel
Toxins 2026, 18(1), 46; https://doi.org/10.3390/toxins18010046 - 16 Jan 2026
Viewed by 207
Abstract
Bacteria use cholesterol-dependent cytolysins (CDCs) to damage eukaryotes. While well-studied in mammals, the mechanisms by which CDCs bind to and kill protozoans remain unclear. CDCs bind to the human pathogen Leishmania major but only kill in the absence of sphingolipids. The contribution of [...] Read more.
Bacteria use cholesterol-dependent cytolysins (CDCs) to damage eukaryotes. While well-studied in mammals, the mechanisms by which CDCs bind to and kill protozoans remain unclear. CDCs bind to the human pathogen Leishmania major but only kill in the absence of sphingolipids. The contribution of other leishmanial membrane components to CDC binding and cytotoxicity remains unknown. Here, we used genetic knockouts and inhibitors to determine the contribution of key membrane components to CDC binding and killing in L. major. We analyzed toxin binding and killing using flow cytometry and Western blotting. Loss of the virulence factor GP63 enhanced toxicity of perfringolysin O but not streptolysin O. Plasmenylethanolamine and lipophosphoglycan had minimal contributions to CDC binding and cytotoxicity. Removal of sterols protected cells from CDCs yet failed to reduce binding. We used CDCs defective in engaging glycans or cholesterol to confirm that CDCs deficient in sterol binding, but not glycan binding, could bind to L. major. Thus, in non-mammalian systems, CDCs may rely on glycans for binding, while using sterols for pore formation. This suggests that CDCs may not be sterol-specific probes in some non-mammalian systems. We conclude that early-branching eukaryotes use distinct mechanisms from mammals to limit CDC pore formation and killing. Full article
(This article belongs to the Special Issue Pore-Forming Toxins: From Structure to Function)
Show Figures

Figure 1

16 pages, 1299 KB  
Article
Integrated 13C-DNA Stable Isotope Probing and Metagenomics Approaches to Identify Bisphenol A Assimilating Microorganisms and Metabolic Pathways in Biofilms
by Di Wang, Jiayue Sun, Yunian Zhang, Lingjue Yuan, Xia Xu, Yingang Xue and Haohao Sun
Toxics 2026, 14(1), 80; https://doi.org/10.3390/toxics14010080 - 15 Jan 2026
Viewed by 233
Abstract
Bisphenol A (BPA) is a persistent environmental contaminant requiring effective removal strategies. Biofilms offer advantages over conventional activated sludge for refractory compound degradation, yet the specific microorganisms and mechanisms driving BPA removal in biofilms remain poorly understood. This study employed an integrated approach, [...] Read more.
Bisphenol A (BPA) is a persistent environmental contaminant requiring effective removal strategies. Biofilms offer advantages over conventional activated sludge for refractory compound degradation, yet the specific microorganisms and mechanisms driving BPA removal in biofilms remain poorly understood. This study employed an integrated approach, combining 13C-DNA stable isotope probing (SIP) and metagenomics to identify BPA-assimilating microorganisms and elucidate their metabolic pathways in biofilms. Two moving bed biofilm reactors (MBBRs) were operated at contrasting BPA concentrations (500 μg/L and 10 mg/L) to enrich distinct microbial communities. Using DNA-SIP, we revealed differences in assimilating bacteria across diverse concentrations of BPA-enriched biofilms. Simultaneously, we reconstructed the genomes of these assimilating bacteria, dissecting the functional genes essential to the degradation process and identifying significant gene variations among different assimilating bacteria. By integrating these gene functions, we constructed the BPA metabolic pathway, which surprisingly comprised genes from various assimilating bacteria. This research significantly advances our understanding of BPA-assimilating bacteria within biofilms and provides valuable insights for refining biofilm technologies aimed at BPA removal from wastewater. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Graphical abstract

19 pages, 4847 KB  
Article
The Influence of PVDF Membrane Ageing on the Efficiency of Bacterial Rejection During the Ultrafiltration Treatment of Carwash Wastewater
by Piotr Woźniak and Marek Gryta
Materials 2026, 19(2), 324; https://doi.org/10.3390/ma19020324 - 13 Jan 2026
Viewed by 159
Abstract
This study investigated the influence of two years of ultrafiltration (UF) on the separation properties of tubular polyvinylidene fluoride membranes used for treating carwash wastewater, particularly with regard to bacterial rejection. Fouling was mitigated by washing the membranes with alkaline cleaning agents (pH [...] Read more.
This study investigated the influence of two years of ultrafiltration (UF) on the separation properties of tubular polyvinylidene fluoride membranes used for treating carwash wastewater, particularly with regard to bacterial rejection. Fouling was mitigated by washing the membranes with alkaline cleaning agents (pH > 11.5). Repeated applications of these agents enlarged the membrane pores to approximately 300 nm. This affected bacterial retention, and for feed containing bacteria (determined as colony-forming units, CFU) at a concentration of 3.11 × 106 CFU/mL, over 13,000 CFU/mL were detected in the permeate. Interestingly, fouling improved retention, reducing bacterial counts present in the permeate from 13,689 to 2889 CFU/mL. Fouling also enhanced the retention of surfactants (80%), chemical oxide domain (60%), and turbidity (below 0.5 NTU), yielding results comparable to new membranes. Daily 60-min membrane washing with Wheel Cleaner solution (pH = 11.5) improved the membranes performance; however, it did not remove deposits from large pores, allowing good rejection performance and a permeate flux of 65 LMH to be maintained. It was found that bacteria also developed on the permeate side. Disinfection of the module housing with a NaOH/NaOCl solution reduced the number of bacteria in the permeate from 5356 to 66 CFU/mL. Microbiological tests revealed that some of these bacteria were antibiotic-resistant. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Graphical abstract

17 pages, 2298 KB  
Article
Urea-Mediated Biomineralization and Adsorption of Heavy-Metal Ions in Solution by the Urease-Producing Bacteria C7-12
by Qian Yang, Xiaoyi Li, Junyi Cao, Siteng He, Chengzhong He, Chunlin Tu, Keyu Zhou, Xinran Liang and Fangdong Zhan
Microorganisms 2026, 14(1), 171; https://doi.org/10.3390/microorganisms14010171 - 13 Jan 2026
Viewed by 241
Abstract
Urease-producing bacteria (UPB) have great potential for the bioremediation of heavy-metal pollution through biomineralization and adsorption. In this study, a strain of UPB, C7-12, was isolated from heavy-metal-contaminated soil in a lead–zinc mining area and identified as Serratia marcescens. The heavy-metal removal [...] Read more.
Urease-producing bacteria (UPB) have great potential for the bioremediation of heavy-metal pollution through biomineralization and adsorption. In this study, a strain of UPB, C7-12, was isolated from heavy-metal-contaminated soil in a lead–zinc mining area and identified as Serratia marcescens. The heavy-metal removal ability, influencing factors, and precipitation mode of this UPB strain in solution were investigated. The cadmium (Cd) removal rate in a Cd (1 mg/L) solution from C7-12 reached 85%, and pH was the main influencing factor. With urea mediation, S. marcescens C7-12 biomineralizes the Cd2+ in solution to form CdCO3 and removes it through extracellular precipitation and surface adsorption. Furthermore, the removal rates of Cd2+, Pb2+, Zn2+ and Cu2+ in solution by S. marcescens C7-12 were 33–65%, 28–32%, 22–49%, and 38–44%, respectively. The precipitation mode involves coprecipitation of multiple heavy metals to form a mineral. These heavy metals are adsorbed on the surface of bacteria through the participation of carboxyl, amino, and phosphate functional groups and extracellular polymeric substances. Therefore, S. marcescens C7-12 has strong biomineralization and adsorption capacity for heavy-metal ions in solution, which can provide potential resources for the bioremediation of heavy-metal-contaminated soil and water. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

19 pages, 4063 KB  
Article
Genomic Insights and Biodesulfurization Application of an Efficient Desulfurizer Strain TYWJ-2
by Yu Guo, Qisong Liu, Li Liang, Guihong Lan and Ming Duan
Processes 2026, 14(2), 242; https://doi.org/10.3390/pr14020242 - 9 Jan 2026
Viewed by 235
Abstract
Hydrogen sulfide (H2S) prevalent in fuel gases such as natural gas and biogas necessitates removal prior to utilization or pipeline distribution. Biological desulfurization is considered a green purification technology employing sulfur-oxidizing bacteria (SOB) under ambient conditions to eliminate sulfur compounds, offering [...] Read more.
Hydrogen sulfide (H2S) prevalent in fuel gases such as natural gas and biogas necessitates removal prior to utilization or pipeline distribution. Biological desulfurization is considered a green purification technology employing sulfur-oxidizing bacteria (SOB) under ambient conditions to eliminate sulfur compounds, offering advantages including high efficiency, simplified equipment, and minimal chemical consumption. A highly efficient SOB TYWJ-2 was isolated in this study. Genomic analysis revealed that strain TYWJ-2 possesses a complete set of sulfur metabolism genes, enabling the metabolism of various inorganic sulfides, along with salt-tolerance genes that support adaptation to high osmolarity environments. The optimal conditions for desulfurization were determined through single-factor experiments and Box–Behnken response surface methodology. Long-term desulfurization performance demonstrated stable operational efficiency, with H2S removal rates consistently reaching 99.72~99.87%. System performance remained robust under varying sulfur loads, elevated salinity, and intermittent operational shutdowns, with no significant decline in desulfurization efficiency observed. These findings indicate that strain TYWJ-2 holds considerable potential for the biological desulfurization of sulfur-containing biogas and natural gas. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Graphical abstract

22 pages, 13243 KB  
Article
Automatic Toilet Seat-Cleaning System: Design and Implementation
by Geunho Lee, Kazuki Takeshita, Kosei Shiinoki, Kota Okabe and Taeho Jung
Electronics 2026, 15(2), 285; https://doi.org/10.3390/electronics15020285 - 8 Jan 2026
Viewed by 371
Abstract
During the Coronavirus Disease 2019 (COVID-19) pandemic, global awareness of infectious diseases increased markedly. Many infectious diseases are transmitted through direct or indirect contact with biological fluids containing pathogens such as viruses and bacteria. This risk is particularly pronounced in environments used by [...] Read more.
During the Coronavirus Disease 2019 (COVID-19) pandemic, global awareness of infectious diseases increased markedly. Many infectious diseases are transmitted through direct or indirect contact with biological fluids containing pathogens such as viruses and bacteria. This risk is particularly pronounced in environments used by large numbers of unspecified individuals. Public restrooms, therefore, raise significant hygienic concerns, as toilet seats may serve as vectors for indirect transmission. To mitigate this risk, this study proposes a novel toilet seat equipped with an automatic cleaning function. Specifically, after use, the seat surface is automatically wiped by a cleaning cloth, eliminating the need for manual cleaning by staff. A fundamental operational concept is established, emphasizing the determination of an appropriate cleaning initiation timing that allows the cleaning sequence to be completed without compromising user convenience. Based on this concept, a belt–pulley type prototype is developed, and the effectiveness of the proposed cleaning sequence is verified. Subsequently, the prototype is further improved through the introduction of a flexible-rack mechanism. The control methodology, including the design of the electronic circuitry, is described in detail. Using the improved prototype, extensive simulations and experimental evaluations were conducted. The results showed that battery capacity declined at an approximately constant rate of 3% per 10 cycles, with about 70% remaining after 100 cycles. In addition, a single reciprocating cleaning cycle removed over 95% of artificially applied stains across the entire toilet seat. Additional evaluation results are presented in detail. Full article
Show Figures

Figure 1

23 pages, 5498 KB  
Article
The Effect of a Cactus-Based Natural Coagulant on the Physical–Chemical and Bacteriological Quality of Drinking Water: Batch and Continuous Mode Studies
by Abderrezzaq Benalia, Ouiem Baatache, Kerroum Derbal, Amel Khalfaoui, Loqmen Atime, Antonio Pizzi, Gennaro Trancone and Antonio Panico
Water 2026, 18(2), 138; https://doi.org/10.3390/w18020138 - 6 Jan 2026
Viewed by 444
Abstract
Cactus leaves from the Cactaceae family, particularly the Opuntia genus, have attracted increasing attention as natural coagulants for water treatment applications. In this work, Cactus-based extracts were investigated for drinking water treatment through the coagulation–flocculation process. Several extraction routes were examined, including [...] Read more.
Cactus leaves from the Cactaceae family, particularly the Opuntia genus, have attracted increasing attention as natural coagulants for water treatment applications. In this work, Cactus-based extracts were investigated for drinking water treatment through the coagulation–flocculation process. Several extraction routes were examined, including Ca-J, Ca-H2O, Ca-NaOH (0.05 M), Ca-NaCl (0.5 M), and Ca-HCl (0.05 M), and their performance was evaluated using jar test experiments. The removal efficiencies of total coliforms (TC), anaerobic sulfite-reducing bacteria (ASRB), total suspended solids (TSS), and turbidity were assessed, and the most effective extract was subsequently tested in a semi-industrial pilot-scale coagulation–flocculation–settling system. The physicochemical properties of the Cactus material were characterized using FTIR, SEM, XRD, and MALDI-TOF analyses. Results revealed bioactive components, including carbohydrates, proteins, tannins, flavonoids, and glucose, with functional groups (carboxyl, hydroxyl, carbonyl) responsible for coagulation. XRD and SEM analyses showed a semi-crystalline structure and a heterogeneous surface with fiber networks, while MALDI-TOF confirmed the presence of flavonoid and tannin compounds. These features collectively contribute to the effective removal of turbidity, suspended solids, and microbial contaminants. Among the tested extracts, Ca-NaOH (0.05 M) exhibited the highest removal efficiencies, achieving 100% removal of TC and ASRB, 94.15% removal of TSS, and 70.38% turbidity reduction under laboratory conditions. Pilot-scale application of this extract resulted in a turbidity reduction of 66.65%. Additional water quality parameters, including total alkalinity (TA), total dissolved solids (TDS), pH, and electrical conductivity (EC), were monitored to evaluate process performance. Overall, the results highlight the strong potential of Cactus leaves as an effective, cost-efficient, and environmentally friendly alternative to conventional chemical coagulants. However, further research is required to enhance their scalability and commercialization. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

17 pages, 15732 KB  
Article
Pre-Filter Regulation Strategies and Deactivation Mechanisms of Filter Media in Water Treatment
by Chaochang Jiang, Xiaowei Lei, Renpeng Zhou, Bingzhi Liu, Junxia Liu, Wei Song and Zhihong Wang
Water 2026, 18(1), 127; https://doi.org/10.3390/w18010127 - 5 Jan 2026
Viewed by 255
Abstract
In the context of micro-polluted water sources, the performance decline of filtration units is a major challenge for the operational management of water supply plants. Therefore, it is necessary to systematically analyze the mechanism underlying the decline in filter media activity and optimize [...] Read more.
In the context of micro-polluted water sources, the performance decline of filtration units is a major challenge for the operational management of water supply plants. Therefore, it is necessary to systematically analyze the mechanism underlying the decline in filter media activity and optimize the pre-filtration treatment. This study focuses on waterworks, aiming to enhance filtration performance through filter media modification and a combined coagulant-oxidant strategy. A key innovation of this work is the development of a macro-microscopic correlation evaluation system. The results showed that the modified filter media increased the turbidity removal rate by 10.48% compared to the unmodified media. Furthermore, the combined coagulation–pre-oxidation scheme increased the removal rates for turbidity and UV254 by 3.24% and 19.03%, respectively, compared to the single-process scheme. Combined with filter media characterization results, the deactivation mechanism of filter media can be inferred. During the high-algae period, microorganisms on the filter media generate anaerobic Extracellular Polymeric Substances (EPS), which form a biofilm with bacteria and adhere to the filter media. The viscous matrix of these EPS then encapsulates inorganic substances, resulting in hard-to-remove clumps. These clumps clog pores and hinder the adsorption of subsequent pollutants, ultimately leading to continuous deterioration in filter media performance until failure. Full article
Show Figures

Figure 1

15 pages, 1329 KB  
Article
Production of Carbon Sources Through Anaerobic Fermentation Using the Liquid Phase of Food Waste Three-Phase Separation: Influencing Factors and Microbial Community Structure
by Yangqing Hu, Enwei Lin, Xianming Weng, Fei Wang, Zhenghui Chen and Guojun Lv
Bioengineering 2026, 13(1), 60; https://doi.org/10.3390/bioengineering13010060 - 5 Jan 2026
Viewed by 283
Abstract
The urgent need for effective food waste management, coupled with the scarcity of carbon sources for sewage treatment, highlights the potential of producing carbon sources from food waste as a mutually beneficial solution. This study investigated the production of carbon sources through anaerobic [...] Read more.
The urgent need for effective food waste management, coupled with the scarcity of carbon sources for sewage treatment, highlights the potential of producing carbon sources from food waste as a mutually beneficial solution. This study investigated the production of carbon sources through anaerobic fermentation using the liquid phase of food waste three-phase separation. Compared with previous studies using raw food waste or mixed substrates, the liquid phase derived from three-phase separation is richer in soluble organic matter and has been pre-heated (80 °C), which facilitates subsequent fermentation and offers easier integration into existing food waste treatment plants. A series of lab-scale batch fermentation experiments were carried out at different temperatures, including ambient, mesophilic, and thermophilic conditions, as well as varying initial pH levels (uncontrolled, neutral, and alkaline). The experimental results indicated that optimal production parameters involve a 4-day mesophilic fermentation at 35 °C with an initial alkaline pH, which increased the total VFAs yield by 252.5% to 40.26 g/L and raised the acetic acid fraction to 45.5% of total VFAs. Under these conditions, there was an observed increase in the relative abundance of acidogenic bacteria and a decrease in that of methanogen archaea. Furthermore, the denitrification performance of the produced carbon source was evaluated in short-term tests, and near-complete nitrate removal was achieved within approximately 2 h. These findings suggest the fermented liquid phase of food waste is a promising partial substitute for conventional external carbon sources. Full article
(This article belongs to the Section Biochemical Engineering)
Show Figures

Figure 1

Back to TopTop