Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = azacrown ether

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4614 KiB  
Article
A Theoretical Investigation of the Selectivity of Aza-Crown Ether Structures Chelating Alkali Metal Cations for Potential Biosensing Applications
by Mouhmad Elayyan, Mark R. Hoffmann and Binglin Sui
Molecules 2025, 30(12), 2571; https://doi.org/10.3390/molecules30122571 - 12 Jun 2025
Viewed by 985
Abstract
Aza-crown ether structures have been proven to be effective in constructing fluorescent biosensors for selectively detecting and imaging alkali metal ions in biological environments. However, choosing the right aza-crown ether for a specific alkali metal ion remains challenging for synthetic chemists because theoretical [...] Read more.
Aza-crown ether structures have been proven to be effective in constructing fluorescent biosensors for selectively detecting and imaging alkali metal ions in biological environments. However, choosing the right aza-crown ether for a specific alkali metal ion remains challenging for synthetic chemists because theoretical guidance on the chelating activities between aza-crown ethers and alkali metal ions has not been available up to now. Predicting the physical properties of the chelator–metal complexations poses a greater challenge due to the numerous quantum mechanical functionals and basis sets to be used in any theoretical investigation. In this study, we report a theoretical investigation of different aza-crown ether structures and their selectivities to alkali metal ions via a novel relationship between the binding energy and charge transfer calculated using twelve different quantum mechanical methods, using a myriad of bases, within the Jacob’s Ladder of Chemical Accuracies. Furthermore, this report represents a guide for the synthetic chemist in the selection of aza-crown ethers in the capturing of specific alkali metal ions, primary objectives, while benchmarking different quantum mechanical calculations, as a secondary objective. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

12 pages, 3191 KiB  
Article
The Molecular Design of a Macrocycle Descaling Agent Based on Azacrown and the Mechanism of Barium Sulfate Scale Removal
by Da Wu, Dexin Liu, Minghua Shi, Jiaqiang Wang, Han Zhao and Yeliang Dong
Molecules 2024, 29(21), 5167; https://doi.org/10.3390/molecules29215167 - 31 Oct 2024
Viewed by 946
Abstract
The formation of barium sulfate scale is a persistent and formidable challenge across various industrial processes. In order to effectively mitigate this problem, this study proposed the development of an innovative azacrown ether-based macrocycle descaling agent. Using density functional theory, an in-depth analysis [...] Read more.
The formation of barium sulfate scale is a persistent and formidable challenge across various industrial processes. In order to effectively mitigate this problem, this study proposed the development of an innovative azacrown ether-based macrocycle descaling agent. Using density functional theory, an in-depth analysis of the surface energy of different barium sulfate crystal facets was carried out, together with a detailed investigation into the adsorption properties of the functional groups on the (001) surface. A further comprehensive investigation was carried out to determine how changes in the nitrogen and oxygen atoms in the crown ether framework influence its adsorption affinity to barium ions. In addition, a detailed analysis was carried out to elucidate the molecular interactions between crown ethers with pyridine carboxylic acid side chains and barium sulfate. The newly developed decalcifying macrocycle descaling agent exhibited superior adsorption performance, achieving an adsorption energy for barium ions approximately −4.1512 ev higher than that of conventional DTPA decalcifiers. This remarkable improvement is mainly attributed to the pivotal role of electrostatic forces in the coordination process between the macrocycle descaling agent and barium ions, with an electrostatic potential value reaching −143.37 kcal/mol. This discovery not only introduces a novel approach to the removal of barium sulfate scale but also highlights the significant potential of macrocycle chemistry in industrial applications. Full article
Show Figures

Figure 1

14 pages, 4277 KiB  
Article
Development of Fluorescent Chemosensors for Calcium and Lead Detection
by Liliana J. Gomes, Mani Outis, Clara S. B. Gomes, Augusto C. Tomé and Artur J. Moro
Molecules 2024, 29(2), 527; https://doi.org/10.3390/molecules29020527 - 21 Jan 2024
Cited by 2 | Viewed by 1836
Abstract
In the present work, several coumarin-3-carboxamides with different azacrown ether moieties were designed and tested as potential luminescent sensors for metal ions. The derivative containing a 1-aza-15-crown-5 as a metal chelating group was found to yield the strongest response for Ca2+ and [...] Read more.
In the present work, several coumarin-3-carboxamides with different azacrown ether moieties were designed and tested as potential luminescent sensors for metal ions. The derivative containing a 1-aza-15-crown-5 as a metal chelating group was found to yield the strongest response for Ca2+ and Pb2+, exhibiting an eight- and nine-fold emission increase, respectively, while other cations induced no changes in the optical properties of the chemosensor molecule. Job’s plots revealed a 1:1 binding stoichiometry, with association constants of 4.8 × 104 and 8.7 × 104 M–1, and limits of detection of 1.21 and 8.04 µM, for Ca2+ and Pb2+, respectively. Computational studies suggest the existence of a PET quenching mechanism, which is inhibited after complexation with each of these two metals. Proton NMR experiments and X-ray crystallography suggest a contribution from the carbonyl groups in the coumarin-3-carboxamide fluorophore in the coordination sphere of the metal ion. Full article
Show Figures

Figure 1

12 pages, 1798 KiB  
Article
Ab Initio Calculations on the Ground and Excited Electronic States of Thorium–Ammonia, Thorium–Aza-Crown, and Thorium–Crown Ether Complexes
by Zhongyuan Lu, Benjamin A. Jackson and Evangelos Miliordos
Molecules 2023, 28(12), 4712; https://doi.org/10.3390/molecules28124712 - 12 Jun 2023
Cited by 3 | Viewed by 2200
Abstract
Positively charged metal–ammonia complexes are known to host peripheral, diffuse electrons around their molecular skeleton. The resulting neutral species form materials known as expanded or liquid metals. Alkali, alkaline earth, and transition metals have been investigated previously in experimental and theoretical studies of [...] Read more.
Positively charged metal–ammonia complexes are known to host peripheral, diffuse electrons around their molecular skeleton. The resulting neutral species form materials known as expanded or liquid metals. Alkali, alkaline earth, and transition metals have been investigated previously in experimental and theoretical studies of both the gas and condensed phase. This work is the first ab initio exploration of an f-block metal–ammonia complex. The ground and excited states are calculated for Th0–3+ complexes with ammonia, crown ethers, and aza-crown ethers. For Th3+ complexes, the one valence electron Th populates the metal’s 6d or 7f orbitals. For Th0–2+, the additional electrons prefer occupation of the outer s- and p-type orbitals of the complex, except Th(NH3)10, which uniquely places all four electrons in outer orbitals of the complex. Although thorium coordinates up to ten ammonia ligands, octa-coordinated complexes are more stable. Crown ether complexes have a similar electronic spectrum to ammonia complexes, but excitations of electrons in the outer orbitals of the complex are higher in energy. Aza-crown ethers disfavor the orbitals perpendicular to the crowns, attributed to the N-H bonds pointing along the plane of the crowns. Full article
Show Figures

Figure 1

15 pages, 4301 KiB  
Article
Novel Crown Ether Amino Acids as Fluorescent Reporters for Metal Ions
by Patrícia M. R. Batista, Cátia D. F. Martins, M. Manuela M. Raposo and Susana P. G. Costa
Molecules 2023, 28(8), 3326; https://doi.org/10.3390/molecules28083326 - 9 Apr 2023
Cited by 10 | Viewed by 2574
Abstract
Unnatural amino acids with enhanced properties, such as increased complexing ability and luminescence, are considered to be highly attractive building blocks for bioinspired frameworks, such as probes for biomolecule dynamics, sensitive fluorescent chemosensors, and peptides for molecular imaging, among others. Therefore, a novel [...] Read more.
Unnatural amino acids with enhanced properties, such as increased complexing ability and luminescence, are considered to be highly attractive building blocks for bioinspired frameworks, such as probes for biomolecule dynamics, sensitive fluorescent chemosensors, and peptides for molecular imaging, among others. Therefore, a novel series of highly emissive heterocyclic alanines bearing a benzo[d]oxazolyl unit functionalized with different heterocyclic π-spacers and (aza)crown ether moieties was synthesized. The new compounds were completely characterized using the usual spectroscopic techniques and evaluated as fluorimetric chemosensors in acetonitrile and aqueous mixtures in the presence of various alkaline, alkaline-earth, and transition metal ions. The different crown ether binding moieties as well as the electronic nature of the π-bridge allowed for fine tuning of the sensory properties of these unnatural amino acids towards Pd2+ and Fe3+, as seen by spectrofluorimetric titrations. Full article
Show Figures

Figure 1

17 pages, 3636 KiB  
Article
Novel Hybrid Benzoazacrown Ligand as a Chelator for Copper and Lead Cations: What Difference Does Pyridine Make
by Bayirta V. Egorova, Lyubov S. Zamurueva, Anastasia D. Zubenko, Anna V. Pashanova, Artem A. Mitrofanov, Anna B. Priselkova, Yuri V. Fedorov, Alexander L. Trigub, Olga A. Fedorova and Stepan N. Kalmykov
Molecules 2022, 27(10), 3115; https://doi.org/10.3390/molecules27103115 - 12 May 2022
Cited by 3 | Viewed by 2665
Abstract
A synthetic procedure for the synthesis of azacrown ethers with a combination of pendant arms has been developed and the synthesized ligand, characterized by various techniques, was studied. The prepared benzoazacrown ether with hybrid pendant arms and its complexes with copper and lead [...] Read more.
A synthetic procedure for the synthesis of azacrown ethers with a combination of pendant arms has been developed and the synthesized ligand, characterized by various techniques, was studied. The prepared benzoazacrown ether with hybrid pendant arms and its complexes with copper and lead cations were studied in terms of biomedical applications. Similarly to a fully acetate analog, the new one binds both cations with close stability constants, despite the decrease in both constants. The calculated geometry of the complexes correlate with the data from X-ray absorption and NMR spectroscopy. Coordination of both cations differs due to the difference between the ionic radii. However, these chelation modes provide effective shielding of cations in both cases, that was shown by the stability of their complexes in the biologically relevant media towards transchelation and transmetallation. Full article
(This article belongs to the Special Issue Design and Synthesis of Macrocyclic Compounds)
Show Figures

Figure 1

14 pages, 1041 KiB  
Article
Synthesis of Novel Crown Ether-Squaramides and Their Application as Phase-Transfer Catalysts
by Zsuzsanna Fehér, Dóra Richter, Sándor Nagy, Péter Bagi, Zsolt Rapi, András Simon, László Drahos, Péter Huszthy, Péter Bakó and József Kupai
Molecules 2021, 26(21), 6542; https://doi.org/10.3390/molecules26216542 - 29 Oct 2021
Cited by 4 | Viewed by 4304
Abstract
This work presents the synthesis of six new phase-transfer organocatalysts in which the squaramide unit is directly linked to the nitrogen atom of an aza-crown ether. Four chiral skeletons, namely hydroquinine, quinine, cinchonine (cinchonas), and α-d-glucopyranoside were responsible for the asymmetric [...] Read more.
This work presents the synthesis of six new phase-transfer organocatalysts in which the squaramide unit is directly linked to the nitrogen atom of an aza-crown ether. Four chiral skeletons, namely hydroquinine, quinine, cinchonine (cinchonas), and α-d-glucopyranoside were responsible for the asymmetric construction of an all-carbon quaternary stereogenic center in α-alkylation and Michael addition reactions of malonic esters. We investigated the effects of these different chiral units and that of crown ethers with different sizes on catalytic activity and enantioselectivity. During extensive parameter investigations, both conventional and emerging green solvents were screened, providing valuable α,α-disubstituted malonic ester derivatives with excellent yields (up to 98%). Full article
(This article belongs to the Special Issue New Insights into the Preparation and Separation of Enantiomers)
Show Figures

Graphical abstract

15 pages, 1315 KiB  
Article
Synthesis of Methyl 4,6-Di-O-ethyl-α-d-glucopyranoside-Based Azacrown Ethers and Their Effects in Asymmetric Reactions
by István Orbán, Bertalan Varga, Péter Bagi, László Hegedűs, Péter Bakó and Zsolt Rapi
Molecules 2021, 26(15), 4668; https://doi.org/10.3390/molecules26154668 - 2 Aug 2021
Cited by 1 | Viewed by 3592
Abstract
Carbohydrate-based crown ethers have been reported to be able to generate asymmetric induction in certain reactions. Previously, it was proved that the monosaccharide unit, the anomeric substituent, and the sidearm could influence the catalytic activity of the monoaza-15-crown-5 macrocycles derived from sugars. In [...] Read more.
Carbohydrate-based crown ethers have been reported to be able to generate asymmetric induction in certain reactions. Previously, it was proved that the monosaccharide unit, the anomeric substituent, and the sidearm could influence the catalytic activity of the monoaza-15-crown-5 macrocycles derived from sugars. In order to gain information about the effect of the flexibility, 4,6-di-O-ethyl-glucoside-based crown compounds were synthesized, and their efficiency was compared to the 4,6-O-benzylidene analogues. It was found that the absence of the two-ring annulation has a negative effect on the enantioselectivity in liquid-liquid two-phase reactions: in the Darzens condensation of 2-chloroacetophenone and in the epoxidation of chalcone. The same trend was observed in the solid-liquid phase Michael addition of diethyl acetamidomalonate. Surprisingly, in the solid-liquid phase cyclopropanation of benzylidenemalononitrile, one of the new catalysts was highly enantioselective (99% ee). Full article
(This article belongs to the Special Issue Synthesis and Molecular Recognition of Macrocyclic Compounds)
Show Figures

Graphical abstract

28 pages, 5488 KiB  
Perspective
Carbohydrate-Based Azacrown Ethers in Asymmetric Syntheses
by István Orbán, Péter Bakó and Zsolt Rapi
Chemistry 2021, 3(2), 550-577; https://doi.org/10.3390/chemistry3020039 - 15 Apr 2021
Cited by 11 | Viewed by 3641
Abstract
Carbohydrate-based crown ethers represent a special group of chiral phase transfer catalysts. Several derivatives of these macrocycles have been synthesized in our research group. Among these compounds, monoaza-15-crown-5 lariat ethers proved to be effective phase transfer and enantioselective catalysts in certain reactions. Those [...] Read more.
Carbohydrate-based crown ethers represent a special group of chiral phase transfer catalysts. Several derivatives of these macrocycles have been synthesized in our research group. Among these compounds, monoaza-15-crown-5 lariat ethers proved to be effective phase transfer and enantioselective catalysts in certain reactions. Those chiral azacrown ethers incorporating various carbohydrate moieties in the macrocyclic structure are reviewed, which generated asymmetric induction in reactions, such as Michael addition, epoxidation of enones, Darzens condensation and Michael-initiated ring-closure (MIRC) reaction. Effects on the catalytic activity of the structural changes are the focus. Full article
(This article belongs to the Special Issue Organic Chemistry Research in Hungary)
Show Figures

Scheme 1

26 pages, 3772 KiB  
Article
Synthesis, Biological Evaluation, and Molecular Modeling of Aza-Crown Ethers
by Stepan S. Basok, Igor A. Schepetkin, Andrei I. Khlebnikov, Anatoliy F. Lutsyuk, Tatiana I. Kirichenko, Liliya N. Kirpotina, Victor I. Pavlovsky, Klim A. Leonov, Darya A. Vishenkova and Mark T. Quinn
Molecules 2021, 26(8), 2225; https://doi.org/10.3390/molecules26082225 - 12 Apr 2021
Cited by 18 | Viewed by 4736
Abstract
Synthetic and natural ionophores have been developed to catalyze ion transport and have been shown to exhibit a variety of biological effects. We synthesized 24 aza- and diaza-crown ethers containing adamantyl, adamantylalkyl, aminomethylbenzoyl, and ε-aminocaproyl substituents and analyzed their biological effects in vitro. [...] Read more.
Synthetic and natural ionophores have been developed to catalyze ion transport and have been shown to exhibit a variety of biological effects. We synthesized 24 aza- and diaza-crown ethers containing adamantyl, adamantylalkyl, aminomethylbenzoyl, and ε-aminocaproyl substituents and analyzed their biological effects in vitro. Ten of the compounds (8, 1017, and 21) increased intracellular calcium ([Ca2+]i) in human neutrophils, with the most potent being compound 15 (N,N’-bis[2-(1-adamantyl)acetyl]-4,10-diaza-15-crown-5), suggesting that these compounds could alter normal neutrophil [Ca2+]i flux. Indeed, a number of these compounds (i.e., 8, 1017, and 21) inhibited [Ca2+]i flux in human neutrophils activated by N-formyl peptide (fMLF). Some of these compounds also inhibited chemotactic peptide-induced [Ca2+]i flux in HL60 cells transfected with N-formyl peptide receptor 1 or 2 (FPR1 or FPR2). In addition, several of the active compounds inhibited neutrophil reactive oxygen species production induced by phorbol 12-myristate 13-acetate (PMA) and neutrophil chemotaxis toward fMLF, as both of these processes are highly dependent on regulated [Ca2+]i flux. Quantum chemical calculations were performed on five structure-related diaza-crown ethers and their complexes with Ca2+, Na+, and K+ to obtain a set of molecular electronic properties and to correlate these properties with biological activity. According to density-functional theory (DFT) modeling, Ca2+ ions were more effectively bound by these compounds versus Na+ and K+. The DFT-optimized structures of the ligand-Ca2+ complexes and quantitative structure-activity relationship (QSAR) analysis showed that the carbonyl oxygen atoms of the N,N’-diacylated diaza-crown ethers participated in cation binding and could play an important role in Ca2+ transfer. Thus, our modeling experiments provide a molecular basis to explain at least part of the ionophore mechanism of biological action of aza-crown ethers. Full article
(This article belongs to the Special Issue Molecular Modeling: Advancements and Applications)
Show Figures

Figure 1

12 pages, 1931 KiB  
Article
Complex Uranyl Dichromates Templated by Aza-Crowns
by Oleg I. Siidra, Evgeny V. Nazarchuk, Dmitry O. Charkin, Stepan N. Kalmykov and Anastasiya I. Zadoya
Crystals 2018, 8(12), 462; https://doi.org/10.3390/cryst8120462 - 10 Dec 2018
Cited by 3 | Viewed by 3467
Abstract
Three new uranyl dichromate compounds templated by aza-crown templates were obtained at room temperature by evaporation from aqueous solutions: (H2diaza-18-crown-6)2[(UO2)2(Cr2O7)4(H2O)2](H2O)3 (1 [...] Read more.
Three new uranyl dichromate compounds templated by aza-crown templates were obtained at room temperature by evaporation from aqueous solutions: (H2diaza-18-crown-6)2[(UO2)2(Cr2O7)4(H2O)2](H2O)3 (1), (H4[15]aneN4)[(UO2)2(CrO4)2(Cr2O7)2(H2O)] (H2O)3.5 (2) and (H4Cyclam)(H4[15]aneN4)2[(UO2)6(CrO4)8(Cr2O7)4](H2O)4 (3). The use of aza-crown templates made it possible to isolate unprecedented and complex one-dimensional units in 2 and 3, whereas the structure of 1 is based on simple uranyl-dichromate chains. It is very likely that the presence of relatively large organic molecules of aza-crown ethers does not allow uranyl chromate chain complexes to condense into the units of higher dimensionality (layers or frameworks). In general, the formation of 1, 2, and 3 is in agreement with the general principles elaborated for organically templated uranyl compounds. The negative charge of the [(UO2)(Cr2O7)2(H2O)]2−, [(UO2)2(CrO4)2(Cr2O7)2(H2O)]4− and [(UO2)3(CrO4)4(Cr2O7)2]6− one-dimensional inorganic motifs is compensated by the protonation of all nitrogen atoms in the molecules of aza-crowns. Full article
Show Figures

Graphical abstract

15 pages, 8111 KiB  
Article
Effects of Grafting Azacrown Ether on Thermal and Swelling Properties of Chitosan Films
by Julius Toeri and Marie-Pierre Laborie
ChemEngineering 2017, 1(2), 16; https://doi.org/10.3390/chemengineering1020016 - 17 Nov 2017
Cited by 1 | Viewed by 3687
Abstract
The thermal and swelling properties of a series of azacrown ether-crosslinked chitosans prepared with varying molar amounts of N,N-diallyl-7,13-diaza-1,7,10,16-tetraoxa-dibenzo-18-crown-6 (molar equivalents ranging from 0, 0.125, 0.167, 0.25 and 0.5) films were studied with Thermographimetric analysis (TGA), Differential Scanning Calorimetry (DSC), Dynamic Mechanical [...] Read more.
The thermal and swelling properties of a series of azacrown ether-crosslinked chitosans prepared with varying molar amounts of N,N-diallyl-7,13-diaza-1,7,10,16-tetraoxa-dibenzo-18-crown-6 (molar equivalents ranging from 0, 0.125, 0.167, 0.25 and 0.5) films were studied with Thermographimetric analysis (TGA), Differential Scanning Calorimetry (DSC), Dynamic Mechanical analysis (DMA) techniques and swelling kinetics. Introducing the azacrown (DAC) as crosslinker into the chitosan matrices (Ch) altered the thermal and swelling properties of the chitosan/crown ether films (Ch-DAC) systematically with respect to molar ratios. At lower DAC content, a depression of Tg revealed a dominating internal plasticization effect of DAC on chitosan, while higher DAC molar ratios systematically increased the Tg of the network. The films high swelling capacity (as high as 1200%) was reached within three hours in aqueous acidic media and decreased systematically with increasing DAC content. The swelling behavior was highly dependent on pH and followed second order kinetics. Understanding the thermal and swelling properties of this series of azacrown ether-crosslinked chitosans sets the stage to further shed light on their impact for heavy metal adsorption in water remediation applications. Full article
Show Figures

Figure 1

17 pages, 5585 KiB  
Article
Preparation and Chemical/Microstructural Characterization of Azacrown Ether-Crosslinked Chitosan Films
by Julius Toeri, Anayancy Osorio-Madrazo and Marie-Pierre Laborie
Materials 2017, 10(4), 400; https://doi.org/10.3390/ma10040400 - 11 Apr 2017
Cited by 26 | Viewed by 5655
Abstract
Chemically stable porous azacrown ether-crosslinked chitosan films were prepared by reacting varying molar amounts of N,N-diallyl-7,16-diaza-1,4,10,13-tetraoxa-dibenzo-18-crown-6 (molar equivalents ranging from 0, 0.125, 0.167, 0.25 and 0.5) with chitosan. Their chemical and structural properties were characterized by solid state-nuclear magnetic resonance (NMR), elemental, Fourier [...] Read more.
Chemically stable porous azacrown ether-crosslinked chitosan films were prepared by reacting varying molar amounts of N,N-diallyl-7,16-diaza-1,4,10,13-tetraoxa-dibenzo-18-crown-6 (molar equivalents ranging from 0, 0.125, 0.167, 0.25 and 0.5) with chitosan. Their chemical and structural properties were characterized by solid state-nuclear magnetic resonance (NMR), elemental, Fourier transform infrared (FTIR), microscopy, and X-ray analyses, as well as gel content. NMR and FTIR analyses of the reaction products suggested that new –CH2– crosslink bridges were produced between the amine groups of chitosan (Ch) and the allyl groups of the azacrown (DAC). The crosslinking chemistry between allyl and amine groups of the reactants was further evidenced with solution NMR studies on model compound of glucosamine with the azacrown. X-ray diffraction analysis of the Ch/azacrown films using wide angle X-ray scattering (WAXS), including synchrotron-WAXS, revealed that the crystalline arrangement of chitosan (Ch) was partially destroyed with increasing grafting of azacrown ether proportion on the Ch polymer chain. Solubility and gel content determination confirmed network formation with a gel content as high as 84–95 wt %. Microstructural analysis revealed microporous morphology with high surface area. The morphology and structure of the azacrown ether-crosslinked chitosan films could be tailored by stoichiometry of the reacting species. Full article
(This article belongs to the Section Porous Materials)
Show Figures

Figure 1

12 pages, 1677 KiB  
Article
Synthesis and Characterization of Macrocyclic Polyether N,N′-Diallyl-7,16-diaza-1,4,10,13-tetraoxa-dibenzo-18-crown-6
by Julius Toeri and Marie-Pierre Laborie
Molecules 2016, 21(2), 171; https://doi.org/10.3390/molecules21020171 - 29 Jan 2016
Cited by 5 | Viewed by 6377
Abstract
In this study an efficient and direct production procedure for a macrocyclic polyether N,N′-diallyl-7,16-diaza-1,4,10,13-tetraoxa-dibenzo-18-crown-6 from the reaction of catechol and N,N-bis(2-chloroethyl)prop-2-en-1-amine in n-butanol in the presence of a strong base is reported. The synthesis involves a two-step addition of sodium [...] Read more.
In this study an efficient and direct production procedure for a macrocyclic polyether N,N′-diallyl-7,16-diaza-1,4,10,13-tetraoxa-dibenzo-18-crown-6 from the reaction of catechol and N,N-bis(2-chloroethyl)prop-2-en-1-amine in n-butanol in the presence of a strong base is reported. The synthesis involves a two-step addition of sodium hydroxide to enhance the cyclization process, and at the end of the reaction, the reaction mixture is neutralized and the solvent replaced with water in-situ through distillation to afford a relatively pure precipitate that is easily recrystallized from acetone. The yield of the macrocycle was 36%–45% and could be scaled-up to one-mole quantities. The structure and purity of this compound was verified on the basis of elemental analysis, IR, UV-Vis, 1H-, 13C-NMR, 2D-NMR, mass spectroscopy, and thermal analysis. The white crystalline compound has a sharp melting point of 124 °C and a crystallization temperature of 81.4 °C determined by differential scanning calorimetry. Our motivation behind the synthesis of the bibracchial lariat azacrown polyether ligand was to examine its possible applications in ion-selective polymer-supported materials. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

3 pages, 86 KiB  
Short Note
Luminescent Lariat Aza-Crown Ether Carboxylic Acid
by Andreas Späth, Eva-Maria Rummel and Burkhard König
Molbank 2010, 2010(1), M663; https://doi.org/10.3390/M663 - 12 Mar 2010
Cited by 2 | Viewed by 7989
Abstract
Lariat ethers are interesting recognition motifs in supramolecular chemistry. The synthesis of a luminescent lariat aza-crown ether with a carboxyl group appended by azide-alkyne (Huisgen) cycloaddition is presented. Full article
Show Figures

Graphical abstract

Back to TopTop