Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (979)

Search Parameters:
Keywords = auxin regulators

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2666 KiB  
Article
Hormonal Balance in Relation to Expression of Selected Genes Connected with Hormone Biosynthesis and Signalling—The Effect of Deacclimation Process in Oilseed Rape
by Magdalena Rys, Jan Bocianowski, Michał Dziurka, Barbara Jurczyk, Julia Stachurska, Piotr Waligórski and Anna Janeczko
Int. J. Mol. Sci. 2025, 26(15), 7408; https://doi.org/10.3390/ijms26157408 (registering DOI) - 1 Aug 2025
Abstract
Global climate change is causing increasing fluctuations in winter temperatures, including episodes of warm conditions above 9 °C. Such events disrupt cold acclimation in plants and can induce deacclimation, reducing frost tolerance and altering, among other things, hormonal regulation. This study investigated hormonal [...] Read more.
Global climate change is causing increasing fluctuations in winter temperatures, including episodes of warm conditions above 9 °C. Such events disrupt cold acclimation in plants and can induce deacclimation, reducing frost tolerance and altering, among other things, hormonal regulation. This study investigated hormonal and molecular changes associated with cold acclimation and deacclimation in oilseed rape (Brassica napus L.) cultivars Kuga and Thure. Plants were grown under different conditions: non-acclimated (17 °C for three weeks), cold-acclimated (4 °C for three weeks), and deacclimated (16/9 °C day/night for one week). Detailed hormone analysis included auxins, gibberellins, cytokinins, stress-related hormones, and the expression of hormone-related genes (BnABF2, BnAOS, BnARF1, BnARR6, BnICS1, BnRGA, and BnWRKY57). Hormone concentrations in leaves changed dynamically in response to deacclimation with increased amounts of growth-promoting hormones and decreased amounts of stress hormones. Additionally, alterations in gene expression during deacclimation, such as in BnABF2 and BnICS1, may function as protective mechanisms to help maintain or regain frost tolerance during reacclimation when temperatures decline again after the warm period. These findings improve the understanding of hormonal and molecular responses involved in the deacclimation of oilseed rape. Full article
(This article belongs to the Special Issue Plant Hormone Signaling)
Show Figures

Figure 1

11 pages, 855 KiB  
Article
A Water Solution from the Seeds, Seedlings and Young Plants of the Corn Cockle (Agrostemma githago) Showed Plant-Growth Regulator Efficiency
by Jana Ambrožič-Dolinšek, Vid Golič, Víctor Rouco Saco, Petra Peranić, Veno Jaša Grujić and Terezija Ciringer
Plants 2025, 14(15), 2349; https://doi.org/10.3390/plants14152349 - 30 Jul 2025
Viewed by 73
Abstract
Corn cockle (Agrostemma githago L. (Lychnis githago (L.) Scop.)) is the main ingredient in some plant preparations for biostimulation in agriculture, and it elicits many positive responses. In our study, we attempted to determine if the fresh and dry plant material [...] Read more.
Corn cockle (Agrostemma githago L. (Lychnis githago (L.) Scop.)) is the main ingredient in some plant preparations for biostimulation in agriculture, and it elicits many positive responses. In our study, we attempted to determine if the fresh and dry plant material of A. githago contained auxin-like and cytokinin-like growth regulators (PGRs). Cucumis and mung bean bioassays were used to determine the presence of auxin-like PGRs and Cucumis and Triticum bioassays were used to determine the presence of cytokinin-like PGRs. A water solution derived from the crushed, homogenized and extracted seeds, fresh and dry seedlings, and fresh and dry young plants showed auxin-like activity in both bioassays. The activity in the Cucumis bioassay corresponded to 0.5 to 2 mg L−1 of Indole-3-butyric acid (IBA), and in the mung bean bioassay, the activity corresponded to 0.5 to 4 mg L−1 of IBA. While the same water solutions showed weak or no cytokinin-like activity in the Cucumis cotyledon expansion bioassay, and they showed an activity of approximately 0.5 to 1 mg L−1 of 6-Benzylaminopurine (BAP) in the Triticum bioassay. An LC-MS analysis confirmed the presence of free auxins, low levels of or no auxin analogues, a small amount of free cytokinins and a higher level of their cytokinin analogues in the samples, seeds, dry seedlings and young plants of A. githago, which was likely related to the fine-tuning between the free and analogue forms of the PGRs in the water solutions used in the experiments. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

12 pages, 432 KiB  
Review
Adventitious Root Formation in Cuttings: Insights from Arabidopsis and Prospects for Woody Plants
by Peipei Liu, Shili Zhang, Xinying Wang, Yuxuan Du, Qizhouhong He, Yingying Zhang, Lisha Shen, Hongfei Hu, Guifang Zhang and Xiaojuan Li
Biomolecules 2025, 15(8), 1089; https://doi.org/10.3390/biom15081089 - 28 Jul 2025
Viewed by 269
Abstract
Cutting propagation is a commonly employed technology for vegetative reproduction in agricultural, forestry, and horticultural practice. The success of cutting propagation depends on adventitious root (AR) formation—a process whereby roots regenerate from stem cuttings or leaf cuttings. In this review, we summarize the [...] Read more.
Cutting propagation is a commonly employed technology for vegetative reproduction in agricultural, forestry, and horticultural practice. The success of cutting propagation depends on adventitious root (AR) formation—a process whereby roots regenerate from stem cuttings or leaf cuttings. In this review, we summarize the distinct stages of cutting-induced AR formation and highlight the pivotal roles of plant hormones and age in this process. Jasmonic acid (JA) acts as a master trigger for promoting AR formation, while auxin serves as the core regulator, driving AR formation. Furthermore, plant age is a crucial factor determining the regenerative competence of cuttings. Notably, age and JA collaboratively modulate auxin synthesis in cutting-induced AR formation. Overall, this review not only elucidates the molecular mechanisms underlying AR formation but also provides valuable insights for improving efficiency of cutting propagation in various plant species. Full article
(This article belongs to the Section Biological Factors)
Show Figures

Figure 1

24 pages, 1857 KiB  
Review
The Evolution of Plant Hormones: From Metabolic Byproducts to Regulatory Hubs
by Jasmina Kurepa and Jan Smalle
Int. J. Mol. Sci. 2025, 26(15), 7190; https://doi.org/10.3390/ijms26157190 - 25 Jul 2025
Viewed by 123
Abstract
As sessile organisms, plants adapt to environmental challenges through flexible developmental and physiological programs. Hormones play a central role in this adaptability, integrating environmental signals into coordinated responses that regulate growth and stress tolerance. Comparative studies across photosynthetic lineages reveal that several core [...] Read more.
As sessile organisms, plants adapt to environmental challenges through flexible developmental and physiological programs. Hormones play a central role in this adaptability, integrating environmental signals into coordinated responses that regulate growth and stress tolerance. Comparative studies across photosynthetic lineages reveal that several core hormone functions are remarkably conserved, despite major evolutionary changes in hormone perception, biosynthesis, metabolism, and transport. This conservation suggests that plant hormones have played a pivotal evolutionary role—not only preserving essential biological functions but also enabling increased complexity in plant form and function. A similar dual role is observed in evolutionary endocrinology in animals, where hormones contribute to the emergence and regulation of complex traits. We propose that hormones such as cytokinins, auxins, brassinosteroids, strigolactones, and abscisic acid originated as metabolic derivatives closely tied to core physiological functions essential for survival and reproduction, including reproductive success, nutrient sensing, and dehydration tolerance. Over time, these compounds were progressively integrated into increasingly sophisticated regulatory networks, where they now serve as central coordinators and key targets of evolutionary selection. This model advances our understanding of hormone evolution by providing a structured framework to interpret the persistence, specialization, and integration of plant hormones across evolutionary timescales. Full article
(This article belongs to the Special Issue Advances in Plant Metabolite Research)
Show Figures

Figure 1

17 pages, 1941 KiB  
Article
Blue–Red LED Light Modulates Morphophysiological and Metabolic Responses in the Medicinal Plant Nepeta nuda
by Miroslava Zhiponova, Grigor Zehirov, Krasimir Rusanov, Mila Rusanova, Miroslava Stefanova, Tsveta Ganeva, Momchil Paunov, Valentina Ganeva, Kiril Mishev, Petre I. Dobrev, Roberta Vaculíková, Václav Motyka, Zhenya Yordanova, Ganka Chaneva and Valya Vassileva
Plants 2025, 14(15), 2285; https://doi.org/10.3390/plants14152285 - 24 Jul 2025
Viewed by 263
Abstract
Light quality and duration profoundly influence the growth and productivity of plant species. This study investigated the effects of a blue–red LED light combination, known to induce flowering, on the physiological state and content of biologically active substances in catmint (Nepeta nuda [...] Read more.
Light quality and duration profoundly influence the growth and productivity of plant species. This study investigated the effects of a blue–red LED light combination, known to induce flowering, on the physiological state and content of biologically active substances in catmint (Nepeta nuda L.) grown under controlled in vitro conditions. White light (W) was used as a control and compared with two blue–red intensities: BR (high-intensity blue–red light) and BRS (low-intensity blue–red light or “BR with shadow”). BR-treated plants showed increased leaf area, mesophyll thickness, biomass and starch content but reduced levels of plastid pigments. BR also modified the oxidative state of plants by inducing lipid peroxidation while simultaneously activating ROS scavenging mechanisms and enhancing phenolic antioxidants. Interestingly, BR decreased the accumulation of the Nepeta sp.-specific iridoid, nepetalactone. These effects appear to be regulated by the phytohormones auxin, abscisic acid and jasmonates. BRS treatment produced effects similar to the W control but led to increased plant height and reduced leaf area and thickness. Both BR and BRS regimes induced the accumulation of proteins and amino acids. We conclude that blue–red light can enhance the survival capacity of micropropagated N. nuda during subsequent soil adaptation, suggesting that similar light pre-treatment could improve plant performance under stress conditions. Full article
Show Figures

Figure 1

20 pages, 4054 KiB  
Article
Identification of Auxin-Associated Genes in Wheat Through Comparative Transcriptome Analysis and Validation of the Candidate Receptor-like Kinase Gene TaPBL7-2B in Arabidopsis
by Mengjie Zhang, Guangzhu Chen, Jie Cai, Yongjie Ji, Linrun Xiang, Xinhong Chen and Jun Wang
Plants 2025, 14(15), 2277; https://doi.org/10.3390/plants14152277 - 24 Jul 2025
Viewed by 249
Abstract
Auxin (IAA), a key natural signaling molecule, plays a pivotal role in regulating plant growth, development, and stress responses. Understanding its signal transduction mechanisms is crucial for improving crop yields. In this study, we conducted a comparative transcriptome analysis of wheat leaf and [...] Read more.
Auxin (IAA), a key natural signaling molecule, plays a pivotal role in regulating plant growth, development, and stress responses. Understanding its signal transduction mechanisms is crucial for improving crop yields. In this study, we conducted a comparative transcriptome analysis of wheat leaf and root tissues treated with different concentrations of IAA (0, 1, and 50 μM). Functional enrichment analysis revealed that differentially expressed genes (DEGs) exhibited tissue-specific regulatory patterns in response to auxin. Weighted Gene Co-expression Network Analysis (WGCNA) identified receptor-like kinase genes within the MEgreen module as highly correlated with auxin response, suggesting their involvement in both root and leaf regulation. Among them, TaPBL7-2B, a receptor-like kinase gene significantly upregulated under 50 μM IAA treatment, was selected for functional validation. Ectopic overexpression of TaPBL7-2B in Arabidopsis thaliana (Col-0) enhanced auxin sensitivity and inhibited plant growth by suppressing root development and leaf expansion. In contrast, knockout of the Arabidopsis homolog AtPBL7 reduced auxin sensitivity and promoted both root and leaf growth. Transcriptome analysis of Col-0, the TaPBL7-2B overexpression line, and the pbl7 mutant indicated that TaPBL7-2B primarily functions through the MAPK signaling pathway and plant hormone signal transduction pathway. Furthermore, qRT-PCR analysis of wheat varieties with differing auxin sensitivities confirmed a positive correlation between TaPBL7-2B expression and auxin response. In conclusion, TaPBL7-2B acts as a negative regulator of plant growth, affecting root development and leaf expansion in both Arabidopsis and wheat. These findings enhance our understanding of auxin signaling and provide new insights for optimizing crop architecture and productivity. Full article
Show Figures

Figure 1

15 pages, 2281 KiB  
Article
Transcriptome and Anthocyanin Profile Analysis Reveals That Exogenous Ethylene Regulates Anthocyanin Biosynthesis in Grape Berries
by Min Liu, Boyuan Fan, Le Li, Jinmei Hao, Ruteng Wei, Hua Luo, Fei Shi, Zhiyuan Ren and Jun Wang
Foods 2025, 14(14), 2551; https://doi.org/10.3390/foods14142551 - 21 Jul 2025
Viewed by 316
Abstract
Anthocyanins are important phenolic compounds in grape skins, affecting the color, oxidation resistance, and aging ability of red wine. In recent years, global warming has had a negative effect on anthocyanin biosynthesis in grape berries. Ethylene serves as a crucial phytohormone regulating the [...] Read more.
Anthocyanins are important phenolic compounds in grape skins, affecting the color, oxidation resistance, and aging ability of red wine. In recent years, global warming has had a negative effect on anthocyanin biosynthesis in grape berries. Ethylene serves as a crucial phytohormone regulating the development and ripening processes of fruit; however, the specific molecular mechanism and the regulatory network between ethylene signaling and the anthocyanin biosynthesis pathway remain incompletely understood. In this study, 400 mg/L ethephon (ETH) solution was sprayed onto the surface of grape berries at the lag phase (EL-34), and the changes in anthocyanin-related genes and metabolites were explored through transcriptomic and metabolomic analysis. The results showed that ETH treatment increased Brix and pH in mature berries. In total, 35 individual anthocyanins were detected, in which 21 individual anthocyanins were enhanced by ETH treatment. However, the anthocyanin profile was not affected by exogenous ethylene. Transcriptomics analysis showed that there were a total of 825 and 1399 differentially expressed genes (DEGs) 12 h and 24 h after treatment. Moreover, key structural genes in the anthocyanin synthesis pathway were strongly induced, including VvPAL, VvCHS, VvF3H, VvF3′5′H, VvDFR and VvUFGT. At the maturity stage (EL-38), the expression levels of these genes were still higher in EHT-treated berries than in the control. ETH treatment also influenced the expression of genes related to hormone biosynthesis and signal transduction. The ethylene biosynthesis gene (VvACO), ethylene receptor genes (VvETR2, VvERS1 and VvEIN4), ABA biosynthesis gene (VvNCED2), and ABA receptor gene (VvPYL4) were up-regulated by ETH treatment, while the auxin biosynthesis gene (VvTAA3) and seven genes of the auxin-responsive protein were inhibited by exogenous ethylene. Meanwhile, ETH treatment promoted the expression of the sugar transporter gene (VvEDL16) and two sucrose synthase genes (VvSUS2 and VvSUS6). In EHT-treated berries, 19 MYB and 23 ERF genes were expressed differently compared with the control (p < 0.05). This study provides the theoretical foundation and technical support for the regulation of anthocyanin synthesis in non-climacteric fruit. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

19 pages, 17948 KiB  
Article
Temporal Transcriptome Analysis Reveals Core Pathways and Orphan Gene EARLY FLOWERING 1 Regulating Floral Transition in Chinese Cabbage
by Hong Lang, Yuting Zhang, Shouhe Zhao, Kexin Li, Xiaonan Li and Mingliang Jiang
Plants 2025, 14(14), 2236; https://doi.org/10.3390/plants14142236 - 19 Jul 2025
Viewed by 265
Abstract
The floral transition in Chinese cabbage (Brassica rapa ssp. pekinensis) is governed by a complex interplay of gene expression and hormonal regulation. Temporal transcriptome profiling was conducted across three developmental stages: pre-bolting (PBS), bolting (BS), and flowering stages (FS), to investigate [...] Read more.
The floral transition in Chinese cabbage (Brassica rapa ssp. pekinensis) is governed by a complex interplay of gene expression and hormonal regulation. Temporal transcriptome profiling was conducted across three developmental stages: pre-bolting (PBS), bolting (BS), and flowering stages (FS), to investigate the underlying molecular mechanisms. A total of 7092 differentially expressed genes (DEGs) were identified, exhibiting distinct expression trajectories during the transition. Moreover, functional enrichment analyses revealed strong associations with plant hormone signaling, MAPK pathways, and developmental regulation processes. Key flowering-related genes, such as BrFLM, BrAP2, BrFD, BrFT, and BrSOC1s displayed antagonistic expression patterns. Hormonal pathways involving auxin, ABA, ET, BR, GA, JA, CK, and SA showed stage-dependent modulation. Further, orphan genes (OGs), especially EARLY FLOWERING 1 (EF1), showed significant upregulation during the transition, which exhibited 1.84-fold and 1.93-fold increases at BS and FS compared to PBS, respectively (p < 0.05). Functional validation through EF1 overexpression (EF1OE) in Arabidopsis consistently promoted early flowering. The expression levels of AtFT and AtSOC1 were significantly upregulated in EF1OE lines compared to wild-type (WT) plants. The findings contribute to understanding the coordinated genetic and hormonal events driving floral development in Chinese cabbage, suggesting EF1 as a candidate for bolting resistance breeding. This work also expands the existing regulatory framework through the successful integration of OGs into the complex floral induction system of Brassica crops. Full article
Show Figures

Figure 1

18 pages, 3989 KiB  
Article
Morphological Analysis, Bud Differentiation, and Regulation of “Bud Jumping” Phenomenon in Oncidium Using Plant Growth Regulators
by Hanqiao Lan, Le Liu, Weishi Li, Daicheng Hao, Shanzhi Lin, Beilei Ye, Minqiang Tang and Peng Ling
Horticulturae 2025, 11(7), 852; https://doi.org/10.3390/horticulturae11070852 - 18 Jul 2025
Viewed by 369
Abstract
Oncidium has an important market value, with important high-grade cut orchids and potted flowers on the flower market. In the Oncidium cut flowers production industry, there is a common phenomenon that the development of vegetative buds disrupts the normal generation cycle of the [...] Read more.
Oncidium has an important market value, with important high-grade cut orchids and potted flowers on the flower market. In the Oncidium cut flowers production industry, there is a common phenomenon that the development of vegetative buds disrupts the normal generation cycle of the inflorescence induction, so-called “bud jumping”. In this study, vegetative bud differentiation and flower bud differentiation were divided into three stages, namely, the initial stage of differentiation, the leaf primordial/flower primordial differentiation stage, and the late stage of leaf bud/flower bud differentiation, as observed by paraffin sectioning. Secondly, we analyzed the differences between the vegetative buds of “bud jumping” plants and the flower buds of normal flowering plants by transcriptome sequencing. The transcriptome analysis results revealed significant differences among plant signaling pathways, particularly in gibberellins, auxins, and cytokinins, which play important roles in this phenomenon’s formation. In conjunction with the transcriptome analysis, the researchers conducted field experiments by applying plant growth regulators on the newborn pseudobulb of young Oncidium plants measuring approximately 49 mm in length. The results showed that the treatment groups of 100 mg/L of gibberellic acid (GA3) and 100 mg/L GA3 + 10 mg/L 6-Benziladenine (6-BA) exhibited the highest rate of flower bud differentiation instead of the least “bud jumping” phenomenon, and the “bud jumping” phenomenon was significantly reduced under 25 mg/L, 50 mg/L, and 75 mg/L 3-indoleacetic acid (IAA) treatments. The application of exogenous gibberellins, cytokinins, and auxins can effectively reduce the occurrence of “bud jumping”. Full article
Show Figures

Figure 1

34 pages, 2259 KiB  
Review
Unveiling the Molecular Mechanism of Azospirillum in Plant Growth Promotion
by Bikash Ranjan Giri, Sourav Chattaraj, Subhashree Rath, Mousumi Madhusmita Pattnaik, Debasis Mitra and Hrudayanath Thatoi
Bacteria 2025, 4(3), 36; https://doi.org/10.3390/bacteria4030036 - 18 Jul 2025
Viewed by 290
Abstract
Azospirillum is a well-studied genus of plant growth-promoting rhizobacteria (PGPR) and one of the most extensively researched diazotrophs. This genus can colonize rhizosphere soil and enhance plant growth and productivity by supplying essential nutrients to the host. Azospirillum–plant interactions involve multiple mechanisms, [...] Read more.
Azospirillum is a well-studied genus of plant growth-promoting rhizobacteria (PGPR) and one of the most extensively researched diazotrophs. This genus can colonize rhizosphere soil and enhance plant growth and productivity by supplying essential nutrients to the host. Azospirillum–plant interactions involve multiple mechanisms, including nitrogen fixation, the production of phytohormones (auxins, cytokinins, indole acetic acid (IAA), and gibberellins), plant growth regulators, siderophore production, phosphate solubilization, and the synthesis of various bioactive molecules, such as flavonoids, hydrogen cyanide (HCN), and catalase. Thus, Azospirillum is involved in plant growth and development. The genus Azospirillum also enhances membrane activity by modifying the composition of membrane phospholipids and fatty acids, thereby ensuring membrane fluidity under water deficiency. It promotes the development of adventitious root systems, increases mineral and water uptake, mitigates environmental stressors (both biotic and abiotic), and exhibits antipathogenic activity. Biological nitrogen fixation (BNF) is the primary mechanism of Azospirillum, which is governed by structural nif genes present in all diazotrophic species. Globally, Azospirillum spp. are widely used as inoculants for commercial crop production. It is considered a non-pathogenic bacterium that can be utilized as a biofertilizer for a variety of crops, particularly cereals and grasses such as rice and wheat, which are economically significant for agriculture. Furthermore, Azospirillum spp. influence gene expression pathways in plants, enhancing their resistance to biotic and abiotic stressors. Advances in genomics and transcriptomics have provided new insights into plant-microbe interactions. This review explored the molecular mechanisms underlying the role of Azospirillum spp. in plant growth. Additionally, BNF phytohormone synthesis, root architecture modification for nutrient uptake and stress tolerance, and immobilization for enhanced crop production are also important. A deeper understanding of the molecular basis of Azospirillum in biofertilizer and biostimulant development, as well as genetically engineered and immobilized strains for improved phosphate solubilization and nitrogen fixation, will contribute to sustainable agricultural practices and help to meet global food security demands. Full article
Show Figures

Figure 1

15 pages, 1491 KiB  
Article
Impact of Plant Developmental Stage on Photosynthetic Acclimation to Elevated [CO2] in Durum Wheat
by Fernando Torralbo, Sergi Munné-Bosch, Carmen González-Murua and Iker Aranjuelo
Plants 2025, 14(14), 2224; https://doi.org/10.3390/plants14142224 - 18 Jul 2025
Viewed by 294
Abstract
The response of plants to elevated atmospheric [CO2] is highly dynamic and influenced by developmental stage, yet its role in photosynthetic acclimation remains underexplored. This study examines the physiological and molecular responses of wheat (Triticum durum, var. Amilcar) to [...] Read more.
The response of plants to elevated atmospheric [CO2] is highly dynamic and influenced by developmental stage, yet its role in photosynthetic acclimation remains underexplored. This study examines the physiological and molecular responses of wheat (Triticum durum, var. Amilcar) to elevated [CO2] (700 ppm vs. 400 ppm) at two distinct developmental stages: the vegetative stage at the end of the elongation stage and the reproductive stage at the beginning of ear emergence (Z39 and Z51, respectively). Wheat plants at the developmental stage Z39, cultivated under elevated [CO2], maintained photosynthetic rates despite a carbohydrate build-up. However, at Z51, photosynthetic acclimation became more evident as the decline in Rubisco carboxylation capacity (Vcmax) persisted, but also stomatal conductance and diffusion were decreased. This was accompanied by the up-regulation of the CA1 and CA2 genes, likely as a compensatory mechanism to maintain CO2 supply. Additionally, hormonal adjustments under elevated [CO2], including increased auxin and bioactive cytokinins (zeatin and isopentenyl adenine), may have contributed to delayed senescence and nitrogen remobilization, sustaining carbon assimilation despite biochemical constraints. These findings highlight the developmental regulation of photosynthetic acclimation, emphasizing the need for the stage-specific assessments of crop responses to future atmospheric conditions. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

24 pages, 3120 KiB  
Article
Asymbiotic Seed Germination and In Vitro Propagation of the Thai Rare Orchid Species; Eulophia bicallosa (D.Don) P.F.Hunt & Summerh.
by Thanakorn Wongsa, Jittra Piapukiew, Kanlaya Kuenkaew, Chatchaya Somsanook, Onrut Sapatee, Julaluk Linjikao, Boworn Kunakhonnuruk and Anupan Kongbangkerd
Plants 2025, 14(14), 2212; https://doi.org/10.3390/plants14142212 - 17 Jul 2025
Viewed by 342
Abstract
An efficient in vitro propagation protocol for Eulophia bicallosa was developed using asymbiotic seed germination and protocorm proliferation. The effect of light on seed germination and development was evaluated on Vacin and Went (VW) medium under five conditions: darkness, white, green, red, and [...] Read more.
An efficient in vitro propagation protocol for Eulophia bicallosa was developed using asymbiotic seed germination and protocorm proliferation. The effect of light on seed germination and development was evaluated on Vacin and Went (VW) medium under five conditions: darkness, white, green, red, and blue light for 24 weeks. Blue and red light significantly accelerated seed development, allowing progression to stage 5 within 24 weeks. For protocorm proliferation, six semi-solid culture media were tested. Half-strength Murashige and Skoog (½MS) medium yielded the best results after 8 weeks, producing the highest numbers of shoots (1.0), leaves (1.1), and roots (4.2) per protocorm, with 100% survival. The effects of organic additives were also evaluated using coconut water and potato extract. A combination of 200 mL L−1 coconut water and 50 g L−1 potato extract enhanced shoot formation (1.7 shoots), while 150 mL L−1 coconut water with 50 g L−1 potato extract increased both leaf (1.9) and root (8.8) numbers. The effects of cytokinins (benzyladenine (BA), kinetin (6-furfurylaminopurine), and thidiazuron (TDZ)) and auxins (indole-3-acetic acid (IAA), α-naphthalene acetic acid (NAA), indole-3-butyric acid (IBA), and 2,4-dichlorophenoxyacetic acid (2,4-D)) were investigated using ½MS medium supplemented with each plant growth regulator individually at concentrations of 0, 0.1, 0.5, 1.0, and 2.0 mg L−1. Among the cytokinins, 0.1 mg L−1 BA produced the highest survival rate (96%), while 1.0 mg L−1 BA induced the greatest shoot formation (93%, 2.3 shoots). Among the auxins, 0.1 mg L−1 IAA resulted in the highest survival (96%), and 1.0 mg L−1 IAA significantly enhanced root induction (4.2 roots per protocorm). Acclimatization in pots containing a 1:1:1 (v/v) mixture of pumice, sand, and soil resulted in 100% survival. This protocol provides a reliable and effective approach for the mass propagation and ex situ conservation of E. bicallosa. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

18 pages, 2348 KiB  
Article
Glucomannan Accumulation Induced by Exogenous Lanthanum in Amorphophallus konjac: Insights from a Comparative Transcriptome Analysis
by Xiaoxian Li, Zhouting Zeng, Siyi Zhu, Xirui Yang, Xiaobo Xuan and Zhenming Yu
Biology 2025, 14(7), 849; https://doi.org/10.3390/biology14070849 - 11 Jul 2025
Viewed by 308
Abstract
Konjac glucomannan (KGM), derived from Amorphophallus konjac, is increasingly utilized in food and pharmaceutical applications. However, inconsistent KGM production across cultivars jeopardizes its quality and market viability. Lanthanum (La) has been shown to promote KGM levels, but the underlying mechanism remains unclear. [...] Read more.
Konjac glucomannan (KGM), derived from Amorphophallus konjac, is increasingly utilized in food and pharmaceutical applications. However, inconsistent KGM production across cultivars jeopardizes its quality and market viability. Lanthanum (La) has been shown to promote KGM levels, but the underlying mechanism remains unclear. In this study, 20~80 mg L−1 La significantly stimulated KGM accumulation compared with the control group. We performed a transcriptome analysis and found 21,047 differentially expressed genes (DEGs), predominantly enriched in carbohydrate and glycan metabolism pathways. A total of 48 DEGs were linked to KGM biosynthesis, with 20 genes (SuSy, INV1/3/5/6, HK1/2, FPK2, GPI3, PGM3, UGP2, GMPP1/4, CslA3~7, CslH2, and MSR1.2) showing significant positive correlations with KGM content. Interestingly, three key terminal pathway genes (UGP1, UGP3, and CslD3) exhibited strong upregulation (log2 fold change > 3). Seven DEGs were validated with qRT-PCR, aligning with the transcriptomic results. Furthermore, 12 hormone-responsive DEGs, including 4 ethylene-related genes (CTR1, EBF1/2, EIN3, and MPK6), 6 auxin-related genes (AUX/IAA1-3, SAUR1-2, and TIR1), and 2 gibberellin-related genes (DELLA1-2), were closely linked to KGM levels. Additionally, the transcription factors bHLH and AP2/ERF showed to be closely related to the biosynthesis of KGM. These results lay the foundation for a model wherein La (Ш) modulates KGM accumulation by coordinately regulating biosynthetic and hormonal pathways via specific transcription factors. Full article
Show Figures

Figure 1

15 pages, 1490 KiB  
Article
Comparative Transcriptome and Hormonal Analysis Reveals the Mechanisms of Salt Tolerance in Rice
by Dingsha Jin, Yanchao Xu, Asif Iqbal, Yuqing Liu, Yage Zhang, Youzhen Lin, Liqiong Tang, Xinhua Wang, Junjie Wang, Mengshu Huang, Peng Xu and Xiaoning Wang
Int. J. Mol. Sci. 2025, 26(14), 6660; https://doi.org/10.3390/ijms26146660 - 11 Jul 2025
Viewed by 217
Abstract
Salt stress is a major constraint to seed germination and early seedling growth in rice, affecting crop establishment and productivity. To understand the mechanisms underlying salt tolerance, we investigated two rice varieties with contrasting responses as follows: salt-tolerant sea rice 86 (SR86) and [...] Read more.
Salt stress is a major constraint to seed germination and early seedling growth in rice, affecting crop establishment and productivity. To understand the mechanisms underlying salt tolerance, we investigated two rice varieties with contrasting responses as follows: salt-tolerant sea rice 86 (SR86) and salt-sensitive P559. Germination assays under increasing NaCl concentrations (50–300 mM) revealed that 100 mM NaCl induced clear phenotypic divergence. SR86 maintained bud growth and showed enhanced root elongation under moderate salinity, while P559 exhibited significant growth inhibition. Transcriptomic profiling of buds and roots under 100 mM NaCl identified over 3724 differentially expressed genes (DEGs), with SR86 showing greater transcriptional plasticity, particularly in roots. Gene ontology enrichment revealed tissue- and genotype-specific responses. Buds showed enrichment in photosynthesis-related and redox-regulating pathways, while roots emphasized ion transport, hormonal signaling, and oxidative stress regulation. SR86 specifically activated genes related to photosystem function, DNA repair, and transmembrane ion transport, while P559 showed activation of oxidative stress-related and abscisic acid (ABA)-regulated pathways. Hormonal profiling supported transcriptomic findings as follows: both varieties showed increased gibberellin 3 (GA3) and gibberellin 4 (GA4) levels under salt stress. SR86 showed elevated auxin (IAA) and reduced jasmonic acid (JA), whereas P559 maintained stable IAA and JA levels. Ethylene precursor and salicylic acid levels declined in both varieties. ABA levels rose slightly but not significantly. These findings suggest that SR86’s superior salt tolerance results from rapid growth, robust transcriptional reprogramming, and coordinated hormonal responses. This study offers key insights into early-stage salt stress adaptation and identifies molecular targets for improving stress resilience in rice. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

21 pages, 6356 KiB  
Article
A Rare Frameshift Mutation of in CmACS7 Alters Ethylene Biosynthesis and Determines Fruit Morphology in Melon (Cucumis melo L.)
by Jiyang Zhou, Xiaobing Ma, Qianqian Deng, Zhicong Zhong, Xuefei Ning, Li Zhong, Xianliang Zhang and Xianlei Wang
Plants 2025, 14(14), 2087; https://doi.org/10.3390/plants14142087 - 8 Jul 2025
Viewed by 320
Abstract
Fruit shape diversity in melon is governed by complex genetic networks, with ethylene biosynthesis playing a pivotal yet poorly characterized role. In this study, we identified a rare CmACS7A57V/frameshift double mutant through fine mapping of the fsq2 locus. Ethylene-mediated ovary growth regulation [...] Read more.
Fruit shape diversity in melon is governed by complex genetic networks, with ethylene biosynthesis playing a pivotal yet poorly characterized role. In this study, we identified a rare CmACS7A57V/frameshift double mutant through fine mapping of the fsq2 locus. Ethylene-mediated ovary growth regulation has been completely lost in the CmACS7A57V/frameshift double mutant, driving a transition from elongated to spherical fruit. Transcriptome analysis was performed to clarify the core role of CmACS7 in the ethylene signaling pathway. The loss of CmACS7 function regulates key genes in the ethylene responsive factor, cytokinin signaling pathway, and auxin-related genes, resulting in an imbalance in hormone levels. This imbalance directly affects the coordination of cell proliferation and expansion and ultimately determines the fruit morphology. A genetic diversity analysis of public melon germplasm resources indicated that while the CmACS7A57V/frameshift mutation accounts for only 0.5% of the germplasm, it is strongly correlated with the round fruit phenotype and is important for breeding in Xinjiang. The results of this study suggest that CmACS7A57V/frameshift could be used as a molecular marker to accelerate the breeding of melon varieties with excellent fruit morphology and, at the same time, reveal the coevolutionary significance of this gene in the domestication of Cucurbitaceae crops. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

Back to TopTop