Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,561)

Search Parameters:
Keywords = autophagy activators

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5197 KB  
Article
The Role of Peroxisomes in the Stress Tolerance of the Methylotrophic Yeast Ogataea polymorpha at the Transition into Anhydrobiosis
by Edgars Dauss, Andriy Sibirny and Alexander Rapoport
Fermentation 2026, 12(2), 76; https://doi.org/10.3390/fermentation12020076 (registering DOI) - 1 Feb 2026
Abstract
Peroxisomes are dynamic organelles involved in multiple metabolic pathways that respond to cellular and environmental conditions. Yeasts are a useful model for peroxisome studies, as their growth in media containing peroxisome proliferators, such as methanol, induces peroxisome biogenesis. We analyzed Ogataea polymorpha strains [...] Read more.
Peroxisomes are dynamic organelles involved in multiple metabolic pathways that respond to cellular and environmental conditions. Yeasts are a useful model for peroxisome studies, as their growth in media containing peroxisome proliferators, such as methanol, induces peroxisome biogenesis. We analyzed Ogataea polymorpha strains defective in peroxisome biogenesis (pex3Δ) or peroxisomal matrix protein import (pex6Δ). The mutant strains differed in their ability to survive dehydration and rehydration after incubation in peroxisome-inducing conditions, but these differences were not related to resistance to oxidative, hyperosmotic, or heat stress. These results indicate that peroxisomes support efficient entry into anhydrobiosis and subsequent recovery through a mechanism that is independent of general stress tolerance. We hypothesized that this effect is mediated by autophagic processes required for the removal of damaged organelles during desiccation. To test this hypothesis, we compared cells with basal peroxisome levels to cells with increased peroxisome numbers following the induction of peroxisome division. Autophagy was inhibited indirectly by disrupting vacuolar acidification with ammonium chloride. This strategy enabled us to explore how the peroxisome abundance and autophagic activity affect the ability of cells to enter anhydrobiosis and survive recovery. Full article
(This article belongs to the Section Yeast)
Show Figures

Figure 1

26 pages, 1092 KB  
Review
Anti-Leukemic Properties of Curcumin on Acute Lymphoblastic Leukemia: A Systematic Review
by Teck Chee Soh, Ying Hui Tan, Pen Han Heng, Faizatul Isyraqiah, Rakesh Naidu and Kok-Lun Pang
Biology 2026, 15(3), 258; https://doi.org/10.3390/biology15030258 - 30 Jan 2026
Viewed by 76
Abstract
Background: Acute lymphoblastic leukemia (ALL) is a hematological malignancy characterised by uncontrolled proliferation of lymphoid cells. Despite improved outcomes with modern chemotherapy, treatment resistance and adverse effects remain major clinical challenges. Curcumin, a natural compound from Curcuma longa, has shown anticancer potential [...] Read more.
Background: Acute lymphoblastic leukemia (ALL) is a hematological malignancy characterised by uncontrolled proliferation of lymphoid cells. Despite improved outcomes with modern chemotherapy, treatment resistance and adverse effects remain major clinical challenges. Curcumin, a natural compound from Curcuma longa, has shown anticancer potential in multiple malignancies, including leukemia. This systematic review aims to summarise preclinical and clinical evidence on the anti-leukemic effects and mechanisms of action of curcumin in ALL. Methods: A literature search was conducted in August 2025 across PubMed, Scopus, Ovid MEDLINE, and Web of Science according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 guidelines. Primary research involving in vitro, in vivo, and human studies examining curcumin’s anti-leukemic effects on ALL were included. Of the 2034 records screened, 26 articles met the inclusion and exclusion criteria. Results: Curcumin inhibited proliferation and induced cytotoxicity and apoptosis in ALL cells via reactive oxygen species generation, DNA damage, mitochondrial dysfunction, and caspase activation. It also inhibited the Janus kinase/signal transducer and activator of transcription (JAK/STAT) and phosphoinositol-3 kinase/protein kinase B (PI3K/AKT) signalling, downregulated breakpoint cluster region-Abelson (BCR-ABL), Wilms tumor 1 (WT1), and Multidrug resistance 1 (MDR1) mRNAs, and induced ceramide accumulation and autophagy. In vivo evidence was limited, and no human studies were identified. Conclusions: Curcumin exerts multi-targeted anti-leukemic effects in ALL. Clinical translation is constrained by its poor bioavailability and limited clinical data. Future research should focus on improving the bioavailability of curcumin via chemical or pharmaceutical modification, as well as conducting well-designed clinical trials. Full article
(This article belongs to the Special Issue Plant Natural Products: Mechanisms of Action for Promoting Health)
23 pages, 10262 KB  
Article
Epicatechin Gallate Ameliorates UVB-Induced Photoaging by Inhibiting p38α-Mediated Autophagy and Oxidative Stress
by Danni Yang, Ru Sun, Yulin Cui, Yuqi Li, Huixin Hou, Kouharu Otsuki, Wei Li, Jian Xu, Peipei Zhang and Jie Zhang
Antioxidants 2026, 15(2), 180; https://doi.org/10.3390/antiox15020180 - 30 Jan 2026
Viewed by 81
Abstract
Prolonged exposure to ultraviolet (UV) radiation in sunlight is a major extrinsic factor that impairs skin function and accelerates photoaging. In this study, a murine model of ultraviolet B (UVB)-induced photoaging exhibited characteristic symptoms, including skin roughness, erythema, hyperpigmentation, and increased wrinkle formation. [...] Read more.
Prolonged exposure to ultraviolet (UV) radiation in sunlight is a major extrinsic factor that impairs skin function and accelerates photoaging. In this study, a murine model of ultraviolet B (UVB)-induced photoaging exhibited characteristic symptoms, including skin roughness, erythema, hyperpigmentation, and increased wrinkle formation. Epicatechin gallate (ECG), a natural flavonoid, has demonstrated potential skin-protective properties. However, its specific effects and mechanisms against UVB-induced photoaging are not fully understood. Here, we investigated the protective role and underlying mechanism of ECG against UVB-induced damage in human epidermal keratinocytes (HaCaT cells). Using network pharmacology, p38 mitogen-activated protein kinase (p38 MAPK), specifically the p38α isoform, was identified as a key potential target of ECG. Our experimental results confirmed that ECG significantly attenuated UVB-induced photoaging. Mechanistically, ECG treatment effectively suppressed UVB-triggered phosphorylation of p38α, promoted autophagic flux (as evidenced by increased LC3B conversion and decreased p62 levels), and substantially reduced intracellular reactive oxygen species (ROS) accumulation. Consequently, ECG mitigated mitochondrial dysfunction, restored normal cell cycle progression, and decreased the expression of senescence-associated markers (p53, p16, p21) and inflammatory cytokines (IL6, TNF-α). In summary, our findings demonstrate that ECG protects against UVB-induced photoaging primarily by inhibiting p38α activation, thereby enhancing autophagy and alleviating oxidative stress. This study positions ECG as a promising therapeutic candidate for preventing and treating skin photoaging. Full article
(This article belongs to the Special Issue Radioprotective Effects of Antioxidants)
34 pages, 21239 KB  
Article
Antipsychotic Drug Cariprazine Induces Distinct Cell Death Mechanisms in HeLa and HCT116 Cells as a Potential Inhibitor of Qi-Site of Cytochrome bc1 Reductase
by Marina Mitrovic, Bojana Simovic Markovic, Gvozden Rosic, Marija Ristic, Nemanja Jovicic, Vladimir Jurisic, Jovan Milosavljevic, Sanja Matic, Biljana Ljujic and Dragica Selakovic
Biomedicines 2026, 14(2), 315; https://doi.org/10.3390/biomedicines14020315 - 30 Jan 2026
Viewed by 95
Abstract
Background/Objectives: Cariprazine (CAR), an atypical antipsychotic drug, exhibits potent anticancer activity; however, its mechanism of action remains unclear. Methods: We conducted a comparison of CAR-induced cell death mechanism in HeLa and HCT116 cancer cells and explored its potential role as a [...] Read more.
Background/Objectives: Cariprazine (CAR), an atypical antipsychotic drug, exhibits potent anticancer activity; however, its mechanism of action remains unclear. Methods: We conducted a comparison of CAR-induced cell death mechanism in HeLa and HCT116 cancer cells and explored its potential role as a Qi-site inhibitor of cytochrome bc1 reductase (complex III). Results: CAR induced a dose-dependent cytotoxic effect and triggered apoptosis in both cell lines; however, the mitochondrial responses were distinctively different. HeLa cells exhibited significant mitochondrial membrane depolarization, significant cytochrome c release, a strong increase in the Bax/Bcl-2 ratio, elevated caspase-3 activation, and notable S phase arrest along with autophagy induction, indicating that mitochondria-driven apoptosis occurred rapidly. In contrast, HCT116 cells showed moderate mitochondrial dysfunction, moderate cytochrome c release, enhanced suppression of Akt signaling, and significant G0/G1 phase arrest, which are consistent with a slower and mixed apoptotic response. The findings from molecular docking studies predicted that CAR had stable binding at the Qi site and showed interactions at the Qi site that were comparable to those of antimycin A, thereby suggesting its possible inhibitory effect on complex III. Conclusions: The results from our study indicate the engagement of CAR-activated apoptotic pathways that are specific to different types of cancer cells, and hence suggest that CAR may act as a new anticancer drug by potentially directing its action towards the mitochondrial Qi-sites of complex III. Full article
Show Figures

Figure 1

15 pages, 5280 KB  
Article
Adipose Tissue-Derived Exosome and miR-142a-3p Alleviate Acute Lung Injury by Inhibiting HMGB1-Driven Autophagy
by Qianlin Long, Kejie Chen, Yizhu Li, Ruinan Peng, Yijian Yan, Jintao Ma, Jia Wang, Qiuyu Song, Yu Xue and Fengyuan Wang
Cells 2026, 15(3), 264; https://doi.org/10.3390/cells15030264 - 30 Jan 2026
Viewed by 208
Abstract
Acute lung injury (ALI) is a clinically severe respiratory disorder, of which autophagy is the crucial mechanism. Exosomes have the potential to treat ALI, but the role of adipose-derived exosomes (ADEs) in the autophagy of ALI remains unclear. Using an LPS-induced ALI model, [...] Read more.
Acute lung injury (ALI) is a clinically severe respiratory disorder, of which autophagy is the crucial mechanism. Exosomes have the potential to treat ALI, but the role of adipose-derived exosomes (ADEs) in the autophagy of ALI remains unclear. Using an LPS-induced ALI model, the effects of ADE isolated from a lean or diet-induced-obese (DIO) mouse and ADE-carried miRNAs were investigated. After administration of ADEs, the levels of autophagy-related molecules were determined by qRT-PCR, Western blotting, and immunohistochemical staining. Then, a miRNA targeting HMGB1 was screened by bioinformatic analysis and a dual-luciferase reporter assay, and its effect on the HMGB1-driven autophagy in an ALI mouse was investigated as ADEs. The data showed that LPS caused lung injury and activated HMGB1-driven autophagy. The ADEs from a lean mouse or DIO mouse significantly alleviated histopathological lesions, and they inhibited HMGB1-driven autophagy by down-regulating LC3, Beclin-1, and Atg5; the effects of ADEs were not significantly different between a lean and DIO mouse. Of the miRNAs carried by ADE, moreover, miR-142a-3p could specifically bind to HMGB1 mRNA, and up-regulation of pulmonary miR-142a-3p suppressed HMGB1-driven autophagy and relieved lung injuries. Our results indicated that miR-142a-3p and ADEs mitigate LPS-induced ALI by inhibiting HMGB1-driven autophagy, providing new insights on the prevention and treatment of ALI. Full article
Show Figures

Figure 1

31 pages, 3338 KB  
Review
Natural Neurobiological Active Compounds in Parkinson’s Disease: Molecular Targets, Signaling Pathways, and Therapeutic Prospects
by Xue Wu, Linao Zhang, Shifang Luo, Qing Li, Jiying Wang, Wentao Chen, Na Zhou, Lingli Zhou, Rongyu Li, Yuhuan Xie, Qinghua Chen and Peixin Guo
Int. J. Mol. Sci. 2026, 27(3), 1301; https://doi.org/10.3390/ijms27031301 - 28 Jan 2026
Viewed by 90
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative condition with a multifactorial etiology, characterized by dopaminergic neurons being selectively absent in the midbrain. Clinically, PD manifests primarily with core motor symptoms of resting tremor, bradykinesia, and muscle rigidity, and is often accompanied by non-motor [...] Read more.
Parkinson’s disease (PD) is a progressive neurodegenerative condition with a multifactorial etiology, characterized by dopaminergic neurons being selectively absent in the midbrain. Clinically, PD manifests primarily with core motor symptoms of resting tremor, bradykinesia, and muscle rigidity, and is often accompanied by non-motor symptoms including depression, cognitive impairment, and gastrointestinal dysfunction. Among the extensive relevant research, few have explored the precise pathogenic mechanisms underlying PD, and no curative treatment is available. Current pharmacological therapies mainly provide symptomatic relief by enhancing central dopaminergic function or modulating cholinergic activity; however, their long-term efficacy is frequently constrained by waning therapeutic response, drug tolerance, and adverse reactions. Accumulating evidence suggests that several naturally derived neuroactive compounds—such as gastrodin, uncarin, and paeoniflorin—demonstrate significant potential in combating PD. In this systematic review, we examined original research articles published from 2010 to 2025, retrieved from PubMed, Web of Science, and CNKI databases, using predefined keywords of Parkinson’s disease, neuroprotective herbal compounds, traditional medicine, multi-target mechanisms, natural product, autophagy, neuroinflammation, and oxidative stress. Studies were included if they specifically investigated the mechanistic actions of natural compounds in PD models. Conference abstracts, review articles, publications not in English or Chinese, and studies lacking clearly defined mechanisms were excluded. Analysis of the available literature reveals that natural neuroactive compounds may exert anti-PD effects through multiple mechanisms, e.g., inhibiting pathological α-synuclein aggregation, attenuating neuronal apoptosis, suppressing neuroinflammation, mitigating oxidative stress, and restoring mitochondrial dysfunction. This review provides insights that may inform the clinical application of natural bioactive compounds and guide their further development as potential therapeutic candidates against PD. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

21 pages, 1061 KB  
Review
Targeting the Gut in Sepsis: Therapeutic Potential of Medical Gases
by Tetsuya Yumoto, Takafumi Obara, Hiromichi Naito and Atsunori Nakao
Biomolecules 2026, 16(2), 199; https://doi.org/10.3390/biom16020199 - 28 Jan 2026
Viewed by 247
Abstract
Sepsis is a life-threatening condition characterized by a dysregulated host response to infection, often resulting in multiorgan dysfunction. Among affected systems, the gastrointestinal tract plays a central role in sepsis progression by promoting systemic inflammation through impaired barrier function, immune imbalance, and microbiome [...] Read more.
Sepsis is a life-threatening condition characterized by a dysregulated host response to infection, often resulting in multiorgan dysfunction. Among affected systems, the gastrointestinal tract plays a central role in sepsis progression by promoting systemic inflammation through impaired barrier function, immune imbalance, and microbiome alterations. Recent research has identified selected medical gases and gasotransmitters as promising therapeutic candidates for preserving gut integrity in sepsis. In particular, hydrogen, carbon monoxide, and hydrogen sulfide exhibit antioxidative, anti-inflammatory, and cytoprotective properties. These gases act through defined molecular pathways, including activation of Nrf2, inhibition of NF-κB, and preservation of tight junction integrity, thereby supporting intestinal barrier function. In addition, they influence immune cell phenotypes and autophagy, with indirect effects on the gut microbiome. Although most supporting evidence derives from preclinical models, translational findings and emerging safety data highlight the potential of gut-targeted gas-based strategies. This review summarizes current mechanistic and translational evidence for gut-protective medical gases in sepsis and discusses their integration into future organ-specific and mechanism-based therapeutic approaches. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

32 pages, 2327 KB  
Review
Clinical Presentation, Genetics, and Laboratory Testing with Integrated Genetic Analysis of Molecular Mechanisms in Prader–Willi and Angelman Syndromes: A Review
by Merlin G. Butler
Int. J. Mol. Sci. 2026, 27(3), 1270; https://doi.org/10.3390/ijms27031270 - 27 Jan 2026
Viewed by 117
Abstract
Prader–Willi (PWS) and Angelman (AS) syndromes were the first examples in humans with errors in genomic imprinting, usually from de novo 15q11-q13 deletions of different parent origin (paternal in PWS and maternal in AS). Dozens of genes and transcripts are found in the [...] Read more.
Prader–Willi (PWS) and Angelman (AS) syndromes were the first examples in humans with errors in genomic imprinting, usually from de novo 15q11-q13 deletions of different parent origin (paternal in PWS and maternal in AS). Dozens of genes and transcripts are found in the 15q11-q13 region, and may play a role in PWS, specifically paternally expressed SNURF-SNRPN and MAGEL2 genes, while AS is due to the maternally expressed UBE3A gene. These three causative genes, including their encoding proteins, were targeted. This review article summarizes and illustrates the current understanding and cause of both PWS and AS using strategies to include the literature sources of key words and searchable web-based programs with databases for integrated gene and protein interactions, biological processes, and molecular mechanisms available for the two imprinting disorders. The SNURF-SNRPN gene is key in developing complex spliceosomal snRNP assemblies required for mRNA processing, cellular events, splicing, and binding required for detailed protein production and variation, neurodevelopment, immunodeficiency, and cell migration. The MAGEL2 gene is involved with the regulation of retrograde transport and promotion of endosomal assembly, oxytocin and reproduction, as well as circadian rhythm, transcriptional activity control, and appetite. The UBE3A gene encodes a key enzyme for the ubiquitin protein degradation system, apoptosis, tumor suppression, cell adhesion, and targeting proteins for degradation, autophagy, signaling pathways, and circadian rhythm. PWS is characterized early with infantile hypotonia, a poor suck, and failure to thrive with hypogenitalism/hypogonadism. Later, growth and other hormone deficiencies, developmental delays, and behavioral problems are noted with hyperphagia and morbid obesity, if not externally controlled. AS is characterized by seizures, lack of speech, severe learning disabilities, inappropriate laughter, and ataxia. This review captures the clinical presentation, natural history, causes with genetics, mechanisms, and description of established laboratory testing for genetic confirmation of each disorder. Three separate searchable web-based programs and databases that included information from the updated literature and other sources were used to identify and examine integrated genetic findings with predicted gene and protein interactions, molecular mechanisms and functions, biological processes, pathways, and gene-disease associations for candidate or causative genes per disorder. The natural history, review of pathophysiology, clinical presentation, genetics, and genetic-phenotypic findings were described along with computational biology, molecular mechanisms, genetic testing approaches, and status for each disorder, management and treatment options, clinical trial experiences, and future strategies. Conclusions and limitations were discussed to improve understanding, clinical care, genetics, diagnostic protocols, therapeutic agents, and genetic counseling for those with these genomic imprinting disorders. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

26 pages, 10034 KB  
Article
α-Lipoic Acid Alleviates Non-Alcoholic Fatty Liver Disease by Elevating Chaperone-Mediated Autophagy and Increasing β-Oxidation via AMPK-TFEB Axis
by Keting Dong, Miao Zhang, Jiaojiao Xu, Xue Bai and Jianhong Yang
Nutrients 2026, 18(3), 402; https://doi.org/10.3390/nu18030402 - 26 Jan 2026
Viewed by 201
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver disorder associated with impaired lipid metabolism and oxidative stress. As a natural antioxidant and dithiol compound, α-lipoic acid (ALA) may play a beneficial role in modulating hepatic metabolism. This study investigates the [...] Read more.
Background: Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver disorder associated with impaired lipid metabolism and oxidative stress. As a natural antioxidant and dithiol compound, α-lipoic acid (ALA) may play a beneficial role in modulating hepatic metabolism. This study investigates the potential mechanisms through which ALA may alleviate NAFLD. Methods: To construct an NAFLD model, NCTC 1469 cells were exposed to oleic acid and palmitic acid (OA/PA) and glucose for 24 h. RT-qPCR, Western blotting, and siRNA analyses were used to examine the effects and mechanisms of ALA. In vivo, C57BL/6J mice were fed a high-fat diet for 11 weeks and treated with ALA (200 mg/kg/day, intragastrical) for 4 weeks to evaluate its impact on NAFLD. Results: In NCTC 1469 cells exposed to OA/PA and glucose, ALA markedly reduced lipid accumulation by activating TFEB, which in turn promoted fatty acid β-oxidation and chaperone-mediated autophagy (CMA). Furthermore, ALA activated NRF2-dependent CMA and mitigated oxidative stress. Inhibition of AMPK or silencing of TFEB/NRF2 abolished these effects, indicating the key role of the AMPK–TFEB/NRF2 axis. In HFD-fed mice, ALA alleviated hepatic steatosis, serum lipid abnormalities, and liver injury, consistent with its activation of CMA and β-oxidation and reduction in oxidative stress via this pathway. Conclusions: ALA synchronously activates CMA, β-oxidation, and antioxidant responses via a unified AMPK pathway to reduce lipid accumulation and oxidative stress, providing a mechanistically integrated therapeutic strategy for NAFLD. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

17 pages, 2403 KB  
Article
P-Hydroxybenzaldehyde from Gastrodia elata Blume Reduces Hydroxyurea-Induced Cellular Senescent Phenotypes in Human SH-SY5Y Cells via Enhancing Autophagy
by Shuhui Qu, Daijiao Tang, Lingxuan Fan, Yuan Dai, Hai-Jing Zhong, Wei Cai and Cheong-Meng Chong
Pharmaceuticals 2026, 19(2), 207; https://doi.org/10.3390/ph19020207 - 25 Jan 2026
Viewed by 132
Abstract
Background/Objectives: The rhizome of Gastrodia elata Blume (Tianma) is a functional food with medicinal value in China, used to improve the health of the central nervous system and reported to exhibit anti-cellular senescent activity. P-hydroxybenzaldehyde (P-HBA) is a key aromatic compound isolated [...] Read more.
Background/Objectives: The rhizome of Gastrodia elata Blume (Tianma) is a functional food with medicinal value in China, used to improve the health of the central nervous system and reported to exhibit anti-cellular senescent activity. P-hydroxybenzaldehyde (P-HBA) is a key aromatic compound isolated from Tianma; however, its potential to mitigate cellular senescence remains unclear. Methods: We employed ultra-performance liquid chromatography-mass spectrometry to identify the chemical characterization of Tianma extract. Cell viability assay, senescence-associated-β-galactosidase (SA-β-Gal) assay, and immunofluorescence staining and autophagy analysis were used to evaluate the anti-senescent activity of P-HBA and other Tianma components. Results: Our findings demonstrate that Tianma methanol extract (TME) and P-HBA significantly reduce cellular senescent inducer hydroxyurea (HU)-induced DNA damage, SA-β-Gal activity increase, and autophagic dysfunction in human SH-SY5Y cells. Notably, an autophagy inhibitor, chloroquine, can reduce anti-cellular senescent activity of P-HBA. Conclusions: These results suggest that P-HBA exhibits the effect of reducing cellular senescent phenotypes, and its effect is achieved by enhancing autophagy. Full article
Show Figures

Graphical abstract

33 pages, 1642 KB  
Review
Controlling Biogenesis and Engineering of Exosomes to Inhibit Growth and Promote Death in Glioblastoma Multiforme
by Srikar Alapati and Swapan K. Ray
Brain Sci. 2026, 16(2), 130; https://doi.org/10.3390/brainsci16020130 - 25 Jan 2026
Viewed by 131
Abstract
Glioblastoma multiforme (GBM) is characterized by aggressive growth, extensive vascularization, high metabolic malleability, and a striking capacity for therapy resistance. Current treatments involve surgical resection and concomitant radiation therapy and chemotherapy, prolonging survival times marginally due to the therapy resistance that is built [...] Read more.
Glioblastoma multiforme (GBM) is characterized by aggressive growth, extensive vascularization, high metabolic malleability, and a striking capacity for therapy resistance. Current treatments involve surgical resection and concomitant radiation therapy and chemotherapy, prolonging survival times marginally due to the therapy resistance that is built up by the tumor cells. A growing body of research has identified exosomes as critical enablers of therapy resistance. These nanoscale vesicles enable GBM cells to disseminate oncogenic proteins, nucleic acids, and lipids that collectively promote angiogenesis, maintain autophagy under metabolic pressure, and suppress apoptosis. As interest grows in targeting tumor communication networks, exosome-based therapeutic strategies have emerged as promising avenues for improving therapeutic outcomes in GBM. This review integrates current insights into two complementary therapeutic strategies: inhibiting exosome biogenesis and secretion, and engineering exosomes as precision vehicles for the delivery of anti-tumor molecular cargo. Key molecular regulators of exosome formation—including the endosomal sorting complex required for transport (ESCRT) machinery, tumor susceptibility gene 101 (TSG101) protein, ceramide-driven pathways, and Rab GTPases—govern the sorting and release of factors that enhance GBM survival. Targeting these pathways through pharmacological or genetic means has shown promise in suppressing angiogenic signaling, disrupting autophagic flux via modulation of autophagy-related gene (ATG) proteins, and sensitizing tumor cells to apoptosis by destabilizing mitochondria and associated survival networks. In parallel, advances in exosome engineering—encompassing siRNA loading, miRNA enrichment, and small-molecule drug packaging—offer new routes for delivering therapeutic agents across the blood–brain barrier with high cellular specificity. Engineered exosomes carrying anti-angiogenic, autophagy-inhibiting, or pro-apoptotic molecules can reprogram the tumor microenvironment and activate both the intrinsic mitochondrial and extrinsic ligand-mediated apoptotic pathways. Collectively, current evidence underscores the potential of strategically modulating endogenous exosome biogenesis and harnessing exogenous engineered therapeutic exosomes to interrupt the angiogenic and autophagic circuits that underpin therapy resistance, ultimately leading to the induction of apoptotic cell death in GBM. Full article
(This article belongs to the Section Molecular and Cellular Neuroscience)
15 pages, 4315 KB  
Review
Disulfiram and Its Derivatives: An Immortal Phoenix of Drug Repurposing
by Ziad Omran and Omeima Abdullah
Pharmaceuticals 2026, 19(2), 200; https://doi.org/10.3390/ph19020200 - 24 Jan 2026
Viewed by 325
Abstract
Disulfiram (DSF) is a well-established inhibitor of aldehyde dehydrogenases (ALDHs) and an FDA-approved drug for chronic alcoholism. DSF has gained attention as a versatile scaffold for drug repurposing. Its metabolite, diethyldithiocarbamate (DDTC), mediates multiple biological effects via metal chelation and covalent modification of [...] Read more.
Disulfiram (DSF) is a well-established inhibitor of aldehyde dehydrogenases (ALDHs) and an FDA-approved drug for chronic alcoholism. DSF has gained attention as a versatile scaffold for drug repurposing. Its metabolite, diethyldithiocarbamate (DDTC), mediates multiple biological effects via metal chelation and covalent modification of key cysteine residues. Beyond its established anticancer properties, DSF modulates cancer stem cells, reactive oxygen species, proteasome function, and drug-resistance pathways. It also shows promise in metabolic disorders, including type 2 diabetes and obesity, by targeting enzymes such as fructose-1,6-bisphosphatase and α-glucosidase, and influences energy expenditure and autophagy. DSF exhibits antimicrobial and antiparasitic activity, enhances antibiotic efficacy against multidrug-resistant bacteria, and demonstrates antischistosomal and anti-Trichomonas effects, while also providing radioprotective benefits. The clinical translation of DSF is limited by poor solubility, rapid metabolism, and off-target effects; consequently, the development of DSF analogs has become a major focus. Structural optimization has yielded derivatives with improved selectivity, stability, solubility, and target specificity, enabling precise modulation of key enzymes while reducing adverse effects. A key structure-based strategy involves introducing bulkier substituents to exploit differences in ALDH active-site architecture and achieve target selectivity. This concept is exemplified by compounds (1) and (2), in which bulky substituents confer selective inhibition of ALDH1A1 while sparing ALDH2. This review provides a comprehensive overview of DSF analogs, their molecular mechanisms, and therapeutic potential, highlighting their promise as multifunctional agents for cancer, metabolic disorders, infectious diseases, and radioprotection. Full article
(This article belongs to the Special Issue Sulfur-Containing Scaffolds in Medicinal Chemistry)
Show Figures

Figure 1

26 pages, 4922 KB  
Article
Anthocyanin-Rich Dark Sweet Cherry Phenolics Drive Context-Dependent Modulation of the Nrf2–Keap1–p62 Pathway in Drug-Resistant Triple Negative Breast Cancer Cells: An In Vitro Study
by Ana Nava-Ochoa, Rodrigo San-Cristobal, Susanne U. Mertens-Talcott and Giuliana D. Noratto
Nutrients 2026, 18(3), 384; https://doi.org/10.3390/nu18030384 - 24 Jan 2026
Viewed by 177
Abstract
Background/Objectives: Triple negative breast cancer (TNBC) is an aggressive subtype treated primarily with chemotherapy, which often leads to drug resistance (DR) and reduced effectiveness. Phytochemicals, including anthocyanins from dark sweet cherry (ACN), have emerged as potential adjuvants to overcome DR, though mechanisms remain [...] Read more.
Background/Objectives: Triple negative breast cancer (TNBC) is an aggressive subtype treated primarily with chemotherapy, which often leads to drug resistance (DR) and reduced effectiveness. Phytochemicals, including anthocyanins from dark sweet cherry (ACN), have emerged as potential adjuvants to overcome DR, though mechanisms remain unclear. This study examines ACN effects on canonical and non-canonical antioxidant pathways (Nrf2-Keap1 and p62) as a mechanism to overcome DR in 4T1 TNBC cells with acquired DR. Methods: Two conditions were tested: ACN with basal doxorubicin (DOX) as resistance-maintaining conditions and ACN with DOX at IC50 to induce oxidative stress (OS). Results: Under resistance-maintaining conditions, ACNs activated the canonical Nrf2-Keap1 pathway at high doses, which can potentially contribute to DR development due to its cellular protection effects. However, at a low dose, ACN did not trigger an antioxidant response linked to GST and GGT enzyme activities and instead impaired autophagy, increasing OS. Under OS, ACN activated the non-canonical antioxidant pathway mediated by p62 while deactivating Nrf2, leading to autophagy-induced cell death and further impairing autophagy at a low dose. Notably, inflammation persisted at both treatment levels without being relieved, keeping stress signaling active. At both conditions, ACN at doses likely attainable under physiological conditions effectively impaired autophagy and elevated OS, resulting in cell death. Conclusions: These results underscore the context-dependent dual function of polyphenols in cancer therapy, demonstrating their potential to enhance cellular sensitivity to chemotherapy and providing guidance for their strategic use as adjuvants in treating TNBC and overcoming DR. However, this study was limited to a single cell line derived from a murine model. Future research should include comparative studies using human TNBC cell lines to validate these findings and better assess their translational relevance. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

23 pages, 1948 KB  
Review
The DNA Methylation–Autophagy Axis: A Driver of MSC Fate Imbalance in Skeletal Aging and Osteoporosis
by Gaojie Song, Xingnuan Li, Jianjun Xiong and Lingling Cheng
Biology 2026, 15(3), 218; https://doi.org/10.3390/biology15030218 - 24 Jan 2026
Viewed by 324
Abstract
Age-related osteoporosis is driven in part by senescence-associated rewiring of bone marrow mesenchymal stem cells (MSCs) from osteogenic toward adipogenic fates. Accumulating evidence indicates that epigenetic drift and reduced autophagy are not isolated lesions but are mechanistically coupled through a bidirectional DNA methylation [...] Read more.
Age-related osteoporosis is driven in part by senescence-associated rewiring of bone marrow mesenchymal stem cells (MSCs) from osteogenic toward adipogenic fates. Accumulating evidence indicates that epigenetic drift and reduced autophagy are not isolated lesions but are mechanistically coupled through a bidirectional DNA methylation and autophagy axis. Here, we summarize how promoter hypermethylation of genes involved in autophagy and osteogenesis suppresses autophagic flux and osteoblast lineage transcriptional programs. Conversely, autophagy insufficiency reshapes the methylome by limiting methyl donor availability, most notably S-adenosylmethionine (SAM), and by reducing the turnover of key epigenetic regulators, including DNA methyltransferases (DNMTs), ten-eleven translocation (TET) dioxygenases, and histone deacetylases (HDACs). This self-reinforcing circuitry exacerbates mitochondrial dysfunction, oxidative stress, and inflammation driven by the senescence-associated secretory phenotype (SASP), thereby stabilizing adipogenic bias and progressively impairing marrow niche homeostasis and bone remodeling. We further discuss therapeutic strategies to restore balance within this axis, including selective modulation of epigenetic enzymes; activation of AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) signaling with downstream engagement of Unc-51-like autophagy-activating kinase 1 (ULK1) and transcription factor EB (TFEB); targeting sirtuin pathways; mitochondria- and autophagy-supportive natural compounds; and bone-targeted delivery approaches or rational combination regimens. Full article
Show Figures

Figure 1

19 pages, 1674 KB  
Review
Role of Nod-like Receptors in Helicobacter pylori Infection: Insights into Innate Immune Signaling Pathways
by Ah-Ra Jang, Yeong-Jun Kim, In-Su Seo, Wan-Gyu Kim, Sang-Eun Jung and Jong-Hwan Park
Microorganisms 2026, 14(2), 271; https://doi.org/10.3390/microorganisms14020271 - 23 Jan 2026
Viewed by 208
Abstract
Helicobacter pylori is a prevalent gastric pathogen that establishes chronic infection and contributes to gastritis, peptic ulcer disease, and gastric cancer. Its persistence depends on immune evasion strategies that promote sustained low-grade inflammation in the gastric mucosa. Nucleotide-binding oligomerization domain-like receptors (NLRs) are [...] Read more.
Helicobacter pylori is a prevalent gastric pathogen that establishes chronic infection and contributes to gastritis, peptic ulcer disease, and gastric cancer. Its persistence depends on immune evasion strategies that promote sustained low-grade inflammation in the gastric mucosa. Nucleotide-binding oligomerization domain-like receptors (NLRs) are cytosolic pattern recognition receptors that play key roles in innate immune responses against H. pylori. Nod1 and Nod2 detect bacterial peptidoglycan delivered via the type IV secretion system or outer membrane vesicles, activating NF-κB, MAPK, and interferon signaling pathways that regulate inflammatory cytokine production, epithelial barrier function, autophagy, and antimicrobial defense. The NLRP3 inflammasome mediates the maturation of IL-1β and IL-18 primarily in myeloid cells, thereby shaping inflammatory and immunoregulatory responses during infection. In contrast, NLRC4 functions in a context-dependent manner in epithelial cells and is largely dispensable for myeloid IL-1β production. Emerging evidence also implicates noncanonical NLRs, including NLRP6, NLRP9, NLRP12, NLRX1, and NLRC5, in regulating inflammation, epithelial homeostasis, and gastric tumorigenesis. In addition, genetic polymorphisms in NLR genes influence host susceptibility to H. pylori-associated diseases. This review highlights the interplay between NLR signaling, bacterial virulence, and host immunity and identifies potential therapeutic targets. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

Back to TopTop