Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = avobenzone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 638 KiB  
Review
Assessment of Endocrine-Disrupting Properties in Cosmetic Ingredients: Focus on UV Filters and Alternative Testing Methods
by Adriana Solange Maddaleno, Laia Guardia-Escote, Maria Pilar Vinardell, Elisabet Teixidó and Montserrat Mitjans
Cosmetics 2025, 12(4), 175; https://doi.org/10.3390/cosmetics12040175 (registering DOI) - 16 Aug 2025
Abstract
Endocrine-disrupting chemicals are substances capable of interfering with hormonal systems, potentially leading to adverse developmental, reproductive, neurological, and immune effects in both humans and wildlife. Various experimental models are currently available to assess the endocrine-disrupting potential of substances. However, in the context of [...] Read more.
Endocrine-disrupting chemicals are substances capable of interfering with hormonal systems, potentially leading to adverse developmental, reproductive, neurological, and immune effects in both humans and wildlife. Various experimental models are currently available to assess the endocrine-disrupting potential of substances. However, in the context of cosmetic ingredients, the ban on animal testing for safety and efficacy evaluations in Europe and other regions necessitates the use of in vitro or in silico approaches. Concerns have been raised regarding the possible endocrine-disrupting properties of certain cosmetic compounds, prompting the development of a priority substance list that includes several ultraviolet (UV) filters. This review provides a comprehensive overview of the main methodologies employed to evaluate endocrine-disrupting effects, with a particular focus on different endocrine organs. It also compiles and analyzes literature data related to commonly used UV filters such as benzophenones, avobenzone, homosalate, octocrylene, octinoxate, and 4-methylbenzylidene camphor. A major limitation identified is the lack of validated in vitro methods for assessing disruptions in specific endocrine organs, such as the thyroid and pancreas. This gap hinders accurate interpretation of experimental results and highlights the urgent need for further research to clarify the safety profiles of UV filters and other cosmetic ingredients. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
17 pages, 1310 KiB  
Review
Lip Photoprotection Patents (2014–2024): Key Trends and Emerging Technologies
by Vanessa Urrea-Victoria, Ana Sofia Guerrero Casas, Leonardo Castellanos, Mairim Russo Serafini and Diana Marcela Aragón Novoa
Cosmetics 2025, 12(4), 161; https://doi.org/10.3390/cosmetics12040161 - 29 Jul 2025
Viewed by 933
Abstract
The lips, due to their unique anatomical characteristics of a thin stratum corneum, the absence of sebaceous glands, and limited melanin content are particularly vulnerable to ultraviolet (UV) radiation, necessitating specialized photoprotective care. While facial sunscreens are widely available, the development of lip-specific [...] Read more.
The lips, due to their unique anatomical characteristics of a thin stratum corneum, the absence of sebaceous glands, and limited melanin content are particularly vulnerable to ultraviolet (UV) radiation, necessitating specialized photoprotective care. While facial sunscreens are widely available, the development of lip-specific sun protection products remains underexplored. This study aims to analyze technological trends and innovations in lip photoprotection by reviewing patents published between 2014 and 2024. A comprehensive patent search using the IPC code A61Q19 and the keywords “lip” and “sunscreen” identified 17 relevant patents across China, the United States, and Japan. The patents were examined for active ingredients, formulation strategies, and use of botanical or sustainable excipients. The findings revealed that patented formulations predominantly rely on well-established UV filters such as zinc oxide, titanium dioxide, octyl methoxycinnamate, and avobenzone, often combined with antioxidants like ferulic acid and rutin for enhanced efficacy. Lipid-based excipients were widely used to improve texture, hydration, and product stability. Although many formulations exhibit a conservative ingredient profile, the strategic combination of UV filters with natural antioxidants and moisturizing lipids demonstrates a multifunctional approach aimed at enhancing both protection and user experience. Full article
(This article belongs to the Special Issue Sunscreen Advances and Photoprotection Strategies in Cosmetics)
Show Figures

Figure 1

15 pages, 3673 KiB  
Article
Photodegradation Assessment of Calcipotriol in the Presence of UV Absorbers by UHPLC/MSE
by Małgorzata Król, Paweł Żmudzki, Adam Bucki and Agata Kryczyk-Poprawa
Appl. Sci. 2025, 15(15), 8124; https://doi.org/10.3390/app15158124 - 22 Jul 2025
Viewed by 428
Abstract
Calcipotriol, a synthetic vitamin D3 analogue widely used in psoriasis treatment, requires a detailed stability assessment due to its topical application and potential exposure to UV radiation. As a drug applied directly to the skin, calcipotriol is particularly susceptible to photodegradation, which [...] Read more.
Calcipotriol, a synthetic vitamin D3 analogue widely used in psoriasis treatment, requires a detailed stability assessment due to its topical application and potential exposure to UV radiation. As a drug applied directly to the skin, calcipotriol is particularly susceptible to photodegradation, which may affect its therapeutic efficacy and safety profile. The present study focuses on the analysis of calcipotriol photostability. An advanced UHPLC/MSE method was employed for the precise determination of calcipotriol and its degradation products. Particular attention was given to the effects of commonly used organic UV filters—approved for use in cosmetic products in both Europe and the USA (benzophenone-3, dioxybenzone, meradimate, sulisobenzone, homosalate, and avobenzone)—on the stability of calcipotriol. Unexpected degradation of calcipotriol was observed in the presence of sulisobenzone. Importantly, this effect was consistently detected in methanolic solution and in the pharmaceutical formulation containing calcipotriol and betamethasone, which is particularly significant from a practical perspective. This finding underscores the necessity of evaluating photostability under real-life conditions, as cosmetic ingredients, when co-applied with topical drugs on the skin, may substantially influence the stability profile of the pharmaceutical active ingredient. The research resulted in the first-time characterization of four degradation products of calcipotriol. The degradation process was found to primarily affect the E-4-cyclopropyl-4-hydroxy-1-methylbut-2-en-1-yl moiety, causing its isomerization to the Z isomer and the formation of diastereomers with either the R or S configuration. Computational analyses using the OSIRIS Property Explorer indicated that none of the five degradation products exhibit a toxicity effect, whereas molecular docking studies suggested possible binding of two of the five degradation products of calcipotriol with the VDR. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Graphical abstract

16 pages, 2295 KiB  
Article
Organic Sunscreens and Their Products of Degradation in Biotic and Abiotic Conditions—In Silico Studies of Drug-Likeness and Human Placental Transport
by Anna W. Sobańska, Arkaprava Banerjee and Kunal Roy
Int. J. Mol. Sci. 2024, 25(22), 12373; https://doi.org/10.3390/ijms252212373 - 18 Nov 2024
Cited by 2 | Viewed by 1351
Abstract
A total of 16 organic sunscreens and over 160 products of their degradation in biotic and abiotic conditions were investigated in the context of their safety during pregnancy. Drug-likeness and the ability of the studied compounds to be absorbed from the gastrointestinal tract [...] Read more.
A total of 16 organic sunscreens and over 160 products of their degradation in biotic and abiotic conditions were investigated in the context of their safety during pregnancy. Drug-likeness and the ability of the studied compounds to be absorbed from the gastrointestinal tract and cross the human placenta were predicted in silico using the SwissADME software (for drug-likeness and oral absorption) and multiple linear regression and “ARKA” models (for placenta permeability expressed as fetus-to-mother blood concentration in the state of equilibrium), with the latter outperforming the MLR models. It was established that most of the studied compounds can be absorbed from the gastrointestinal tract. The drug-likeness of the studied compounds (expressed as a binary descriptor, Lipinski) is closely related to their ability to cross the placenta (most likely by a passive diffusion mechanism). The organic sunscreens and their degradation products are likely to cross the placenta, except for very bulky and highly lipophilic 1,3,5-triazine derivatives; an avobenzone degradation product, 1,2-bis(4-tert-butylphenyl)ethane-1,2-dione; diethylamino hydroxybenzoyl hexyl benzoate; and dimerization products of sunscreens from the 4-methoxycinnamate group. Full article
(This article belongs to the Special Issue Molecular Toxicology on the Environmental Impact of Pharmaceuticals)
Show Figures

Figure 1

15 pages, 1805 KiB  
Article
Advanced HPLC Method with Diode Array Detection Using a Phenyl-Bonded Column for Simultaneous Quantitation of Three Sunscreen Filters in a Moisturizing Sunscreen Cream for Acne-Prone Skin
by Panayiotis Feidias, Irene Panderi, Georgia Eleni Tsotsou, Ioanna Balatsouka, Spyridon Papageorgiou and Athanasia Varvaresou
Processes 2024, 12(11), 2309; https://doi.org/10.3390/pr12112309 - 22 Oct 2024
Viewed by 1919
Abstract
This study introduces a novel, robust, and efficient method for the simultaneous quantitative determination of three sunscreen filters, namely, 4-methylbenzylidene camphor, octyl methoxycinnamate, and avobenzone, in a moisturizing sunscreen cream specifically designed for acne-prone skin. The method employs high-performance liquid chromatography with photodiode-array [...] Read more.
This study introduces a novel, robust, and efficient method for the simultaneous quantitative determination of three sunscreen filters, namely, 4-methylbenzylidene camphor, octyl methoxycinnamate, and avobenzone, in a moisturizing sunscreen cream specifically designed for acne-prone skin. The method employs high-performance liquid chromatography with photodiode-array detection, providing a reliable separation of the analytes. Chromatographic separation was achieved using a Fortis Phenyl analytical column (150.0 × 2.1 mm, 5 μm), with isocratic elution at a flow rate of 0.4 mL/min. The mobile phase was composed of a 57/43 (v/v) mixture of acetonitrile/45 mM aqueous ammonium formate solution, ensuring sufficient resolution and peak symmetry for the target compounds. The method was validated comprehensively for critical performance parameters, including linearity, precision, accuracy, and robustness. Linearity was established across a suitable range for all three analytes, with high correlation coefficients. Precision was confirmed with intra-run and total precision coefficients of variation of ≤4.6%, while accuracy assessments yielded a percent recovery between 98.6 and 100.4, for all quality control levels. Additionally, the method was able to effectively separate the sunscreen filters from other cosmetic ingredients, such as [β-(1.3), (1.6)-D-glucan], low molecular weight (LMW) hyaluronic acid and plant extracts ensuring specificity in complex formulations. This straightforward and time efficient sample preparation process, involving methanol extraction followed by serial dilution, makes the method suitable for routine quality control in cosmetic laboratories. The method was successfully applied to the analysis of two different lots of a commercial sunscreen cream, achieving excellent recovery for all filters, ranging between 94.6% and 99.8%, thus demonstrating its reliability and applicability for the quality control of cosmetics. Full article
(This article belongs to the Special Issue Research of Bioactive Synthetic and Natural Products Chemistry)
Show Figures

Figure 1

16 pages, 4593 KiB  
Article
Computational Multiscale Study of the Interaction Between the PDMS Polymer and Sunscreen-Related Pollutant Molecules
by Stevan Armaković, Đorđe Vujić and Boris Brkić
Molecules 2024, 29(20), 4908; https://doi.org/10.3390/molecules29204908 - 17 Oct 2024
Viewed by 1317
Abstract
Sunscreen molecules play a critical role in protecting skin from ultraviolet radiation, yet their efficient detection and separation pose challenges in environmental and analytical contexts. In this work, we employ a multilevel modeling approach to investigate the molecular interactions between representative sunscreen molecules [...] Read more.
Sunscreen molecules play a critical role in protecting skin from ultraviolet radiation, yet their efficient detection and separation pose challenges in environmental and analytical contexts. In this work, we employ a multilevel modeling approach to investigate the molecular interactions between representative sunscreen molecules and the polydimethylsiloxane (PDMS) polymer, a material widely recognized for its sorbent properties. Our goal is to explore how these interactions can be fine-tuned to facilitate the effective separation of sunscreen molecules in portable membrane inlet mass spectrometry (MIMS) systems, potentially leading to the development of new membrane materials. Using a combination of advanced computational techniques—force field molecular dynamics simulations, semiempirical GFN2-xTB, and density functional theory calculations—we assess the interaction strength and noncovalent interactions of sunscreen molecules, namely oxybenzone, naphthalene, benzo[a]anthracene, avobenzone, and 1,3,5-trichlorobenzene, with PDMS. Additionally, the effect of temperature on the interaction dynamics is evaluated, with the aim of extending the sorbent capacities of PDMS beyond light polar molecules to larger, polar sunscreen compounds. This study provides critical insights into the molecular-level interactions that may guide the design of novel membrane materials for efficient molecular separation. Full article
(This article belongs to the Section Molecular Structure)
Show Figures

Figure 1

11 pages, 3229 KiB  
Article
Understanding Avobenzone Crystallization in Sunscreen Formulations: Role of Metal Oxide-Driven Nucleation and Stabilization Strategies
by Olga Goral, Grazyna Zofia Zukowska, Elzbieta Zero, Maciej Siekierski and Anna Krzton-Maziopa
Crystals 2024, 14(7), 663; https://doi.org/10.3390/cryst14070663 - 19 Jul 2024
Cited by 1 | Viewed by 2629
Abstract
The crystallization behavior of avobenzone in cosmetic formulations has been investigated with a focus on its interaction with titanium dioxide and zinc oxide particles. Characterization studies using SEM, powder X-ray diffraction (PXRD), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDS) reveal that avobenzone undergoes [...] Read more.
The crystallization behavior of avobenzone in cosmetic formulations has been investigated with a focus on its interaction with titanium dioxide and zinc oxide particles. Characterization studies using SEM, powder X-ray diffraction (PXRD), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDS) reveal that avobenzone undergoes crystallization facilitated by nucleation on the surfaces of these metal oxide grains. The presence of wax and titanium oxide within the crystalline structures further suggests a complex formation, potentially involving catalytic effects on avobenzone nucleation and isomerization. Notably, the addition of ascorbyl palmitate inhibits unwanted crystallization, possibly through competitive complexation with exposed metal ions. These findings underscore the significance of formulation modifications in stabilizing avobenzone against crystallization, ensuring enhanced product stability in cosmetic applications. Future structural studies are anticipated to elucidate the precise nature of these co-crystalline phases, offering insights into optimizing sunscreen formulations for improved performance and longevity. Full article
Show Figures

Figure 1

10 pages, 1492 KiB  
Article
Evaluation of MAA Analogues as Potential Candidates to Increase Photostability in Sunscreen Formulations
by Jacobo Soilán, Leonardo López-Cóndor, Beatriz Peñín, José Aguilera, María Victoria de Gálvez, Diego Sampedro and Raúl Losantos
Photochem 2024, 4(1), 128-137; https://doi.org/10.3390/photochem4010007 - 6 Feb 2024
Cited by 2 | Viewed by 1719
Abstract
Avobenzone is one of the most widely used sunscreens in skin care formulations, but suffers from some drawbacks, including photo instability. To mitigate this critical issue, the use of octocrylene as a stabilizer is a common approach in these products. However, octocrylene has [...] Read more.
Avobenzone is one of the most widely used sunscreens in skin care formulations, but suffers from some drawbacks, including photo instability. To mitigate this critical issue, the use of octocrylene as a stabilizer is a common approach in these products. However, octocrylene has been recently demonstrated to show potential phototoxicity. The aim of this work is to analyze the performance of a series of mycosporine-like amino acid (MAA)-inspired compounds to act as avobenzone stabilizers as an alternative to octocrylene. Different avobenzone/MAA analogue combinations included in galenic formulations were followed under increasing doses of solar-simulated UV radiation. Some of the synthetic MAA analogues analyzed were able to increase by up to two times the UV dose required for 50% of avobenzone photobleaching. We propose some of these MAA analogues as new candidates to act as avobenzone-stabilizing compounds in addition to their UV absorbance and antioxidant properties, together with a facile synthesis. Full article
(This article belongs to the Special Issue Feature Papers in Photochemistry II)
Show Figures

Figure 1

12 pages, 2454 KiB  
Article
Characteristic Photoprotective Molecules from the Sphagnum World: A Solution-Phase Ultrafast Study of Sphagnic Acid
by Michael Hymas, Irene Casademont-Reig, Stéphane Poigny and Vasilios G. Stavros
Molecules 2023, 28(16), 6153; https://doi.org/10.3390/molecules28166153 - 21 Aug 2023
Cited by 2 | Viewed by 2800
Abstract
A natural UV-absorbing chromophore extracted from sphagnum mosses, sphagnic acid, is proposed as a new natural support to chemical UV filters for use in cosmetic applications. Sphagnic acid is structurally related to the cinnamate family of molecules, known for their strong UV absorption, [...] Read more.
A natural UV-absorbing chromophore extracted from sphagnum mosses, sphagnic acid, is proposed as a new natural support to chemical UV filters for use in cosmetic applications. Sphagnic acid is structurally related to the cinnamate family of molecules, known for their strong UV absorption, efficient non-radiative decay, and antioxidant properties. In this study, transient electronic absorption spectroscopy is used, in conjunction with steady-state techniques, to model the photodynamics following photoexcitation of sphagnic acid in different solvent systems. Sphagnic acid was found in each system to relax with lifetimes of ~200 fs and ~1.5 ps before generating a cis-isomer photoproduct. This study helps to elucidate the photoprotective mechanism of a new potential natural support to sunscreens, from a unique plant source. Full article
(This article belongs to the Special Issue Interplay between Computational and Experimental Photochemistry)
Show Figures

Figure 1

18 pages, 15136 KiB  
Article
Biocompatible High-Resolution 3D-Printed Microfluidic Devices: Integrated Cell Chemotaxis Demonstration
by Mawla Boaks, Connor Roper, Matthew Viglione, Kent Hooper, Adam T. Woolley, Kenneth A. Christensen and Gregory P. Nordin
Micromachines 2023, 14(8), 1589; https://doi.org/10.3390/mi14081589 - 12 Aug 2023
Cited by 13 | Viewed by 3380
Abstract
We demonstrate a method to effectively 3D print microfluidic devices with high-resolution features using a biocompatible resin based on avobenzone as the UV absorber. Our method relies on spectrally shaping the 3D printer source spectrum so that it is fully overlapped by avobenzone’s [...] Read more.
We demonstrate a method to effectively 3D print microfluidic devices with high-resolution features using a biocompatible resin based on avobenzone as the UV absorber. Our method relies on spectrally shaping the 3D printer source spectrum so that it is fully overlapped by avobenzone’s absorption spectrum. Complete overlap is essential to effectively limit the optical penetration depth, which is required to achieve high out-of-plane resolution. We demonstrate the high resolution in practice by 3D printing 15 μm square pillars in a microfluidic chamber, where the pillars are separated by 7.7 μm and are printed with 5 μm layers. Furthermore, we show reliable membrane valves and pumps using the biocompatible resin. Valves are tested to 1,000,000 actuations with no observable degradation in performance. Finally, we create a concentration gradient generation (CG) component and utilize it in two device designs for cell chemotaxis studies. The first design relies on an external dual syringe pump to generate source and sink flows to supply the CG channel, while the second is a complete integrated device incorporating on-chip pumps, valves, and reservoirs. Both device types are seeded with adherent cells that are subjected to a chemoattractant CG, and both show clear evidence of chemotactic cellular migration. Moreover, the integrated device demonstrates cellular migration comparable to the external syringe pump device. This demonstration illustrates the effectiveness of our integrated chemotactic assay approach and high-resolution biocompatible resin 3D printing fabrication process. In addition, our 3D printing process has been tuned for rapid fabrication, as printing times for the two device designs are, respectively, 8 and 15 min. Full article
(This article belongs to the Special Issue 3D Printing of MEMS Technology, 3rd Edition)
Show Figures

Figure 1

22 pages, 2131 KiB  
Review
Ultraviolet Filters for Cosmetic Applications
by Georgiana Nitulescu, Dumitru Lupuliasa, Ines Adam-Dima and George Mihai Nitulescu
Cosmetics 2023, 10(4), 101; https://doi.org/10.3390/cosmetics10040101 - 12 Jul 2023
Cited by 40 | Viewed by 24390
Abstract
Sunscreens reduce the occurrence risk of skin disorders such as sunburn, skin aging, and cancer through their ability to absorb, reflect, and scatter ultraviolet (UV) radiation. This review provides an overview of UV filters as active ingredients of sunscreen products, emphasizing their classification [...] Read more.
Sunscreens reduce the occurrence risk of skin disorders such as sunburn, skin aging, and cancer through their ability to absorb, reflect, and scatter ultraviolet (UV) radiation. This review provides an overview of UV filters as active ingredients of sunscreen products, emphasizing their classification and structural characteristics. Their photostability, mechanism of action of ultraviolet radiation absorption, optical properties, and regulatory status are discussed based on their chemical structure. The main classes of organic UV filters presented include aminobenzoic acid derivatives, salicylic acid derivatives, cinnamic acid derivatives, benzophenones, dibenzoylmethane derivatives, benzylidene camphor derivatives, triazines, benzimidazole derivatives, and benzotriazole derivatives. The pursuit of new UV filters through research is crucial in advancing sunscreen technology and ensuring the availability of effective and safe options for sun protection. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2023)
Show Figures

Figure 1

14 pages, 3287 KiB  
Article
Incorporation of UV Filters into Oil-in-Water Emulsions—Release and Permeability Characteristics
by Anna Olejnik and Joanna Goscianska
Appl. Sci. 2023, 13(13), 7674; https://doi.org/10.3390/app13137674 - 28 Jun 2023
Cited by 7 | Viewed by 2904
Abstract
Unlike in many countries, in the USA, UV filters are treated as drugs and strictly regulated by the Food and Drug Administration. So far, 17 physical and chemical sunscreen agents were approved there to protect against the harmful effects of UV irradiation. In [...] Read more.
Unlike in many countries, in the USA, UV filters are treated as drugs and strictly regulated by the Food and Drug Administration. So far, 17 physical and chemical sunscreen agents were approved there to protect against the harmful effects of UV irradiation. In the European Union, access to UV filters is much larger, which gives manufacturers more options to create new sunscreen products in the form of lotions, sprays, oils, creams, gels, pastes, and sticks. Recently, concerns have been raised about the potential unfavorable effects of some UV filters that can penetrate the skin and enter into the systematic circulation. In this study, we prepared oil-in-water emulsions containing two commonly applied sunscreen agents, avobenzone and octyl methoxycinnamate. The formulations were characterized by a high stability at room temperature and a pH in the range of 6.02–6.11. The processes of sunscreen agent release and permeation were performed in a receptor fluid with a pH 5.8 using Strat-M and cellulose membranes to mimic the skin. It was proved that octyl methoxycinnamate exhibited different liberation and permeation patterns than avobenzone, mostly due to its higher lipophilicity. Both processes were also influenced by the type of membrane applied. The liberation of UV filters to the receptor fluid via the cellulose membrane depended on their concentration in the emulsion. As the amount of sunscreen agent in the formulation increases, more of its molecules diffuse to the receiving medium after 48 h. The permeation of the UV filters through the Strat-M membrane occurs at a very low level, 2% for octyl methoxycinnamate and 0.3% for avobenzone, which supports the safety and efficacy of the topical formulations obtained. Full article
(This article belongs to the Special Issue Young Investigators in Advanced Drug Delivery)
Show Figures

Graphical abstract

10 pages, 2854 KiB  
Article
Photoprotector Effect of Emulsions with Yerba-Mate (Ilex paraguariensis) Extract
by Juliana Andriolli Ribeiro, Ederlan Magri, Itamar Luís Gonçalves, Karina Paese, Juliana Roman and Alice Teresa Valduga
Sci. Pharm. 2023, 91(2), 22; https://doi.org/10.3390/scipharm91020022 - 23 Apr 2023
Cited by 3 | Viewed by 2554
Abstract
Yerba-mate contains in its composition a high concentration of phenolic compounds. This class of secondary metabolites exhibits strong values of molar absorptivity on ultraviolet and visible wavelengths. This study evaluated the effect of yerba-mate extracts on the in vitro solar protection factor (SPF) [...] Read more.
Yerba-mate contains in its composition a high concentration of phenolic compounds. This class of secondary metabolites exhibits strong values of molar absorptivity on ultraviolet and visible wavelengths. This study evaluated the effect of yerba-mate extracts on the in vitro solar protection factor (SPF) value of sunscreen formulations. The sunscreen formulations were prepared to have non-ionic lotion as a basis and yerba-mate extract and/or avobenzone as active agents. The SPF and resveratrol protective effect of the formulations were determined by UV-vis spectrometry. A synergic effect between the yerba-mate extract and avobenzone on the SPF was found. Yerba-mate extract at 5% improved the SPF of the avobenzone 5% formulation from 28.46 ± 5.45 to 40.48 ± 0.84. Yerba-mate extract at 5% avoided resveratrol degradation by ultraviolet radiation. At this same concentration, avobenzone produced a smaller effect than yerba-mate extracts in resveratrol protection. The formulations with yerba-mate + avobenzone presented smaller changes in pH values during 12 days of storage. The spreadability profile of yerba-mate and avobenzone formulations was similar to the profile of avobenzone formulations. The results reported here show the suitability of the yerba-mate extract use in photoprotective formulations, highlighting their in vitro effect and opening possibilities for new investigations exploring this property. Full article
Show Figures

Figure 1

10 pages, 1121 KiB  
Article
On the Fate of Butyl Methoxydibenzoylmethane (Avobenzone) in Coral Tissue and Its Effect on Coral Metabolome
by Fanny Clergeaud, Maeva Giraudo, Alice M. S. Rodrigues, Evane Thorel, Philippe Lebaron and Didier Stien
Metabolites 2023, 13(4), 533; https://doi.org/10.3390/metabo13040533 - 7 Apr 2023
Cited by 9 | Viewed by 3721
Abstract
The intensive use of sunscreen products has raised concerns regarding their environmental toxicity and the adverse impacts of ultraviolet (UV) filters on ecologically important coral communities. Prior metabolomic analyses on symbiotic coral Pocillopora damicornis exposed to the UV filter butyl methoxydibenzoylmethane (BM, avobenzone) [...] Read more.
The intensive use of sunscreen products has raised concerns regarding their environmental toxicity and the adverse impacts of ultraviolet (UV) filters on ecologically important coral communities. Prior metabolomic analyses on symbiotic coral Pocillopora damicornis exposed to the UV filter butyl methoxydibenzoylmethane (BM, avobenzone) revealed unidentified ions in the holobiont metabolome. In the present study, follow-up differential metabolomic analyses in BM-exposed P. damicornis detected 57 ions with significantly different relative concentrations in exposed corals. The results showed an accumulation of 17 BM derivatives produced through BM reduction and esterification. The major derivative identified C16:0-dihydroBM, which was synthesized and used as a standard to quantify BM derivatives in coral extracts. The results indicated that relative amounts of BM derivatives made up to 95% of the total BM (w/w) absorbed in coral tissue after 7 days of exposure. Among the remaining metabolites annotated, seven compounds significantly affected by BM exposure could be attributed to the coral dinoflagellate symbiont, indicating that BM exposure might impair the photosynthetic capacity of the holobiont. The present results suggest that the potential role of BM in coral bleaching in anthropogenic areas should be investigated and that BM derivatives should be considered in future assessments on the fate and effects of BM in the environment. Full article
(This article belongs to the Collection Advances in Metabolomics)
Show Figures

Graphical abstract

37 pages, 4260 KiB  
Review
Drug Delivery Strategies for Avobenzone: A Case Study of Photostabilization
by Amol D. Gholap, Sadikali F. Sayyad, Navnath T. Hatvate, Vilas V. Dhumal, Sagar R. Pardeshi, Vivek P. Chavda and Lalitkumar K. Vora
Pharmaceutics 2023, 15(3), 1008; https://doi.org/10.3390/pharmaceutics15031008 - 21 Mar 2023
Cited by 35 | Viewed by 9334
Abstract
Several developments and research methods are ongoing in drug technology and chemistry research to elicit effectiveness regarding the therapeutic activity of drugs along with photoprotection for their molecular integrity. The detrimental effect of UV light induces damaged cells and DNA, which leads to [...] Read more.
Several developments and research methods are ongoing in drug technology and chemistry research to elicit effectiveness regarding the therapeutic activity of drugs along with photoprotection for their molecular integrity. The detrimental effect of UV light induces damaged cells and DNA, which leads to skin cancer and other phototoxic effects. The application of sunscreen shields to the skin is important, along with recommended UV filters. Avobenzone is widely used as a UVA filter for skin photoprotection in sunscreen formulations. However, keto-enol tautomerism propagates photodegradation into it, which further channelizes the phototoxic and photoirradiation effects, further limiting its use. Several approaches have been used to counter these issues, including encapsulation, antioxidants, photostabilizers, and quenchers. To seek the gold standard approach for photoprotection in photosensitive drugs, combinations of strategies have been implemented to identify effective and safe sunscreen agents. The stringent regulatory guidelines for sunscreen formulations, along with the availability of limited FDA-approved UV filters, have led many researchers to develop perfect photostabilization strategies for available photostable UV filters, such as avobenzone. From this perspective, the objective of the current review is to summarize the recent literature on drug delivery strategies implemented for the photostabilization of avobenzone that could be useful to frame industrially oriented potential strategies on a large scale to circumvent all possible photounstable issues of avobenzone. Full article
(This article belongs to the Special Issue Formulation of Photosensitive Drugs)
Show Figures

Graphical abstract

Back to TopTop