Carbohydrate-Based Azacrown Ethers in Asymmetric Syntheses
Abstract
:1. Introduction
2. Synthesis and Application of Azacrown Ethers
2.1. Preparation of Macrocycles
2.2. Enantioselective Syntheses
2.2.1. Michael Addition of 2-Nitropropane
2.2.2. Michael Addition of a Phosphonoglycine Derivative
2.2.3. Michael Addition of Cyanofluoromethyl Phosphonate
2.2.4. Michael Addition of Diethyl Acetamidomalonate
2.2.5. Michael Addition of Diethyl Acetoxymalonate
2.2.6. MIRC Reaction of Chalcones
2.2.7. MIRC Reaction of Arylidenemalononitriles
2.2.8. MIRC Reaction of Arylidene-1,3-Diphenylpropane-1,3-Diones
2.2.9. MIRC Reaction of Arylidene Indane-1,3-Diones
2.2.10. MIRC Reaction of Arylidene Cyanosulfones
2.2.11. Michael Addition of Methyl Vinyl Ketone
2.2.12. Darzens Condensations
2.2.13. Epoxidations
3. Conclusions
Funding
Conflicts of Interest
References
- Cram, D.J.; Sogah, G.D.Y.J. Chiral crown complexes catalyse Michael addition reactions to give adducts in high optical yields. Chem. Soc. Chem. Commun. 1981, 625–628. [Google Scholar] [CrossRef]
- O’Donell, M.J. Asymmetric phase-transfer reactions. In Catalytic Asymmetric Synthesis, 2nd ed.; Ojima, I., Ed.; Wiley-VCH: New York, NY, USA, 2000; pp. 727–755. [Google Scholar] [CrossRef]
- Marouka, K. Asymmetric Phase Transfer Catalysis; Wiley-VCH Verlag GmbH & Co. KgaA: Weinheim, Germany, 2008. [Google Scholar] [CrossRef]
- Soddart, J.F. Chiral crown ethers. In Topics in Stereochemistry; Eliel, E.L., Wilen, S.H., Eds.; John Wiley & Sons: New York, NY, USA, 1987; Volume 17, pp. 207–288. [Google Scholar] [CrossRef]
- Alonso-Lopez, M.; Martin-Lomas, M.; Penadés, S. Asymmetric Michael reaction using macrocyclic lactose derivatives as chiral catalysts. Tetrahedron Lett. 1986, 27, 3551–3554. [Google Scholar] [CrossRef]
- Dehmlow, E.V.; Sauerbier, C. Enantioselektive Phasentransfer-Katalyse durch optisch aktive Kronenether. Liebigs Annalen Chemie 1989, 181–185. [Google Scholar] [CrossRef]
- Vicent, C.; Martin-Lomas, M.; Penades, S. New synthetic strategy to highly symmetric chiral macrocycles from carbohydrate derivatives. Tetrahedron 1989, 45, 3605–3612. [Google Scholar] [CrossRef]
- Van Maarschalkerwaart, D.A.H.; Willard, N.P.; Pandit, U.K. Synthesis of carbohydrate containing crown ethers and their application as catalysts in asymmetric Michael additions. Tetrahedron 1992, 48, 8825–8840. [Google Scholar] [CrossRef]
- Pietraszkiewicz, M.; Jurczak, J. Synthesis of chiral diaza-crown ethers incorporating carbohydrate units. Tetrahedron 1984, 40, 2967–2970. [Google Scholar] [CrossRef]
- Jarosz, S.; Lewandowski, B. Synthesis and complexation properties towards the ammonium cation of aza-coronand analogues containing sucrose. Carbohydr. Res. 2008, 343, 965–969. [Google Scholar] [CrossRef] [PubMed]
- Porwanski, S.; Dumarcay-Charbonnier, F.; Menuel, S.; Joly, J.-P.; Bulach, V.; Marsura, A. Bis-β-cyclodextrinyl- and bis-cellobiosyl-diazacrowns: Synthesis and molecular complexation behaviors toward Busulfan anticancer agent and two basic aminoacids. Tetrahedron 2009, 65, 6196–6203. [Google Scholar] [CrossRef]
- Pintal, M.; Kryczka, B.; Marsura, A.; Porwański, S. Synthesis of bis-cellobiose and bis-glucose derivatives of azacrown macrocycles as hosts in complexes with acetylsalicylic acid and 4-acetamidophenol. Carbohydr. Res. 2014, 386, 18–22. [Google Scholar] [CrossRef]
- Pintal, M.; Kryczka, B.; Porwański, S. Stability of the Complexes of Bis-Saccharide Crown Ethers with p-Toluenesulfonamide. Heteroatom Chem. 2015, 26, 161–167. [Google Scholar] [CrossRef]
- Ignaczak, A.; Porwański, S.; Szyszka, M. Deeper insight into the properties of the newly synthesized macrocycles as drug receptors—Some preliminary quantum chemical studies. New J. Chem. 2017, 41, 521–529. [Google Scholar] [CrossRef] [Green Version]
- Rathjens, A.; Thiem, J. Synthesis of carbohydrate-based azamacrocycles by Richman-Atkins cyclisation. C. R. Chim. 2011, 14, 286–300. [Google Scholar] [CrossRef]
- Rathjens, A.; Thiem, J. Carbohydrate-based aza-macrocycles by Richman-Atkins cyclization of glucopyranose precursors. Carbohydr. Res. 2017, 438, 18–25. [Google Scholar] [CrossRef]
- Rathjens, A.; Thiem, J. Syntheses of anomerically bridged mannofuranosides and aza-macrocycles by Richman-Atkins cyclization. J. Carbohydr. Chem. 2016, 35, 397–411. [Google Scholar] [CrossRef]
- Bakó, P.; Fenichel, L.; Tőke, L.; Czugler, M. Synthese und Komplexbildung von Kronenethern aus Methyl-4,6-O-benzyliden-α-d-glucopyranosid. Liebigs Annalen Chemie 1981, 1163–1171. [Google Scholar] [CrossRef]
- Bakó, P.; Fenichel, L.; Tőke, L. The complexing ability of crown ethers incorporating glucose. J. Incl. Phenom. Mol. 1993, 16, 17–23. [Google Scholar] [CrossRef]
- Tóth, G.; Dietrich, W.; Bakó, P.; Fenichel, L.; Tőke, L. Reaction of methyl 2,3-anhydro-4,6-O-benzylidene-α-d-allopyranoside with ethanolamine and 1,4,7,10-tetraoxa-13-azacyclopentadecane. Carbohydr. Res. 1987, 168, 141–145. [Google Scholar] [CrossRef]
- Bakó, P.; Fenichel, L.; Tőke, L. Novel azacrown ethers incorporating sugars: Synthesis and complex formation. J. Chem. Soc. Perkin I 1989, 2514–2516. [Google Scholar] [CrossRef]
- Bakó, P.; Tőke, L. Novel monoaza- and diazacrown ethers incorporating sugar units and their extraction ability towards picrate salts. J. Incl. Phenom. Mol. 1995, 23, 195–201. [Google Scholar] [CrossRef]
- Bakó, P.; Czinege, E.; Bakó, T.; Czugler, M.; Tőke, L. Asymmetric C-C bond forming reactions with chiral crown catalysts derived from d-glucose and d-galactose. Tetrahedron Asymmetry 1999, 10, 4539–4551. [Google Scholar] [CrossRef]
- Bakó, P.; Novák, T.; Ludányi, K.; Pete, B.; Tőke, L.; Keglevich, G. d-Glucose-based azacrown ethers with a phosphonoalkyl side chain: Application as enantioselective phase transfer catalysts. Tetrahedron Asymmetry 1999, 10, 2373–2380. [Google Scholar] [CrossRef]
- Novák, T.; Bakó, P.; Keglevich, G.; Dobó, A.; Vékey, K.; Tőke, L. Synthesis of d-Glucose-based Azacrown Ethers with Phosphinoxidoalkyl Side Chains and Their Application to an Enantioselective Reaction. J. Incl. Phenom. Macro. 2001, 40, 207–212. [Google Scholar] [CrossRef]
- Rapi, Z.; Bakó, P.; Drahos, L.; Keglevich, G. Side-Arm Effect of a Methyl α-d-Glucopyranoside Based Lariat Ether Catalysts in Asymmetric Syntheses. Heteroat. Chem. 2015, 26, 63–71. [Google Scholar] [CrossRef]
- Nemcsok, T.; Rapi, Z.; Bagi, P.; Hou, G.Y.; Orbán, I.; Keglevich, G.; Bakó, P. Enantioselective cyclopropanation of conjugated cyanosulfones using carbohydrate-based crown ether catalysts. Tetrahedron 2020, 76, 130965. [Google Scholar] [CrossRef]
- Bakó, P.; Vízvárdi, K.; Bajor, Z.; Tőke, L. Synthesis and application in asymmetric synthesis of azacrown ethers derived from d-glucose. Chem. Commun. 1998, 1193–1194. [Google Scholar] [CrossRef]
- Bakó, P.; Vízvárdi, K.; Toppet, S.; Van der Eycken, E.; Hoornaert, G.J.; Tőke, L. Synthesis, extraction ability and application in asymmetric synthesis of azacrown ethers derived from d-glucose. Tetrahedron 1998, 54, 14975–14988. [Google Scholar] [CrossRef]
- Pham, T.S.; Rapi, Z.; Bakó, P.; Petneházi, I.; Stirling, A.; Jászay, Z. Enantioselective synthesis of substituted α-aminophosphonates catalysed by d-glucose-based crown ethers: Pursuit of the origin of stereoselectivity. New J. Chem. 2017, 41, 14945–14953. [Google Scholar] [CrossRef] [Green Version]
- Bakó, P.; Kiss, T.; Tőke, L. Chiral azacrown ethers derived from d-glucose as catalysts for enantioselective Michael addition. Tetrahedron Lett. 1997, 38, 7259–7262. [Google Scholar] [CrossRef]
- Bakó, P.; Bajor, Z.; Tőke, L. Synthesis of novel chiral crown ethers derived from d-glucose and their application to an enantioselective Michael reaction. J. Chem. Soc. Perkin Trans I 1999, 3651–3655. [Google Scholar] [CrossRef]
- Bakó, T.; Bakó, P.; Keglevich, G.; Bombicz, P.; Kubinyi, M.; Pál, K.; Bodor, S.; Makó, A.; Tőke, L. Phase-transfer catalyzed asymmetric epoxidation of chalcones using chiral crown ethers derived from d-glucose, d-galactose, and d-mannitol. Tetrahedron Asymmetry 2004, 15, 1589–1595. [Google Scholar] [CrossRef]
- Rapi, Z.; Grün, A.; Keglevich, G.; Stirling, A.; Bakó, P. Synthesis of α-d-galactose-based azacrown ethers and their application as enantioselective catalysts in Michael reactions. New J. Chem. 2016, 40, 7856–7865. [Google Scholar] [CrossRef]
- Bakó, P.; Bakó, T.; Bisztray, K.; Szöllősy, Á.; Nagy, K.; Tőke, L. Synthesis, Extraction Ability and Application in an Asymmetric Synthesis of Azacrown Ethers Derived from d-Mannitol. J. Incl. Phenom. Macrocycl. 2001, 39, 247–251. [Google Scholar] [CrossRef]
- Bakó, P.; Bakó, T.; Mészáros, A.; Keglevich, G.; Szöllősy, Á.; Bodor, S.; Makó, A.; Tőke, L. Phase Transfer Catalysed Asymmetric Epoxidation of Chalcones Using Chiral Crown Ethers Derived from d-Glucose and d-Mannose. Synlett 2004, 643–646. [Google Scholar] [CrossRef]
- Bakó, P.; Makó, A.; Keglevich, G.; Kubinyi, M.; Pál, K. Synthesis of d-mannose-based azacrown ethers and their application in enantioselective reactions. Tetrahedron Asymmetry 2005, 16, 1861–1871. [Google Scholar] [CrossRef]
- Makó, A.; Menyhárd, D.K.; Bakó, P.; Keglevich, G.; Tőke, L. Asymmetric epoxidation of substituted chalcones and chalcone analogues catalyzed by α-d-glucose- and α-d-mannose-based crown ethers. J. Mol. Struct. 2008, 892, 336–342. [Google Scholar] [CrossRef]
- Makó, A.; Szöllősy, Á.; Keglevich, G.; Menyhárd, D.K.; Bakó, P.; Tőke, L. Synthesis of methyl-α-d-glucopyranoside-based azacrown ethers and their application in enantioselective reactions. Monats. Chem. 2008, 139, 525–535. [Google Scholar] [CrossRef]
- Szabó, T.; Rapi, Z.; Keglevich, G.; Szöllősy, Á.; Drahos, L.; Bakó, P. Synthesis of l-arabinose-based crown ethers and their applications as enantioselective phase transfer catalysts. ARKIVOC 2012, 36–48. [Google Scholar] [CrossRef]
- Rapi, Z.; Bakó, P.; Keglevich, G.; Szöllősy, Á.; Drahos, L.; Hegedűs, L. Synthesis of ribo-hexopyranoside- and altrose-based azacrown ethers and their application in an asymmetric Michael addition. Carbohydr. Res. 2013, 365, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Rapi, Z.; Ozohanics, O.; Tóth, G.; Bakó, P.; Höfler, L.; Nemcsok, T.; Kánya, N.; Keglevich, G. Syntheses and complexing ability of α-d-gluco- and α-d-xylofuranoside-based lariat ethers. J. Incl. Phenom. Macro. 2016, 85, 19–32. [Google Scholar] [CrossRef]
- Rapi, Z.; Nemcsok, T.; Pálvölgyi, Á.; Keglevich, G.; Grün, A.; Bakó, P. Synthesis of l-threitol-based crown ethers and their application as enantioselective phase transfer catalyst in Michael additions. Chirality 2017, 29, 257–272. [Google Scholar] [CrossRef]
- Nemcsok, T.; Rapi, Z.; Keglevich, G.; Grün, A.; Bakó, P. Synthesis of d-mannitol-based crown ethers and their application as catalyst in asymmetric phase transfer reactions. Chirality 2018, 30, 407–419. [Google Scholar] [CrossRef]
- Pálvölgyi, Á.; Rapi, Z.; Ozohanics, O.; Tóth, G.; Keglevich, G.; Bakó, P. Synthesis of alkyl α- and β-d-glucopyranoside-based chiral crown ethers and their application as enantioselective phase-transfer catalysts. Res. Chem. Intermed. 2018, 44, 1627–1645. [Google Scholar] [CrossRef]
- Rapi, Z.; Nemcsok, T.; Bagi, P.; Keglevich, G.; Bakó, P. Synthesis of chiral crown ethers derived from d-galactose and their application in enantioselective reactions. Tetrahedron 2019, 75, 3993–4004. [Google Scholar] [CrossRef]
- Nemcsok, T.; Rapi, Z.; Bagi, P.; Keglevich, G.; Bakó, P. Synthesis of xylal- and arabinal-based crown ethers and their application as asymmetric phase transfer catalysts. Chirality 2020, 32, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Bakó, P.; Fenichel, L.; Tőke, L. Synthesis and complex-forming properties of crown ethers incorporating glucuronic acid moieties. J. Incl. Phenom. Mol. 1996, 26, 321–330. [Google Scholar] [CrossRef]
- Bakó, P.; Tőke, L.; Szöllősy, Á.; Bombicz, P. Asymmetric Michael addition of 2-nitropropane to a chalcone catalyzed by chiral crown ethers incorporating a d-glucose unit. Heteroatom Chem. 1997, 8, 333–337. [Google Scholar] [CrossRef]
- Bakó, P.; Szöllősy, Á.; Bombicz, P.; Tőke, L. Asymmetric C-C Bond Forming Reactions by Chiral Crown Catalysts; Darzens Condensation and Nitroalkane Addition to the Double Bond. Synlett 1997, 291–292. [Google Scholar] [CrossRef]
- Novák., T.; Tatai, J.; Bakó, P.; Czugler, M.; Keglevich, G.; Tőke, L. Asymmetric Michael Addition Catalyzed by d-Glucose-based Azacrown Ethers. Synlett 2001, 424–426. [Google Scholar] [CrossRef]
- Bakó, T.; Bakó, P.; Szöllősy, Á.; Keglevich, G.; Czugler, M.; Tőke, L. Enantioselective Michael reaction of 2-nitropropane with substituted chalcones catalysed by chiral azacrown ethers derived from α-d-glucose. Tetrahedron Asymmetry 2002, 13, 203–209. [Google Scholar] [CrossRef]
- Bakó, T.; Bakó, P.; Báthori, N.; Keglevich, G.; Czugler, M.; Tatai, J.; Novák, T.; Parlagh, G.; Tőke, L. Enantioselective Michael addition of 2-nitropropane to chalcone analogues catalyzed by chiral azacrown ethers based on α-d-glucose and d-mannitol. Tetrahedron Asymmetry 2003, 14, 1917–1923. [Google Scholar] [CrossRef]
- Makó, A.; Rapi, Z.; Drahos, L.; Szöllősy, Á.; Keglevich, G.; Bakó, P. Enantioselective Michael Addition of 2-Nitropropane to Substituted Chalcones and Chalcone Analogues Catalyzed by Chiral Crown Ethers Incorporating an α-d-Glucose or an α-d-Mannose Unit. Lett. Org. Chem. 2010, 7, 424–431. [Google Scholar] [CrossRef]
- Jászay, Z.; Pham, T.S.; Németh, G.; Bakó, P.; Petneházi, I.; Tőke, L. Asymmetric Synthesis of Substituted α-Amino Phosphonates with Chiral Crown Ethers as Catalysts. Synlett 2009, 1429–1432. [Google Scholar] [CrossRef]
- Jászay, Z.; Tódor, I.; Rapi, Z.; Bakó, P.; Petneházi, I.; Tőke, L. Diethyl (cyanofluoromethyl)phosphonate: Application in catalytic enantioselective Michael additions. Phosphorus Sulfur 2017, 192, 659–664. [Google Scholar] [CrossRef] [Green Version]
- Bakó, P.; Rapi, Z.; Keglevich, G.; Szabó, T.; Sóti, P.L.; Vigh, T.; Grün, A.; Holczbauer, T. Asymmetric C–C bond formation via Darzens condensation and Michael addition using monosaccharide-based chiral crown ethers. Tetrahedron Lett. 2011, 52, 1473–1476. [Google Scholar] [CrossRef]
- Rapi, Z.; Démuth, B.; Keglevich, G.; Grün, A.; Drahos, L.; Sóti, P.L.; Bakó, P. Enantioselective Michael addition of malonates to aromatic nitroalkenes catalyzed by monosaccharide-based chiral crown ethers. Tetrahedron Asymmetry 2014, 25, 141–147. [Google Scholar] [CrossRef]
- Bakó, P.; Rapi, Z.; Grün, A.; Nemcsok, T.; Hegedűs, L.; Keglevich, G. Asymmetric Michael Addition of Malonates to Enones Catalyzed by an α-d-Glucopyranoside-Based Crown Ether. Synlett 2015, 1847–1851. [Google Scholar] [CrossRef] [Green Version]
- Rapi, Z.; Grün, A.; Nemcsok, T.; Hessz, D.; Kállay, M.; Kubinyi, M.; Keglevich, G.; Bakó, P. Crown ether derived from d-glucose as an efficient phase-transfer catalyst for the enantioselective Michael addition of malonates to enones. Tetrahedron Asymmetry 2016, 27, 960–972. [Google Scholar] [CrossRef] [Green Version]
- Rapi, Z.; Nemcsok, T.; Grün, A.; Pálvölgyi, Á.; Samu, G.; Hessz, D.; Kubinyi, M.; Kállay, M.; Keglevich, G.; Bakó, P. Asymmetric cyclopropanation reactions catalyzed by carbohydrate-based crown ethers. Tetrahedron 2018, 74, 3512–3526. [Google Scholar] [CrossRef]
- Itoh, T.; Shirakami, S. Synthesis of Chiral Azacrown Ethers Derived from α-d-Glucose and Their Catalytic Properties on the Asymmetric Michael Addition. Heterocycles 2001, 55, 37–43. [Google Scholar] [CrossRef]
- Rapi, Z.; Szabó, T.; Keglevich, G.; Szöllősy, Á.; Drahos, L.; Bakó, P. Enantioselective synthesis of heteroaromatic epoxyketones under phase-transfer catalysis using d-glucose- and d-mannose-based crown ethers. Tetrahedron Asymmetry 2011, 22, 1189–1196. [Google Scholar] [CrossRef]
- Rapi, Z.; Bakó, P.; Keglevich, G.; Szöllősy, Á.; Drahos, L.; Botyánszky, A.; Holczbauer, T. Asymmetric phase transfer Darzens reactions catalyzed by d-glucose- and d-mannose-based chiral crown ethers. Tetrahedron Asymmetry 2012, 23, 489–496. [Google Scholar] [CrossRef]
- Makó, A.; Rapi, Z.; Keglevich, G.; Szöllősy, Á.; Drahos, L.; Hegedűs, L.; Bakó, P. Asymmetric epoxidation of substituted chalcones and chalcone analogues catalyzed by α-d-glucose- and α-d-mannose-based crown ethers. Tetrahedron Asymmetry 2010, 21, 919–925. [Google Scholar] [CrossRef]
Entry | Ar1 | Ar2 | Catalyst | Yield, % | ee, % |
---|---|---|---|---|---|
1 | C6H5 | C6H5 | 20g | 91 | 65 |
2 | C6H5 | C6H5 | 20h | 53 | 85 |
3 | Naphthalen-1-yl | C6H5 | 20h | 35 | 87 |
4 | C6H5 | C6H5 | 20i | 45 | 87 |
5 | C6H5 | C6H5 | 20k (n = 4) | 39 | 82 |
6 | C6H5 | C6H5 | 20l (n = 4) | 43 | 95 |
7 | C6H5 | C6H5 | 23d | 78 | 82 |
8 | C6H5 | C6H5 | 23e | 71 | 45 |
9 | C6H5 | C6H5 | 23f | 65 | 60 |
10 | C6H5 | C6H5 | 24d | 82 | 90 |
11 | C6H5 | C6H5 | 24h | 53 | 55 |
12 | C6H5 | C6H5 | 26e | 34 | 52 |
13 | C6H5 | C6H5 | 27e | 39 | 40 |
14 | C6H5 | C6H5 | 27j | 38 | 67 |
15 | C6H5 | C6H5 | 28b | 37 | 92 (S) |
16 | Naphthalen-1-yl | C6H5 | 28b | 39 | 84 |
Entry | R1 | R2 | EWG | Catalyst | Yield, % | d.r. | ee, % |
---|---|---|---|---|---|---|---|
1 | CH3 | H | CN | 23i | 76 | 6:1 | 86 |
2 | H | H | CN | 23i | 84 | - | 75 |
3 | CH3 | H | CN | 23k | 76 | 16:1 | 95 |
Entry | R | EWG | Catalyst | Yield, % | d.r. | ee, % |
---|---|---|---|---|---|---|
1 | C6H5 | NO2 | 23i | 82 | 7:1 | 82 |
2 | C6H5 | NO2 | 23k | 85 | 6:1 | 88 |
Entry | Ar | Catalyst | Yield, % | ee, % |
---|---|---|---|---|
1 | C6H5 | 20h | 60 | 99 |
2 | 4-Cl-C6H4 | 20h | 45 | 99 |
3 | 4-O2N-C6H4 | 20h | 78 | 97 |
4 | C6H5 | 20j | 58 | 38 |
5 | C6H5 | 20m | 30 | 78 |
6 | C6H5 | 20n | 38 | 0 |
7 | C6H5 | 26d | 90 | 92 |
8 | C6H5 | 26f | 30 | 70 |
9 | C6H5 | 33c | 50 | 61 (R) |
10 | C6H5 | 34c | 59 | 80 |
11 | C6H5 | 38c | 65 | 95 |
12 | C6H5 | 38d | 22 | 51 |
13 | C6H5 | 40a | 57 | 65 |
14 | C6H5 | 41a | 67 | 78 |
15 | C6H5 | 42b | 71 | 68 |
Entry | Ar1 | Ar2 | Catalyst | Yield, % | ee, % |
---|---|---|---|---|---|
1 | C6H5 | C6H5 | 20h | 72 | 96 |
2 | C6H5 | 4-O2N-C6H4 | 20h | 73 | 89 |
3 | C6H5 | 4-Cl-C6H4 | 20h | 76 | 88 |
4 | C6H5 | 4-H3CO-C6H4 | 20h | 73 | 97 |
5 | Furan-2-yl | C6H5 | 20h | 75 | 99 |
6 | Tiophen-2-yl | C6H5 | 20h | 76 | 99 |
7 | C6H5 | C6H5 | 26d | 58 | 99 |
8 | C6H5 | C6H5 | 26f | 67 | 98 |
9 | C6H5 | 4-O2N-C6H4 | 26d | 55 | 94 |
10 | C6H5 | 4-O2N-C6H4 | 26f | 85 | 99 |
11 | C6H5 | 4-H3CO-C6H4 | 26d | 69 | 99 |
12 | C6H5 | 4-H3CO-C6H4 | 26f | 42 | 88 |
13 | C6H5 | C6H5 | 38a | 68 | 96 |
14 | C6H5 | 4-Cl-C6H4 | 38c | 76 | 99 |
15 | C6H5 | 4-H3CO-C6H4 | 38e | 33 | 99 |
Entry | Ar1 | Ar2 | Catalyst | Yield, % | ee, % |
---|---|---|---|---|---|
1 | C6H5 | C6H5 | 20h | 28 | 88 |
2 | 4-O2N-C6H4 | C6H5 | 20h | 77 | 99 |
3 | C6H5 | Thiophen-2-yl | 20h | 57 | 94 |
4 | C6H5 | C6H5 | 26d | 32 | 98 |
5 | C6H5 | C6H5 | 26f | 35 | 99 |
6 | C6H5 | C6H5 | 38a | 31 | 98 |
7 | C6H5 | C6H5 | 38c | 28 | 99 |
8 | C6H5 | C6H5 | 38e | 33 | 86 |
Entry | Ar | Catalyst | Yield, % | ee, % |
---|---|---|---|---|
1 | C6H5 | 20h | 82 | 32 |
2 | 4-H3C-C6H4 | 20h | 74 | 92 |
3 | 3,4-OCH2O-C6H3 | 20h | 59 | 99 |
4 | C6H5 | 26f | 84 | 78 |
5 | 4-H3C-C6H4 | 26f | 86 | 98 |
6 | 4-H3C-C6H4 | 27e | 81 | 99 |
7 | 3-H3C-C6H4 | 38a | 74 | 99 |
8 | 4-H3C-C6H4 | 38a | 76 | 99 |
9 | 4-H3C-C6H4 | 39a | 70 | 96 |
10 | 4-H3C-C6H4 | 40a | 80 | 98 |
11 | 4-H3C-C6H4 | 40b | 87 | 99 |
12 | C6H5 | 44a | 83 | 86 |
Entry | Ar | Catalyst | Yield, % | ee, % |
---|---|---|---|---|
1 | C6H5 | 20h | 52 | 60 |
2 | C6H5 | 26d | 46 | 60 |
3 | C6H5 | 26f | 67 | 76 |
4 | C6H5 | 28b | 35 | 54 |
5 | C6H5 | 38e | 38 | 57 |
Entry | Ar | Catalyst | Yield, % | ee, % |
---|---|---|---|---|
1 | C6H5 | 20h | 33 | 54 |
2 | 2-H3C-C6H4 | 20h | 59 | 79 |
3 | 3-O2N-C6H4 | 20h | 43 | 70 |
4 | 4-O2N-C6H4 | 20h | 83 | 93 |
5 | C6H5 | 27e | 72 | 56 |
6 | C6H5 | 44a | 77 | 91 |
7 | C6H5 | 44b | 76 | 96 |
8 | C6H5 | 44c | 71 | 95 |
Entry | Ar | Catalyst | Yield, % | ee, % |
---|---|---|---|---|
1 | C6H5 | 20q | 94 | 73 |
2 | 3-Cl-C6H4 | 20q | 91 | 84 |
3 | 3-H3C-C6H4 | 20q | 90 | 81 |
4 | 4-O2N-C6H4 | 20q | 87 | 82 |
5 | Naphthalen-2-yl | 20q | 92 | 85 |
6 | C6H5 | 26g | 95 | 76 |
7 | C6H5 | 26h | 93 | 80 |
8 | C6H5 | 44g | 90 | 72 |
Entry | Ar1 | Ar2 | Catalyst | Temp., °C | Yield, % | ee, % |
---|---|---|---|---|---|---|
1 | C6H5 | C6H5 | 20g | 22 | 93 | 42 |
2 | C6H5 | C6H5 | 20h | 22 | 74 | 62 |
3 | Furan-2-yl | C6H5 | 20h | −5 | 55 | 54 |
4 | Furan-2-yl | 2-Cl-C6H4 | 20h | −5 | 77 | 70 |
5 | Thiophen-2-yl | C6H5 | 20h | −5 | 63 | 71 |
6 | Thiophen-2-yl | 3,4-OCH2O-C6H3 | 20h | −5 | 57 | 86 |
7 | Thiophen-3-yl | C6H5 | 20h | −5 | 53 | 52 |
8 | Pyrrol-2-yl | C6H5 | 20h | −5 | 33 | 36 |
9 | 1-Methyl-pyrrol-2-yl | C6H5 | 20h | −5 | 72 | 16 |
10 | 4-Phenyl-C6H4 | C6H5 | 20h | 20 | 54 | 96 |
11 | C6H5 | C6H5 | 23g | 22 | 68 | 74 |
12 | C6H5 | C6H5 | 26d | 22 | 81 | 28 |
13 | C6H5 | C6H5 | 30a | 22 | 75 | 48 |
14 | C6H5 | C6H5 | 40a | 22 | 57 | 62 |
15 | C6H5 | C6H5 | 41a | 22 | 94 | 73 |
16 | C6H5 | C6H5 | 44d | 22 | 81 | 64 |
17 | C6H5 | C6H5 | 45a | 0 | 65 | 77 |
18 | C6H5 | C6H5 | 46 | 0 | 61 | 72 |
Entry | n | Ar | Catalyst | Temp., °C | Yield, % | ee, % |
---|---|---|---|---|---|---|
1 | 0 | C6H5 | 20h | 0 | 59 | 65 |
2 | 0 | 2-Cl-C6H4 | 20h | 0 | 52 | 85 |
3 | 1 | C6H5 | 20h | −10 | 84 | 74 |
Entry | Ar1 | Ar2 | Catalyst | Temp., °C | Yield, % | ee, % |
---|---|---|---|---|---|---|
1 | C6H5 | C6H5 | 20g | 5 | 65 | 81 |
2 | C6H5 | C6H5 | 20h | 5 | 82 | 92 |
3 | 4-Cl-C6H4 | C6H5 | 20h | 0 | 71 | 97 |
4 | 3-O2N-C6H4 | C6H5 | 20h | 0 | 55 | 99 |
5 | C6H5 | 2,4-di-Cl-C6H3 | 20h | 0 | 50 | 99 |
6 | 1-Methylpyrrol-2-yl | C6H5 | 20h | −5 | 80 | 79 |
7 | C6H5 | C6H5 | 23g | 20 | 51 | 76 |
8 | C6H5 | C6H5 | 26d | 20 | 35 | 53 |
9 | C6H5 | C6H5 | 28a | 5 | 70 | 72 (2S,3R) |
10 | C6H5 | C6H5 | 28b | 5 | 72 | 80 (2S,3R) |
11 | C6H5 | C6H5 | 29 | 5 | 51 | 5 |
12 | C6H5 | C6H5 | 30a | 0 | 46 | 89 |
13 | C6H5 | C6H5 | 31a | 0 | 59 | 67 |
14 | C6H5 | C6H5 | 41a | 20 | 96 | 94 |
15 | C6H5 | C6H5 | 41b | 20 | 93 | 93 |
16 | C6H5 | C6H5 | 42a | 20 | 87 | 84 |
17 | C6H5 | C6H5 | 44a | 20 | 71 | 59 |
18 | C6H5 | C6H5 | 44d | 20 | 81 | 64 |
19 | C6H5 | C6H5 | 45a | 0 | 65 | 77 (2S,3R) |
20 | C6H5 | Naphthalen-2-yl | 45a | 0 | 72 | 96 (2S,3R) |
21 | C6H5 | C6H5 | 46 | 0 | 61 | 72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orbán, I.; Bakó, P.; Rapi, Z. Carbohydrate-Based Azacrown Ethers in Asymmetric Syntheses. Chemistry 2021, 3, 550-577. https://doi.org/10.3390/chemistry3020039
Orbán I, Bakó P, Rapi Z. Carbohydrate-Based Azacrown Ethers in Asymmetric Syntheses. Chemistry. 2021; 3(2):550-577. https://doi.org/10.3390/chemistry3020039
Chicago/Turabian StyleOrbán, István, Péter Bakó, and Zsolt Rapi. 2021. "Carbohydrate-Based Azacrown Ethers in Asymmetric Syntheses" Chemistry 3, no. 2: 550-577. https://doi.org/10.3390/chemistry3020039
APA StyleOrbán, I., Bakó, P., & Rapi, Z. (2021). Carbohydrate-Based Azacrown Ethers in Asymmetric Syntheses. Chemistry, 3(2), 550-577. https://doi.org/10.3390/chemistry3020039