Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,345)

Search Parameters:
Keywords = average water

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4451 KiB  
Article
Assessment of the Payments for Watershed Services Policy from a Perspective of Ecosystem Services: A Case Study of the Liaohe River Basin, China
by Manman Guo, Xu Lu and Qing Ma
Water 2025, 17(15), 2328; https://doi.org/10.3390/w17152328 - 5 Aug 2025
Abstract
Payments for Watershed services (PWSs) have been emerging as a critical tool for environmental governance in watershed, yet their comparative effectiveness across implementation models has remained poorly understood. Based on a comparative analysis of Eco-Compensation (EC) and Payments for Ecosystem Services (PESs) frameworks, [...] Read more.
Payments for Watershed services (PWSs) have been emerging as a critical tool for environmental governance in watershed, yet their comparative effectiveness across implementation models has remained poorly understood. Based on a comparative analysis of Eco-Compensation (EC) and Payments for Ecosystem Services (PESs) frameworks, examining both theoretical foundations and implementation practices, this study aims to quantitatively assess and compare the effectiveness of two dominant PWSs models—the EC-like model (Phase I: October 2008–April 2017) and the PESs-like model (Phase II: 2017–December 2021). Using the Liaohe River in China as a case study, utilizing ecosystem service value (ESV) as an indicator and employing the corrected unit-value transfer method, we compare the effectiveness of different PWSs models from October 2008 to December 2021. The results reveal the following: (1) Policy Efficiency: The PESs-like model demonstrated significantly greater effectiveness than the EC-like model, with annual average increases in ESV of 3.23 billion CNY (491 million USD) and 1.79 billion CNY (272 million USD). (2) Functional Drivers: Water regulation (45.1% of total ESV growth) and climate regulation (24.3%) were dominant services, with PESs-like interventions enhancing multifunctionality. (3) Stakeholder Impact: In the PESs-like model, the cities implementing inter-county direct payment showed higher growth efficiency than those without it. The operational efficiency of PWSs increases with the number of participating stakeholders, which explains why the PESs-like model demonstrates higher effectiveness than the EC-like model. Our findings offer empirical evidence and actionable policy implications for designing effective PWSs models across global watershed ecosystems. Full article
Show Figures

Figure 1

15 pages, 3048 KiB  
Article
Hydrogen-Rich Water Attenuates Diarrhea in Weaned Piglets via Oxidative Stress Alleviation
by Pengfei Zhang, Jingyu Yang, Zhuoda Lu, Qianxi Liang, Xing Yang, Junchao Wang, Jinbiao Guo and Yunxiang Zhao
Biology 2025, 14(8), 997; https://doi.org/10.3390/biology14080997 (registering DOI) - 5 Aug 2025
Abstract
Early weaning of piglets elicits weaning stress, which in turn induces oxidative stress and consequently impairs growth and development. Hydrogen-rich water (HRW), characterized by selective antioxidant properties, mitigates oxidative stress damage and serves as an ideal intervention. This study aimed to evaluate the [...] Read more.
Early weaning of piglets elicits weaning stress, which in turn induces oxidative stress and consequently impairs growth and development. Hydrogen-rich water (HRW), characterized by selective antioxidant properties, mitigates oxidative stress damage and serves as an ideal intervention. This study aimed to evaluate the effects of HRW on weaned piglets, specifically investigating its impact on growth performance, diarrhea incidence, antioxidant function, intestinal morphology, gut microbiota, and hepatic metabolites. The results demonstrate that HRW significantly increased the average daily feed intake and significantly reduced the diarrhea rate in weaned piglets. Analysis of serum oxidative stress indicators revealed that HRW significantly elevated the activities of total antioxidant capacity and total superoxide dismutase while significantly decreasing malondialdehyde concentration. Assessment of intestinal morphology showed that HRW significantly increased the villus height to crypt depth ratio in the duodenum, jejunum, and ileum. Microbial analysis indicated that HRW significantly increased the abundance of Prevotella in the colon. Furthermore, HRW increased the abundance of beneficial bacteria, such as Akkermansia, in the jejunum and cecum, while concurrently reducing the abundance of harmful bacteria like Escherichia. Hepatic metabolite profiling revealed that HRW significantly altered the metabolite composition in the liver of weaned piglets. Differentially abundant metabolites were enriched in oxidative stress-related KEGG pathways, including ABC transporters; pyruvate metabolism; autophagy; FoxO signaling pathway; glutathione metabolism; ferroptosis; and AMPK signaling pathways. In conclusion, HRW alleviates diarrhea and promotes growth in weaned piglets by enhancing antioxidant capacity. These findings provide a scientific foundation for the application of HRW in swine production and serve as a reference for further exploration into the mechanisms underlying HRW’s effects on animal health and productivity. Full article
Show Figures

Figure 1

18 pages, 1259 KiB  
Article
Artificial Neural Network-Based Prediction of Clogging Duration to Support Backwashing Requirement in a Horizontal Roughing Filter: Enhancing Maintenance Efficiency
by Sphesihle Mtsweni, Babatunde Femi Bakare and Sudesh Rathilal
Water 2025, 17(15), 2319; https://doi.org/10.3390/w17152319 - 4 Aug 2025
Abstract
While horizontal roughing filters (HRFs) remain widely acclaimed for their exceptional efficiency in water treatment, especially in developing countries, they are inherently susceptible to clogging, which necessitates timely maintenance interventions. Conventional methods for managing clogging in HRFs typically involve evaluating filter head loss [...] Read more.
While horizontal roughing filters (HRFs) remain widely acclaimed for their exceptional efficiency in water treatment, especially in developing countries, they are inherently susceptible to clogging, which necessitates timely maintenance interventions. Conventional methods for managing clogging in HRFs typically involve evaluating filter head loss coefficients against established water quality standards. This study utilizes artificial neural network (ANN) for the prediction of clogging duration and effluent turbidity in HRF equipment. The ANN was configured with two outputs, the clogging duration and effluent turbidity, which were predicted concurrently. Effluent turbidity was modeled to enhance the network’s learning process and improve the accuracy of clogging prediction. The network steps of the iterative training process of ANN used different types of input parameters, such as influent turbidity, filtration rate, pH, conductivity, and effluent turbidity. The training, in addition, optimized network parameters such as learning rate, momentum, and calibration of neurons in the hidden layer. The quantities of the dataset accounted for up to 70% for training and 30% for testing and validation. The optimized structure of ANN configured in a 4-8-2 topology and trained using the Levenberg–Marquardt (LM) algorithm achieved a mean square error (MSE) of less than 0.001 and R-coefficients exceeding 0.999 across training, validation, testing, and the entire dataset. This ANN surpassed models of scaled conjugate gradient (SCG) and obtained a percentage of average absolute deviation (%AAD) of 9.5. This optimal structure of ANN proved to be a robust tool for tracking the filter clogging duration in HRF equipment. This approach supports proactive maintenance and operational planning in HRFs, including data-driven scheduling of backwashing based on predicted clogging trends. Full article
(This article belongs to the Special Issue Advanced Technologies on Water and Wastewater Treatment)
Show Figures

Figure 1

23 pages, 4325 KiB  
Article
Groundwater Level Estimation Using Improved Transformer Model: A Case Study of the Yellow River Basin
by Tianming Zhou, Chun Fu, Yezhong Liu and Libin Xiang
Water 2025, 17(15), 2318; https://doi.org/10.3390/w17152318 - 4 Aug 2025
Abstract
Accurate estimation of groundwater levels in river basins is essential for effective water resource planning. Innovations in deep learning and artificial intelligence (AI) have been introduced into this field to enhance the accuracy of long-term groundwater level estimation. This study employs the Transformer [...] Read more.
Accurate estimation of groundwater levels in river basins is essential for effective water resource planning. Innovations in deep learning and artificial intelligence (AI) have been introduced into this field to enhance the accuracy of long-term groundwater level estimation. This study employs the Transformer deep learning model to estimate groundwater levels, with a benchmark comparison against the long short-term memory (LSTM) model. These models were applied to estimate groundwater levels in the Yellow River Basin, where approximately 1100 monitoring wells are located. Monthly average groundwater level data from the period 2018–2023 were collected from these wells. The two models were used to estimate groundwater levels for the period 2003–2017 by incorporating remote sensing information. The Transformer model was enhanced to simultaneously capture features from both historical temporal data and surrounding spatial data, while automatically enhancing key features, effectively improving estimation accuracy and robustness. At the basin-averaged scale, the enhanced Transformer model outperformed the LSTM model: R2 increased by approximately 17.5%, while RMSE and MAE decreased by approximately 12.4% and 10.9%, respectively. The proportion of poorly predicted samples decreased by an average of approximately 12.1%. The estimation model established in this study contributes to improving the quantitative analysis capability of long-term groundwater level variations in the Yellow River Basin. This could be helpful for water resource development planning in this densely populated region and likely has broad applicability in other river basins. Full article
(This article belongs to the Special Issue Machine Learning Applications in the Water Domain)
Show Figures

Figure 1

26 pages, 6044 KiB  
Article
Mapping Tradeoffs and Synergies in Ecosystem Services as a Function of Forest Management
by Hazhir Karimi, Christina L. Staudhammer, Matthew D. Therrell, William J. Kleindl, Leah M. Mungai, Amobichukwu C. Amanambu and C. Nathan Jones
Land 2025, 14(8), 1591; https://doi.org/10.3390/land14081591 - 4 Aug 2025
Abstract
The spatial variation of forest ecosystem services at regional scales remains poorly understood, and few studies have explicitly analyzed how ecosystem services are distributed across different forest management types. This study assessed the spatial overlap between forest management types and ecosystem service hotspots [...] Read more.
The spatial variation of forest ecosystem services at regional scales remains poorly understood, and few studies have explicitly analyzed how ecosystem services are distributed across different forest management types. This study assessed the spatial overlap between forest management types and ecosystem service hotspots in the Southeastern United States (SEUS) and the Pacific Northwest (PNW) forests. We used the InVEST suite of tools and GIS to quantify carbon storage and water yield. Carbon storage was estimated, stratified by forest group and age class, and literature-based biomass pool values were applied. Average annual water yield and its temporal changes (2001–2020) were modeled using the annual water yield model, incorporating precipitation, potential evapotranspiration, vegetation type, and soil characteristics. Ecosystem service outputs were classified to identify hotspot zones (top 20%) and to evaluate the synergies and tradeoffs between these services. Hotspots were then overlaid with forest management maps to examine their distribution across management types. We found that only 2% of the SEUS and 11% of the PNW region were simultaneous hotspots for both services. In the SEUS, ecological and preservation forest management types showed higher efficiency in hotspot allocation, while in PNW, production forestry contributed relatively more to hotspot areas. These findings offer valuable insights for decision-makers and forest managers seeking to preserve the multiple benefits that forests provide at regional scales. Full article
Show Figures

Figure 1

14 pages, 2310 KiB  
Article
A High-Fidelity Model of the Peach Bottom 2 Turbine-Trip Benchmark Using VERA
by Nicholas Herring, Robert Salko and Mehdi Asgari
J. Nucl. Eng. 2025, 6(3), 28; https://doi.org/10.3390/jne6030028 - 4 Aug 2025
Abstract
This work presents a high-fidelity simulation of the Peach Bottom turbine trip (PBTT) benchmark using the Virtual Environment for Reactor Applications (VERA), a multiphysics reactor modeling tool developed by the U.S. Department of Energy’s Consortium for Advanced Simulation of Light Water Reactors energy [...] Read more.
This work presents a high-fidelity simulation of the Peach Bottom turbine trip (PBTT) benchmark using the Virtual Environment for Reactor Applications (VERA), a multiphysics reactor modeling tool developed by the U.S. Department of Energy’s Consortium for Advanced Simulation of Light Water Reactors energy innovation hub. The PBTT benchmark, based on a 1977 transient event at the end of cycle 2 in a General Electric Type-4 boiling water reactor (BWR), is a critical test case for validating core physics models with thermal feedback during rapid reactivity events. VERA was employed to perform end-to-end, pin-resolved simulations from conditions at the beginning of cycle 1 through the turbine-trip transient, incorporating detailed neutron transport, fuel depletion, and subchannel thermal hydraulics. The simulation reproduced key benchmark observables with high accuracy: the peak power excursion occurred at 0.75 s, matching the scram time and closely aligning with the benchmark average of 0.742 s; the simulated maximum power spike was approximately 7600 MW, which is within 3% of the benchmark average of 7400 MW; and void-collapse dynamics were consistent with benchmark expectations. Reactivity predictions during cycles 1 and 2 remained within 1500 pcm and 400 pcm of criticality, respectively. These results confirm VERA’s ability to model complex coupled neutronic and thermal hydraulic behavior in a BWR turbine-trip transient, which will support its use in future studies of modeling dryout, fuel performance, and uncertainty quantification for transients of this type. Full article
(This article belongs to the Special Issue Validation of Code Packages for Light Water Reactor Physics Analysis)
Show Figures

Figure 1

11 pages, 1539 KiB  
Article
Heat Exchange and Flow Resistance in a Heat Exchanger Based on a Minimal Surface of the Gyroid Type—Results of Experimental Studies
by Krzysztof Dutkowski, Marcin Kruzel and Marcin Walczak
Energies 2025, 18(15), 4134; https://doi.org/10.3390/en18154134 - 4 Aug 2025
Abstract
The gyroid minimal surface is one type of triply periodic minimal surface (TPMS). TPMS is a minimal surface replicated in the three main directions of the Cartesian coordinate system. The minimal surface is a surface stretched between two objects, known as the smallest [...] Read more.
The gyroid minimal surface is one type of triply periodic minimal surface (TPMS). TPMS is a minimal surface replicated in the three main directions of the Cartesian coordinate system. The minimal surface is a surface stretched between two objects, known as the smallest possible area (e.g., a soap bubble with a saddle shape stretched between two parallel circles). The complicated shape of the TPMS makes its production possible only by additive methods (3D printing). This article presents the results of experimental studies on heat transfer and flow resistance in a heat exchanger made of stainless steel. The heat exchange surface, a TPMS gyroid, separates two working media: hot and cold water. The water flow rate was varied in the range from 8 kg/h to 25 kg/h (Re = 246–1171). The water temperature at the inlet to the exchanger was maintained at a constant level of 8.8 ± 0.3 °C and 49.5 ± 0.5 °C for cold and hot water, respectively. The effect of water flow rate on the change in its temperature, the heat output of the exchanger, the average heat transfer coefficient, pressure drop, and overall resistance factor was presented. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

21 pages, 2139 KiB  
Article
Reclaimed Municipal Wastewater Sand as a Viable Aggregate in Cement Mortars: Alkaline Treatment, Performance, Assessment, and Circular Construction Applications
by Beata Łaźniewska-Piekarczyk and Monika Jolanta Czop
Processes 2025, 13(8), 2463; https://doi.org/10.3390/pr13082463 - 4 Aug 2025
Abstract
This study evaluates the potential use of reclaimed sand from municipal wastewater treatment plants (WWTP), categorized as waste under code 19 08 02, as a full substitute for natural sand in cement mortars. The sand was subjected to alkaline pretreatment using sodium hydroxide [...] Read more.
This study evaluates the potential use of reclaimed sand from municipal wastewater treatment plants (WWTP), categorized as waste under code 19 08 02, as a full substitute for natural sand in cement mortars. The sand was subjected to alkaline pretreatment using sodium hydroxide (NaOH) at concentrations of 0.5%, 1% and 2% to reduce organic impurities and improve surface cleanliness. All mortar mixes were prepared using CEM I 42.5 R as the binder, maintaining a constant water-to-cement ratio of 0.5. Mechanical testing revealed that mortars produced with 100% WWTP-derived sand, pretreated with 0.5% NaOH, achieved a mean compressive strength of 51.9 MPa and flexural strength of 5.63 MPa after 28 days, nearly equivalent to reference mortars with standardized construction sand (52.7 MPa and 6.64 MPa, respectively). In contrast, untreated WWTP sand resulted in a significant performance reduction, with compressive strength averaging 30.0 MPa and flexural strength ranging from 2.55 to 2.93 MPa. The results demonstrate that low-alkaline pretreatment—particularly with 0.5% NaOH—allows for the effective reuse of WWTP waste sand (code 19 08 02) in cement mortars based on CEM I 42.5 R, achieving performance comparable to conventional materials. Although higher concentrations, such as 2% NaOH, are commonly recommended or required by standards for the removal of organic matter from fine aggregates, the results suggest that lower concentrations (e.g., 0.5%) may offer a better balance between cleaning effectiveness and mechanical performance. Nevertheless, 2% NaOH remains the obligatory reference level in some standard testing protocols for fine aggregate purification. Full article
(This article belongs to the Special Issue Sustainable Development of Energy and Environment in Buildings)
Show Figures

Figure 1

21 pages, 7111 KiB  
Article
Seasonal Variation in Energy Balance, Evapotranspiration and Net Ecosystem Production in a Desert Ecosystem of Dengkou, Inner Mongolia, China
by Muhammad Zain Ul Abidin, Huijie Xiao, Sanaullah Magsi, Fang Hongxin, Komal Muskan, Phuocthoi Hoang and Muhammad Azher Hassan
Water 2025, 17(15), 2307; https://doi.org/10.3390/w17152307 - 3 Aug 2025
Viewed by 70
Abstract
This study investigates the seasonal dynamics of energy balance, evapotranspiration (ET), and Net Ecosystem Production (NEP) in the Dengkou desert ecosystem of Inner Mongolia, China. Using eddy covariance and meteorological data from 2019 to 2022, the research focuses on understanding how these processes [...] Read more.
This study investigates the seasonal dynamics of energy balance, evapotranspiration (ET), and Net Ecosystem Production (NEP) in the Dengkou desert ecosystem of Inner Mongolia, China. Using eddy covariance and meteorological data from 2019 to 2022, the research focuses on understanding how these processes interact in one of the world’s most water-limited environments. This arid research area received an average of 109.35 mm per annum precipitation over the studied period, classifying the region as a typical arid ecosystem. Seasonal patterns were observed in daily air temperature, with extremes ranging from −20.6 °C to 29.6 °C. Temporal variations in sensible heat flux (H), latent heat flux (LE), and net radiation (Rn) peaked during summer season. The average ground heat flux (G) was mostly positive throughout the observation period, indicating heat transmission from atmosphere to soil, but showed negative values during the winter season. The energy balance ratio for the studied period was in the range of 0.61 to 0.80, indicating challenges in achieving energy closure and ecological shifts. ET exhibited two annual peaks influenced by vegetation growth and climate change, with annual ET exceeding annual precipitation, except in 2021. Net ecosystem production (NEP) from 2019 to 2020 revealed that the Dengkou desert were a net source of carbon, indicating the carbon loss from the ecosystem. In 2021, the Dengkou ecosystem shifted to become a net carbon sink, effectively sequestrating carbon. However, this was sharply reversed in 2022, resulting in a significant net release of carbon. The study findings highlight the complex interactions between energy balance components, ET, and NEP in desert ecosystems, providing insights into sustainable water management and carbon neutrality strategies in arid regions under climate change effect. Full article
(This article belongs to the Special Issue The Observation and Modeling of Surface Air Hydrological Factors)
Show Figures

Graphical abstract

26 pages, 7634 KiB  
Article
Research on the Preparation and Performance of Wood with High Negative Oxygen Ion Release Induced by Moisture
by Min Yin, Yuqi Zhang, Yun Lu, Zongying Fu, Haina Mi, Jianfang Yu and Ximing Wang
Coatings 2025, 15(8), 905; https://doi.org/10.3390/coatings15080905 (registering DOI) - 2 Aug 2025
Viewed by 205
Abstract
With the growing severity of environmental pollution, people are paying increasing attention to their health. However, naturally occurring wood with health benefits and applications in human healthcare is still scarce. Natural wood exhibits a limited negative oxygen ion release capacity, and this release [...] Read more.
With the growing severity of environmental pollution, people are paying increasing attention to their health. However, naturally occurring wood with health benefits and applications in human healthcare is still scarce. Natural wood exhibits a limited negative oxygen ion release capacity, and this release has a short duration, failing to meet practical application requirements. This study innovatively developed a humidity-responsive, healthy wood material with a high negative oxygen ion release capacity based on fast-growing poplar. Through vacuum cyclic impregnation technology, hexagonal stone powder was infused into the pores of poplar wood, endowing it with the ability to continuously release negative oxygen ions. The healthy wood demonstrated a static average negative oxygen ion release rate of 537 ions/cm3 (peaking at 617 ions/cm3) and a dynamic average release rate of 3,170 ions/cm3 (peaking at 10,590 ions/cm3). The results showed that the particle size of hexagonal stone powder in suspension was influenced by the dispersants and dispersion processes. The composite dispersion process demonstrated optimal performance when using 0.5 wt% silane coupling agent γ-(methacryloxy)propyltrimethoxysilane (KH570), achieving the smallest particle size of 8.93 μm. The healthy wood demonstrated excellent impregnation performance, with a weight gain exceeding 14.61% and a liquid absorption rate surpassing 165.18%. The optimal impregnation cycle for vacuum circulation technology was determined to be six cycles, regardless of the type of dispersant. Compared with poplar wood, the hygroscopic swelling rate of healthy wood was lower, especially in PEG-treated samples, where the tangential, radial, longitudinal, and volumetric swelling rates decreased by 70.93%, 71.67%, 69.41%, and 71.35%, respectively. Combining hexagonal stone powder with fast-growing poplar wood can effectively enhance the release of negative oxygen ions. The static average release of negative oxygen ions from healthy wood is 1.44 times that of untreated hexagonal stone powder, and the dynamic release reaches 2 to 3 times the concentration of negative oxygen ions specified by national fresh air standards. The water-responsive mechanism revealed that negative oxygen ion release surged when ambient humidity exceeded 70%. This work proposes a sustainable and effective method to prepare healthy wood with permanent negative oxygen ion release capability. It demonstrates great potential for improving indoor air quality and enhancing human health. Full article
Show Figures

Figure 1

19 pages, 18533 KiB  
Article
Modeling of Marine Assembly Logistics for an Offshore Floating Photovoltaic Plant Subject to Weather Dependencies
by Lu-Jan Huang, Simone Mancini and Minne de Jong
J. Mar. Sci. Eng. 2025, 13(8), 1493; https://doi.org/10.3390/jmse13081493 - 2 Aug 2025
Viewed by 96
Abstract
Floating solar technology has gained significant attention as part of the global expansion of renewable energy due to its potential for installation in underutilized water bodies. Several countries, including the Netherlands, have initiated efforts to extend this technology from inland freshwater applications to [...] Read more.
Floating solar technology has gained significant attention as part of the global expansion of renewable energy due to its potential for installation in underutilized water bodies. Several countries, including the Netherlands, have initiated efforts to extend this technology from inland freshwater applications to open offshore environments, particularly within offshore wind farm areas. This development is motivated by the synergistic benefits of increasing site energy density and leveraging the existing offshore grid infrastructure. The deployment of offshore floating photovoltaic (OFPV) systems involves assembling multiple modular units in a marine environment, introducing operational risks that may give rise to safety concerns. To mitigate these risks, weather windows must be considered prior to the task execution to ensure continuity between weather-sensitive activities, which can also lead to additional time delays and increased costs. Consequently, optimizing marine logistics becomes crucial to achieving the cost reductions necessary for making OFPV technology economically viable. This study employs a simulation-based approach to estimate the installation duration of a 5 MWp OFPV plant at a Dutch offshore wind farm site, started in different months and under three distinct risk management scenarios. Based on 20 years of hindcast wave data, the results reveal the impacts of campaign start months and risk management policies on installation duration. Across all the scenarios, the installation duration during the autumn and winter period is 160% longer than the one in the spring and summer period. The average installation durations, based on results from 12 campaign start months, are 70, 80, and 130 days for the three risk management policies analyzed. The result variation highlights the additional time required to mitigate operational risks arising from potential discontinuity between highly interdependent tasks (e.g., offshore platform assembly and mooring). Additionally, it is found that the weather-induced delays are mainly associated with the campaigns of pre-laying anchors and platform and mooring line installation compared with the other campaigns. In conclusion, this study presents a logistics modeling methodology for OFPV systems, demonstrated through a representative case study based on a state-of-the-art truss-type design. The primary contribution lies in providing a framework to quantify the performance of OFPV installation strategies at an early design stage. The findings of this case study further highlight that marine installation logistics are highly sensitive to local marine conditions and the chosen installation strategy, and should be integrated early in the OFPV design process to help reduce the levelized cost of electricity. Full article
(This article belongs to the Special Issue Design, Modeling, and Development of Marine Renewable Energy Devices)
Show Figures

Figure 1

20 pages, 4109 KiB  
Article
Quantifying Baseflow with Radon, H and O Isotopes and Field Parameters in the Urbanized Catchment of the Little Jukskei River, Johannesburg
by Khutjo Diphofe, Roger Diamond and Francois Kotze
Hydrology 2025, 12(8), 203; https://doi.org/10.3390/hydrology12080203 - 2 Aug 2025
Viewed by 149
Abstract
Understanding groundwater and surface water interaction is critical for managing water resources, particularly in water-stressed and rapidly urbanizing areas, such as many parts of Africa. A survey was conducted of borehole, spring, seep and river water radon, δ2H, δ18O [...] Read more.
Understanding groundwater and surface water interaction is critical for managing water resources, particularly in water-stressed and rapidly urbanizing areas, such as many parts of Africa. A survey was conducted of borehole, spring, seep and river water radon, δ2H, δ18O and field parameters in the Jukskei River catchment, Johannesburg. Average values of electrical conductivity (EC) were 274 and 411 μS·cm−1 for groundwater and surface water, and similarly for radon, 37,000 and 1100 Bq·m−3, with a groundwater high of 196,000 Bq·m−3 associated with a structural lineament. High radon was a good indicator of baseflow, highest at the end of the rainy season (March) and lowest at the end of the dry season (September), with the FINIFLUX model computing groundwater inflow as 2.5–4.7 L·m−1s−1. High EC was a poorer indicator of baseflow, also considering the possibility of wastewater with high EC, typical in urban areas. Groundwater δ2H and δ18O values are spread widely, suggesting recharge from both normal and unusual rainfall periods. A slight shift from the local meteoric water line indicates light evaporation during recharge. Surface water δ2H and δ18O is clustered, pointing to regular groundwater input along the stream, supporting the findings from radon. Given the importance of groundwater, further study using the same parameters or additional analytes is advisable in the urban area of Johannesburg or other cities. Full article
Show Figures

Figure 1

28 pages, 2191 KiB  
Article
An Evaluation of Food Security and Grain Production Trends in the Arid Region of Northwest China (2000–2035)
by Yifeng Hao and Yaodong Zhou
Agriculture 2025, 15(15), 1672; https://doi.org/10.3390/agriculture15151672 - 2 Aug 2025
Viewed by 167
Abstract
Food security is crucial for social stability and economic development. Ensuring food security in the arid region of Northwest China presents unique challenges due to limited water and soil resources. This study addresses these challenges by integrating a comprehensive water and soil resource [...] Read more.
Food security is crucial for social stability and economic development. Ensuring food security in the arid region of Northwest China presents unique challenges due to limited water and soil resources. This study addresses these challenges by integrating a comprehensive water and soil resource matching assessment with grain production forecasting. Based on data from 2000 to 2020, this research projects the food security status to 2035 using the GM(1,1) model, incorporating a comprehensive index of soil and water resource matching and regression analysis to inform production forecasts. Key assumptions include continued historical trends in population growth, urbanization, and dietary shifts towards an increased animal protein consumption. The findings revealed a consistent upward trend in grain production from 2000 to 2020, with an average annual growth rate of 3.5%. Corn and wheat emerged as the dominant grain crops. Certain provinces demonstrated comparative advantages for specific crops like rice and wheat. The most significant finding is that despite the projected growth in the total grain output by 2035 compared to 2020, the regional grain self-sufficiency rate is projected to range from 79.6% to 84.1%, falling below critical food security benchmarks set by the FAO and China. This projected shortfall carries significant implications, underscoring a serious challenge to regional food security and highlighting the region’s increasing vulnerability to external food supply fluctuations. The findings strongly signal that current trends are insufficient and necessitate urgent and proactive policy interventions. To address this, practical policy recommendations include promoting water-saving technologies, enhancing regional cooperation, and strategically utilizing the international grain trade to ensure regional food security. Full article
(This article belongs to the Topic Food Security and Healthy Nutrition)
Show Figures

Figure 1

23 pages, 10868 KiB  
Article
Quantitative Analysis and Nonlinear Response of Vegetation Dynamic to Driving Factors in Arid and Semi-Arid Regions of China
by Shihao Liu, Dazhi Yang, Xuyang Zhang and Fangtian Liu
Land 2025, 14(8), 1575; https://doi.org/10.3390/land14081575 - 1 Aug 2025
Viewed by 201
Abstract
Vegetation dynamics are complexly influenced by multiple factors such as climate, human activities, and topography. In recent years, the frequency, intensity, and diversity of human activities have increased, placing substantial pressure on the growth of vegetation. Arid and semi-arid regions are particularly sensitive [...] Read more.
Vegetation dynamics are complexly influenced by multiple factors such as climate, human activities, and topography. In recent years, the frequency, intensity, and diversity of human activities have increased, placing substantial pressure on the growth of vegetation. Arid and semi-arid regions are particularly sensitive to climate change, and climate change and large-scale ecological restoration have led to significant changes in the dynamic of dryland vegetation. However, few studies have explored the nonlinear relationships between these factors and vegetation dynamic. In this study, we integrated trend analysis (using the Mann–Kendall test and Theil–Sen estimation) and machine learning algorithms (XGBoost-SHAP model) based on long time-series remote sensing data from 2001 to 2020 to quantify the nonlinear response patterns and threshold effects of bioclimatic variables, topographic features, soil attributes, and anthropogenic factors on vegetation dynamic. The results revealed the following key findings: (1) The kNDVI in the study area showed an overall significant increasing trend (p < 0.01) during the observation period, of which 26.7% of the area showed a significant increase. (2) The water content index (Bio 23, 19.6%), the change in land use (15.2%), multi-year average precipitation (pre, 15.0%), population density (13.2%), and rainfall seasonality (Bio 15, 10.9%) were the key factors driving the dynamic change of vegetation, with the combined contribution of natural factors amounting to 64.3%. (3) Among the topographic factors, altitude had a more significant effect on vegetation dynamics, with higher altitude regions less likely to experience vegetation greening. Both natural and anthropogenic factors exhibited nonlinear responses and interactive effects, contributing to the observed dynamic trends. This study provides valuable insights into the driving mechanisms behind the condition of vegetation in arid and semi-arid regions of China and, by extension, in other arid regions globally. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

13 pages, 3774 KiB  
Article
Design of TEMPO-Based Polymer Cathode Materials for pH-Neutral Aqueous Organic Redox Flow Batteries
by Yanwen Ren, Qianqian Zheng, Cuicui He, Jingjing Nie and Binyang Du
Materials 2025, 18(15), 3624; https://doi.org/10.3390/ma18153624 - 1 Aug 2025
Viewed by 168
Abstract
Aqueous organic redox flow batteries (AORFBs) represent an advancing class of electrochemical energy storage systems showing considerable promise for large-scale grid integration due to their unique aqueous organic chemistry. However, the use of small-molecule active materials in AORFBs is significantly limited by the [...] Read more.
Aqueous organic redox flow batteries (AORFBs) represent an advancing class of electrochemical energy storage systems showing considerable promise for large-scale grid integration due to their unique aqueous organic chemistry. However, the use of small-molecule active materials in AORFBs is significantly limited by the issue of stability and crossover. To address these challenges, we designed a high-water-solubility polymer cathode material, P-T-S, which features a polyvinylimidazole backbone functionalized with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and sulfonate groups. P-T-S exhibits a solubility of 34 Ah L−1 in water and 31 Ah L−1 in 1.0 M NaCl aqueous solution (NaClaq). When paired with methyl viologen to assemble a pH-neutral AORFB with a theoretical capacity of 15 Ah L−1, the system exhibits a material utilization rate of 92.0%, an average capacity retention rate of 99.74% per cycle (99.74% per hour), and an average Coulombic efficiency of 98.69% over 300 consecutive cycles at 30 mA cm−2. This work provides a new design strategy for polymer materials for high-performance AORFBs. Full article
Show Figures

Graphical abstract

Back to TopTop