Pre-Filter Regulation Strategies and Deactivation Mechanisms of Filter Media in Water Treatment
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Procedure
2.2.1. Modification of Filter Media
2.2.2. Coagulation Experiments
2.2.3. Coagulation and Pre-Oxidation Compound
2.2.4. Filtration Experiment
2.3. Analytical Methods
3. Results and Discussion
3.1. Filtration Performance Enhancement Strategy
3.1.1. Enhanced Coagulation
3.1.2. Enhanced Preoxidation
3.1.3. Comprehensive Comparison of Coagulation Schemes
3.1.4. Filter Media Modification Effect
3.2. Research on Filter Media Deactivation Mechanism
3.2.1. Macroscopic Criteria for Filter Media Deactivation
3.2.2. Micro Mechanism of Filter Media Deactivation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, H.; Li, T.; Lin, C.; Zhang, L.; Chen, H. Treatment countermeasure of filter material blockage in old water plant filter tank. Water Purif. Technol. 2022, 41, 173–177. [Google Scholar] [CrossRef]
- Wang, R.; Ye, X.; Lu, B.; Cai, B.; Li, Q.; Li, X. Research and Development of Air-Water Backwashing Transformation Technology for Ordinary Rapid Filter Tanks. China Water Wastewater 2014, 30, 45–48. [Google Scholar] [CrossRef]
- Zheng, Y.; Ding, Y.; Li, F.; Liu, Y.; Sun, J. Research on coagulation mechanisms and the current development status of coagulants at home and abroad. China Water Wastewater 2007, 23, 14–17. [Google Scholar]
- Endale, Y.; Samuel, Z.A.; Kebede, S.; Bayu, A.B. Blended natural and synthetic coagulants for the COD and BOD removal from surface water; optimization by response surface methodology: The case of Gibe river. Heliyon 2024, 10, e37961. [Google Scholar] [CrossRef] [PubMed]
- Jia, R.; Jia, R.; Wang, W. Study on the flocculation performance of composite coagulant PAC-CTS on low-temperature and low-turbidity drinking water source. Desalination Water Treat. 2025, 321, 100972. [Google Scholar] [CrossRef]
- Dai, J.; Lou, J.; Jin, Z.; Yu, T.; Xu, H.; Wang, D. Harnessing the power of silicon: Enhanced coagulation and aging control in secondary effluent treatment with polyaluminum silicate chloride (PASiC). Sep. Purif. Technol. 2025, 377, 134218. [Google Scholar] [CrossRef]
- Xu, X.; Wan, J.; Wang, G.; Huang, Z.; Li, Q.; Chen, Y.; Zhou, J.; Li, W.; Sun, J.; Wu, J.; et al. Enhanced flocculation air-flotation process with moderate pre-oxidation of sodium hypochlorite and ozone for the treatment of high algal water: Performance, process optimization and mechanism. J. Water Process Eng. 2025, 72, 107554. [Google Scholar] [CrossRef]
- Cao, L.; Wang, J.; Wang, Z.; Cheng, Y.; Dai, J.; Ma, J.; Chen, Y.; Liu, Z.; Xie, P. Comparison of peracetic acid and sodium hypochlorite enhanced Fe(II) coagulation on algae-laden water treatment. J. Hazard. Mater. 2023, 445, 130571. [Google Scholar] [CrossRef]
- Wu, K.; Jia, Y.; Song, D.; Li, A.; Bai, X.; Sun, X.; Li, R.; Li, Z. Insights to enhanced coagulation based on the control of metal forms for treating acid mine drainage: Performance and mechanisms. J. Hazard. Mater. 2025, 494, 138577. [Google Scholar] [CrossRef]
- Yang, S.; Li, D.; Zhu, Y.; Zheng, J.; Fu, S.; Zeng, H.; Zhang, J. Chitosan-modified quartz sand accelerates the start-up of biofilter: Insights into performance, microbial characteristics, and functional genes. Sep. Purif. Technol. 2025, 374, 133743. [Google Scholar] [CrossRef]
- Wang, T.; Cao, W.; Wang, Y.; Qu, C.; Xu, Y.; Li, H. Surface modification of quartz sand: A review of its progress and its effect on heavy metal adsorption. Ecotoxicol. Environ. Saf. 2023, 262, 115179. [Google Scholar] [CrossRef]
- Li, H.; Dong, X.; da Silva, E.B.; de Oliveira, L.M.; Chen, Y.; Ma, L.Q. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere 2017, 178, 466–478. [Google Scholar] [CrossRef]
- Deng, H.; Lin, J.; Tang, C.; Li, W.; Bibi, H.; Lai, X.; Wei, J. Cd(II) and fenaminosulf adsorption by zeolite modified with plant extract and chemical modifier. Desalination Water Treat. 2024, 320, 100747. [Google Scholar] [CrossRef]
- Chang, B.; He, B.; Cao, G.; Zhou, Z.; Liu, X.; Yang, Y.; Xu, C.; Hu, F.; Lv, J.; Du, W. Co-transport of polystyrene microplastics and kaolinite colloids in goethite-coated quartz sand: Joint effects of heteropolymerization and surface charge modification. Sci. Total Environ. 2023, 884, 163832. [Google Scholar] [CrossRef] [PubMed]
- Chang, P. Experimental Study on the Preparation and Filtration of Ferric Chloride Modified Quartz Sand. Master’s Thesis, Chongqing University, Chongqing, China, 2014. Available online: https://kns.cnki.net/kcms2/article/abstract?v=ZHE1803t14tKe_wFzKeRJYixq-gOCpeYKR04IHGrq6fdH6Usmy01mSiJTCVX0ROz5TLV0JGbXDXMDU2cW0dXdYAvNacR9BgEe5O4DG4O4OJ0MvSI7uxdmbK4ySQFt0utSvWt9PbSqbrbDFAKuL-UK2LpVBc89pv0bK5J3Iit_1SjKzRb2iEfNilpIT_Ad9C9&uniplatform=NZKPT&language=CHS (accessed on 3 August 2025).
- Liao, Y.; Wang, L.; Tian, Y.; Li, J.; Zhou, Q.; Li, A.; Hua, M.; Pan, Y. Effects of ozonation-enhanced coagulation on effluent organic matter and disinfection byproducts. J. Clean. Prod. 2025, 490, 144801. [Google Scholar] [CrossRef]
- Li, C.; Chen, H.; Zhang, Y.; Fang, W.; Zou, L.; Chi, R. Investigation of the mechanism of soluble fluoride removal from phosphogypsum leachate using polyaluminium chloride flocculation: A molecular dynamics approach. Colloids Surf. A Physicochem. Eng. Asp. 2025, 718, 136822. [Google Scholar] [CrossRef]
- Lin, J.-L.; Huang, C.; Chin, C.-J.M.; Pan, J.R. The origin of Al(OH)3-rich and Al13-aggregate flocs composition in PACl coagulation. Water Res. 2009, 43, 4285–4295. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, Y.; Chen, L.; Wang, Z. Synergistic coagulation-flocculation using polymeric ferric sulfate and Opuntia Milpa Alta particles for enhanced polystyrene microplastic removal. Process Saf. Environ. Prot. 2025, 204, 108061. [Google Scholar] [CrossRef]
- Xing, Z.-P.; Sun, D.-Z. Treatment of antibiotic fermentation wastewater by combined polyferric sulfate coagulation, Fenton and sedimentation process. J. Hazard. Mater. 2009, 168, 1264–1268. [Google Scholar] [CrossRef]
- Qin, H.; Zeng, X.; Liu, C. Research Progress on the Preparation, modification and Application of Polymeric Ferric sulfate. Ind. Water Treat. 2023, 43, 53–61. [Google Scholar] [CrossRef]
- Gull, M.; Shahid, Z.; Raza, A.; Mazhar, S.; Masood, Z. Comparative investigation of PFS and PAC coagulants with activated carbon in cellulose microfiltration systems for treatment of real printing ink wastewater. Clean. Water 2025, 3, 100086. [Google Scholar] [CrossRef]
- Chen, X.-X.; Yuan, Y.-W.; Gao, Y.-Y.; He, Z.-Y.; Wang, H.-F.; Zeng, R.J. Beyond charge neutralization: Self-skeletization of inorganic coagulants reinforces pore networks for enhanced sludge dewatering. Water Res. 2026, 288, 124546. [Google Scholar] [CrossRef]
- Wu, N.; Cao, W.; Qu, R.; Wang, Z.; Allam, A.A.; Ajarem, J.S.; Altoom, N.G.; Ahmed Dar, A.; Zhu, F.; Huo, Z. Synergistic effects of permanganate and chlorination on the degradation of Benzophenone-3: Kinetics, mechanisms and toxicity evaluation. Sep. Purif. Technol. 2023, 322, 124194. [Google Scholar] [CrossRef]
- Ali, I.; Tan, X.; Xie, Y.; Peng, C.; Li, J.; Naz, I.; Duan, Z.; Wan, P.; Huang, J.; Liang, J.; et al. Recent innovations in microplastics and nanoplastics removal by coagulation technique: Implementations, knowledge gaps and prospects. Water Res. 2023, 245, 120617. [Google Scholar] [CrossRef]
- Guo, Q.; Xu, Z.; Chu, W.; Zhang, J.; Qi, H.; Lu, C.; Wang, X. Unraveling the synergistic mechanisms of coagulation combined with oxidation for the treatment of sewer overflow: The interaction between iron species and NaClO. J. Hazard. Mater. 2024, 480, 135871. [Google Scholar] [CrossRef] [PubMed]
- Lei, G.; Liu, W.; Li, Y.; Zou, Y.; Wang, G. Modified filter materials enhance the filtration treatment of slightly polluted water. Water Purif. Technol. 2005, 18–21. [Google Scholar] [CrossRef]
- Zhang, M.; He, F.; Zhao, D.; Hao, X. Transport of stabilized iron nanoparticles in porous media: Effects of surface and solution chemistry and role of adsorption. J. Hazard. Mater. 2017, 322, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Zhang, D.; Cheng, Y.; Tan, J.; Luo, Y. The impact of Paenibacillus polymyxa HY96-2 luxS on biofilm formation and control of tomato bacterial wilt. Appl. Microbiol. Biotechnol. 2019, 103, 9643–9657. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.-C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef]
- Ma, H.; Yin, Z.; Wang, Q.; Li, Y.; Tian, L.; Yang, J.; Zhu, L.; Zhou, S. Dual efficacy of extracellular polymeric substances in microalgae-fungi consortia system: Advances and challenges in wastewater treatment and biomass recovery mechanisms. Chin. Chem. Lett. 2025, 112174, in press. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Vrouwenvelder, J.S.; Saikaly, P.E. Physicochemical Properties of Extracellular Polymeric Substances Produced by Three Bacterial Isolates From Biofouled Reverse Osmosis Membranes. Front. Microbiol. 2021, 12, 668761. [Google Scholar] [CrossRef] [PubMed]
- Nishad, H.; Kashyap, S.; Khan, A.; Kumar, R.; Mohapatra, R.K.; Nayak, M. Microalgal EPS as a bio-flocculant for sustainable biomass harvesting: A review. Sep. Purif. Technol. 2025, 378, 134844. [Google Scholar] [CrossRef]
- Salama, Y.; Chennaoui, M.; Sylla, A.; Mountadar, M.; Rihani, M.; Assobhei, O. Characterization, structure, and function of extracellular polymeric substances (EPS) of microbial biofilm in biological wastewater treatment systems: A review. Desalination Water Treat. 2016, 57, 16220–16237. [Google Scholar] [CrossRef]
- Wang, J.; Tian, Q.; Zeng, W.; Qiu, G.; Shen, L. Insights about fungus-microalgae symbiotic system in microalgae harvesting and wastewater treatment: A review. Renew. Sustain. Energy Rev. 2023, 182, 113408. [Google Scholar] [CrossRef]
- Tang, P.; Xu, H.; Zhang, W.; Zhu, Y.; Yang, J.; Zhou, Y. Fluid transport in porous media based on differences in filter media morphology and biofilm growth in bioreactors. Environ. Res. 2023, 219, 115122. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Dougherty, M.; Chen, Z.; Zuo, X.; He, J. Managing biofilm growth and clogging to promote sustainability in an intermittent sand filter (ISF). Sci. Total Environ. 2021, 755, 142477. [Google Scholar] [CrossRef] [PubMed]











Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Jiang, C.; Lei, X.; Zhou, R.; Liu, B.; Liu, J.; Song, W.; Wang, Z. Pre-Filter Regulation Strategies and Deactivation Mechanisms of Filter Media in Water Treatment. Water 2026, 18, 127. https://doi.org/10.3390/w18010127
Jiang C, Lei X, Zhou R, Liu B, Liu J, Song W, Wang Z. Pre-Filter Regulation Strategies and Deactivation Mechanisms of Filter Media in Water Treatment. Water. 2026; 18(1):127. https://doi.org/10.3390/w18010127
Chicago/Turabian StyleJiang, Chaochang, Xiaowei Lei, Renpeng Zhou, Bingzhi Liu, Junxia Liu, Wei Song, and Zhihong Wang. 2026. "Pre-Filter Regulation Strategies and Deactivation Mechanisms of Filter Media in Water Treatment" Water 18, no. 1: 127. https://doi.org/10.3390/w18010127
APA StyleJiang, C., Lei, X., Zhou, R., Liu, B., Liu, J., Song, W., & Wang, Z. (2026). Pre-Filter Regulation Strategies and Deactivation Mechanisms of Filter Media in Water Treatment. Water, 18(1), 127. https://doi.org/10.3390/w18010127

