Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,096)

Search Parameters:
Keywords = autonomous decision-making

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 852 KiB  
Article
Open Data to Promote the Economic and Commercial Development of the Housing Sector: The Case of Spain
by Ricardo Curto-Rodríguez, Rafael Marcos-Sánchez, Alicia Zaragoza-Benzal and Daniel Ferrández
Urban Sci. 2025, 9(7), 277; https://doi.org/10.3390/urbansci9070277 (registering DOI) - 17 Jul 2025
Abstract
Data is the starting point for generating information and knowledge in the decision-making process. Open data, which is information disclosed free of charge through open licenses and reusable formats, has great potential for value creation. Therefore, the objective of this research is to [...] Read more.
Data is the starting point for generating information and knowledge in the decision-making process. Open data, which is information disclosed free of charge through open licenses and reusable formats, has great potential for value creation. Therefore, the objective of this research is to evaluate Spanish autonomous communities’ open data initiatives in a category of information of vital importance: housing. The methodology employed was a population analysis of datasets labeled as housing, followed by a necessary data cleansing process due to the identification of various errors, which reduced the number of labeled datasets from 1000 to 599. Only 12 of the 17 autonomous communities provided this type of information. The analysis of the results reveals that autonomous communities’ approaches to open data initiatives are highly heterogeneous and that the supply is irregular, with the Basque Country accounting for 70% of the datasets considered in the research. The creation of an indicator that equally assesses the existence of information and file formats (breadth and reusability) continues to identify the Basque Country as the undisputed leader, with Catalonia and Cantabria in second and third place, the only autonomous communities to exceed 50 points out of a possible 100. The study concludes by highlighting that the lack of uniformity in the formulation and implementation of open data policies will limit the use of information and, consequently, its value. Therefore, a series of recommendations is issued in this regard. Full article
Show Figures

Figure 1

19 pages, 1196 KiB  
Article
The Effects of Landmark Salience on Drivers’ Spatial Cognition and Takeover Performance in Autonomous Driving Scenarios
by Xianyun Liu, Yongdong Zhou and Yunhong Zhang
Behav. Sci. 2025, 15(7), 966; https://doi.org/10.3390/bs15070966 (registering DOI) - 16 Jul 2025
Abstract
With the increasing prevalence of autonomous vehicles (AVs), drivers’ spatial cognition and takeover performance have become critical to traffic safety. This study investigates the effects of landmark salience—specifically visual and structural salience—on drivers’ spatial cognition and takeover behavior in autonomous driving scenarios. Two [...] Read more.
With the increasing prevalence of autonomous vehicles (AVs), drivers’ spatial cognition and takeover performance have become critical to traffic safety. This study investigates the effects of landmark salience—specifically visual and structural salience—on drivers’ spatial cognition and takeover behavior in autonomous driving scenarios. Two simulator-based experiments were conducted. Experiment 1 examined the impact of landmark salience on spatial cognition tasks, including route re-cruise, scene recognition, and sequence recognition. Experiment 2 assessed the effects of landmark salience on takeover performance. Results indicated that salient landmarks generally enhance spatial cognition; the effects of visual and structural salience differ in scope and function in autonomous driving scenarios. Landmarks with high visual salience not only improved drivers’ accuracy in making intersection decisions but also significantly reduced the time it took to react to a takeover. In contrast, structurally salient landmarks had a more pronounced effect on memory-based tasks, such as scene recognition and sequence recognition, but showed a limited influence on dynamic decision-making tasks like takeover response. These findings underscore the differentiated roles of visual and structural landmark features, highlighting the critical importance of visually salient landmarks in supporting both navigation and timely takeover during autonomous driving. The results provide practical insights for urban road design, advocating for the strategic placement of visually prominent landmarks at key decision points. This approach has the potential to enhance both navigational efficiency and traffic safety. Full article
(This article belongs to the Section Cognition)
Show Figures

Figure 1

23 pages, 3542 KiB  
Article
An Intuitive and Efficient Teleoperation Human–Robot Interface Based on a Wearable Myoelectric Armband
by Long Wang, Zhangyi Chen, Songyuan Han, Yao Luo, Xiaoling Li and Yang Liu
Biomimetics 2025, 10(7), 464; https://doi.org/10.3390/biomimetics10070464 - 15 Jul 2025
Viewed by 69
Abstract
Although artificial intelligence technologies have significantly enhanced autonomous robots’ capabilities in perception, decision-making, and planning, their autonomy may still fail when faced with complex, dynamic, or unpredictable environments. Therefore, it is critical to enable users to take over robot control in real-time and [...] Read more.
Although artificial intelligence technologies have significantly enhanced autonomous robots’ capabilities in perception, decision-making, and planning, their autonomy may still fail when faced with complex, dynamic, or unpredictable environments. Therefore, it is critical to enable users to take over robot control in real-time and efficiently through teleoperation. The lightweight, wearable myoelectric armband, due to its portability and environmental robustness, provides a natural human–robot gesture interaction interface. However, current myoelectric teleoperation gesture control faces two major challenges: (1) poor intuitiveness due to visual-motor misalignment; and (2) low efficiency from discrete, single-degree-of-freedom control modes. To address these challenges, this study proposes an integrated myoelectric teleoperation interface. The interface integrates the following: (1) a novel hybrid reference frame aimed at effectively mitigating visual-motor misalignment; and (2) a finite state machine (FSM)-based control logic designed to enhance control efficiency and smoothness. Four experimental tasks were designed using different end-effectors (gripper/dexterous hand) and camera viewpoints (front/side view). Compared to benchmark methods, the proposed interface demonstrates significant advantages in task completion time, movement path efficiency, and subjective workload. This work demonstrates the potential of the proposed interface to significantly advance the practical application of wearable myoelectric sensors in human–robot interaction. Full article
(This article belongs to the Special Issue Intelligent Human–Robot Interaction: 4th Edition)
Show Figures

Figure 1

36 pages, 8520 KiB  
Review
Technology Landscape Review of In-Sensor Photonic Intelligence: From Optical Sensors to Smart Devices
by Hong Zhou, Dongxiao Li and Chengkuo Lee
AI Sens. 2025, 1(1), 5; https://doi.org/10.3390/aisens1010005 - 14 Jul 2025
Viewed by 149
Abstract
Optical sensors have undergone significant evolution, transitioning from discrete optical microsystems toward sophisticated photonic integrated circuits (PICs) that leverage artificial intelligence (AI) for enhanced functionality. This review systematically explores the integration of optical sensing technologies with AI, charting the advancement from conventional optical [...] Read more.
Optical sensors have undergone significant evolution, transitioning from discrete optical microsystems toward sophisticated photonic integrated circuits (PICs) that leverage artificial intelligence (AI) for enhanced functionality. This review systematically explores the integration of optical sensing technologies with AI, charting the advancement from conventional optical microsystems to AI-driven smart devices. First, we examine classical optical sensing methodologies, including refractive index sensing, surface-enhanced infrared absorption (SEIRA), surface-enhanced Raman spectroscopy (SERS), surface plasmon-enhanced chiral spectroscopy, and surface-enhanced fluorescence (SEF) spectroscopy, highlighting their principles, capabilities, and limitations. Subsequently, we analyze the architecture of PIC-based sensing platforms, emphasizing their miniaturization, scalability, and real-time detection performance. This review then introduces the emerging paradigm of in-sensor computing, where AI algorithms are integrated directly within photonic devices, enabling real-time data processing, decision making, and enhanced system autonomy. Finally, we offer a comprehensive outlook on current technological challenges and future research directions, addressing integration complexity, material compatibility, and data processing bottlenecks. This review provides timely insights into the transformative potential of AI-enhanced PIC sensors, setting the stage for future innovations in autonomous, intelligent sensing applications. Full article
Show Figures

Figure 1

31 pages, 7101 KiB  
Article
Bidirectional Adaptation of Shared Autonomous Vehicles and Old Towns’ Urban Spaces: The Views of Residents on the Present
by Sucheng Yao, Kanjanee Budthimedhee, Sakol Teeravarunyou, Xinhao Chen and Ziqiang Zhang
World Electr. Veh. J. 2025, 16(7), 395; https://doi.org/10.3390/wevj16070395 - 14 Jul 2025
Viewed by 137
Abstract
The integration of shared autonomous vehicles into historic urban areas presents both opportunities and challenges. In heritage-rich environments like very old Asian (such as Suzhou old town, which serves as a use case example) or European (especially Mediterranean coastal cities) areas—characterized by narrow [...] Read more.
The integration of shared autonomous vehicles into historic urban areas presents both opportunities and challenges. In heritage-rich environments like very old Asian (such as Suzhou old town, which serves as a use case example) or European (especially Mediterranean coastal cities) areas—characterized by narrow alleys, dense development, and sensitive cultural landscapes—shared autonomous vehicle adoption raises critical spatial and social questions. This study employs a qualitative, user-centered approach based on the ripple model to examine residents’ perceptions across four dimensions: residential patterns, parking land use, regional accessibility, and street-level infrastructure. Semi-structured interviews with 27 participants reveal five key findings: (1) public trust depends on transparent decision-making and safety guarantees; (2) shared autonomous vehicles may reshape generational residential clustering; (3) the short-term parking demand remains stable, but the long-term reuse of space is feasible; (4) shared autonomous vehicles could enhance accessibility in historic cores; (5) transport systems may evolve toward intelligent, human-centered designs. Based on these insights, the study proposes three strategies: (1) transparent risk assessment using explainable artificial intelligence and digital twins; (2) polycentric development to diversify land use; (3) hierarchical street retrofitting to balance mobility and preservation. While this study is limited by its qualitative scope and absence of simulation, it offers a framework for culturally sensitive, small-scale interventions supporting sustainable mobility transitions in historic urban contexts. Full article
Show Figures

Figure 1

27 pages, 750 KiB  
Article
Ethical Leadership and Management of Small- and Medium-Sized Enterprises: The Role of AI in Decision Making
by Tjaša Štrukelj and Petya Dankova
Adm. Sci. 2025, 15(7), 274; https://doi.org/10.3390/admsci15070274 - 12 Jul 2025
Viewed by 265
Abstract
The integration of artificial intelligence (AI) within the decision-making processes of small- and medium-sized enterprises (SMEs) presents both significant opportunities and substantial ethical challenges. The aim of this paper is to provide a theoretical model depicting the interdependence of organisational decision-making levels and [...] Read more.
The integration of artificial intelligence (AI) within the decision-making processes of small- and medium-sized enterprises (SMEs) presents both significant opportunities and substantial ethical challenges. The aim of this paper is to provide a theoretical model depicting the interdependence of organisational decision-making levels and decision-making styles, with an emphasis on exploring the role of AI in organisations’ decision making, based on selected process dimension of the MER model of integral governance and management, particularly in relation to routine, analytical, and intuitive decision-making capabilities. The research methodology employs a comprehensive qualitative analysis of the scientific literature published between 2010 and 2024, focusing on AI implementation in SMEs, ethical decision making in integral management, and regulatory frameworks governing AI use in business contexts. The findings reveal that AI technologies influence decision making across business policy, strategic, tactical, and operative management levels, with distinct implications for intuitive, analytical, and routine decision-making approaches. The analysis demonstrates that while AI can enhance data processing capabilities and reduce human biases, it presents significant challenges for normative–ethical decision making, requiring human judgment and stakeholder consideration. We conclude that effective AI integration in SMEs requires a balanced approach where AI primarily serves as a tool for data collection and analysis rather than as an autonomous decision maker. These insights contribute to the discourse on responsible AI implementation in SMEs and provide practical guidance for leaders navigating the complex interplay between (non)technological capabilities, ethical considerations, and regulatory requirements in the evolving business landscape. Full article
Show Figures

Figure 1

18 pages, 3227 KiB  
Article
Optimized Adversarial Tactics for Disrupting Cooperative Multi-Agent Reinforcement Learning
by Guangze Yang, Xinyuan Miao, Yabin Peng, Wei Huang and Fan Zhang
Electronics 2025, 14(14), 2777; https://doi.org/10.3390/electronics14142777 - 10 Jul 2025
Viewed by 213
Abstract
Multi-agent reinforcement learning has demonstrated excellent performance in complex decision-making tasks such as electronic games, power grid management, and autonomous driving. However, its vulnerability to adversarial attacks may impede its widespread application. Currently, research on adversarial attacks in reinforcement learning primarily focuses on [...] Read more.
Multi-agent reinforcement learning has demonstrated excellent performance in complex decision-making tasks such as electronic games, power grid management, and autonomous driving. However, its vulnerability to adversarial attacks may impede its widespread application. Currently, research on adversarial attacks in reinforcement learning primarily focuses on single-agent scenarios, while studies in multi-agent settings are relatively limited, especially regarding how to achieve optimized attacks with fewer steps. This paper aims to bridge the gap by proposing a heuristic exploration-based attack method named the Search for Key steps and Key agents Attack (SKKA). Unlike previous studies that train a reinforcement learning model to explore attack strategies, our approach relies on a constructed predictive model and a T-value function to search for the optimal attack strategy. The predictive model predicts the environment and agent states after executing the current attack for a certain period, based on simulated environment feedback. The T-value function is then used to evaluate the effectiveness of the current attack. We select the strategy with the highest attack effectiveness from all possible attacks and execute it in the real environment. Experimental results demonstrate that our attack method ensures maximum attack effectiveness while greatly reducing the number of attack steps, thereby improving attack efficiency. In the StarCraft Multi-Agent Challenge (SMAC) scenario, by attacking 5–15% of the time steps, we can reduce the win rate from 99% to nearly 0%. By attacking approximately 20% of the agents and 24% of the time steps, we can reduce the win rate to around 3%. Full article
(This article belongs to the Special Issue AI Applications of Multi-Agent Systems)
Show Figures

Figure 1

22 pages, 2867 KiB  
Article
Hierarchical Deep Reinforcement Learning-Based Path Planning with Underlying High-Order Control Lyapunov Function—Control Barrier Function—Quadratic Programming Collision Avoidance Path Tracking Control of Lane-Changing Maneuvers for Autonomous Vehicles
by Haochong Chen and Bilin Aksun-Guvenc
Electronics 2025, 14(14), 2776; https://doi.org/10.3390/electronics14142776 - 10 Jul 2025
Viewed by 207
Abstract
Path planning and collision avoidance are essential components of an autonomous driving system (ADS), ensuring safe navigation in complex environments shared with other road users. High-quality planning and reliable obstacle avoidance strategies are essential for advancing the SAE autonomy level of autonomous vehicles, [...] Read more.
Path planning and collision avoidance are essential components of an autonomous driving system (ADS), ensuring safe navigation in complex environments shared with other road users. High-quality planning and reliable obstacle avoidance strategies are essential for advancing the SAE autonomy level of autonomous vehicles, which can largely reduce the risk of traffic accidents. In daily driving scenarios, lane changing is a common maneuver used to avoid unexpected obstacles such as parked vehicles or suddenly appearing pedestrians. Notably, lane-changing behavior is also widely regarded as a key evaluation criterion in driver license examinations, highlighting its practical importance in real-world driving. Motivated by this observation, this paper aims to develop an autonomous lane-changing system capable of dynamically avoiding obstacles in multi-lane traffic environments. To achieve this objective, we propose a hierarchical decision-making and control framework in which a Double Deep Q-Network (DDQN) agent operates as the high-level planner to select lane-level maneuvers, while a High-Order Control Lyapunov Function–High-Order Control Barrier Function–based Quadratic Program (HOCLF-HOCBF-QP) serves as the low-level controller to ensure safe and stable trajectory tracking under dynamic constraints. Simulation studies are used to evaluate the planning efficiency and overall collision avoidance performance of the proposed hierarchical control framework. The results demonstrate that the system is capable of autonomously executing appropriate lane-changing maneuvers to avoid multiple obstacles in complex multi-lane traffic environments. In computational cost tests, the low-level controller operates at 100 Hz with an average solve time of 0.66 ms per step, and the high-level policy operates at 5 Hz with an average solve time of 0.60 ms per step. The results demonstrate real-time capability in autonomous driving systems. Full article
(This article belongs to the Special Issue Intelligent Technologies for Vehicular Networks, 2nd Edition)
Show Figures

Figure 1

39 pages, 1775 KiB  
Article
A Survey on UAV Control with Multi-Agent Reinforcement Learning
by Chijioke C. Ekechi, Tarek Elfouly, Ali Alouani and Tamer Khattab
Drones 2025, 9(7), 484; https://doi.org/10.3390/drones9070484 - 9 Jul 2025
Viewed by 494
Abstract
Unmanned Aerial Vehicles (UAVs) have become increasingly prevalent in both governmental and civilian applications, offering significant reductions in operational costs by minimizing human involvement. There is a growing demand for autonomous, scalable, and intelligent coordination strategies in complex aerial missions involving multiple Unmanned [...] Read more.
Unmanned Aerial Vehicles (UAVs) have become increasingly prevalent in both governmental and civilian applications, offering significant reductions in operational costs by minimizing human involvement. There is a growing demand for autonomous, scalable, and intelligent coordination strategies in complex aerial missions involving multiple Unmanned Aerial Vehicles (UAVs). Traditional control techniques often fall short in dynamic, uncertain, or large-scale environments where decentralized decision-making and inter-agent cooperation are crucial. A potentially effective technique used for UAV fleet operation is Multi-Agent Reinforcement Learning (MARL). MARL offers a powerful framework for addressing these challenges by enabling UAVs to learn optimal behaviors through interaction with the environment and each other. Despite significant progress, the field remains fragmented, with a wide variety of algorithms, architectures, and evaluation metrics spread across domains. This survey aims to systematically review and categorize state-of-the-art MARL approaches applied to UAV control, identify prevailing trends and research gaps, and provide a structured foundation for future advancements in cooperative aerial robotics. The advantages and limitations of these techniques are discussed along with suggestions for further research to improve the effectiveness of MARL application to UAV fleet management. Full article
Show Figures

Figure 1

21 pages, 2751 KiB  
Review
Artificial Intelligence in Construction Project Management: A Structured Literature Review of Its Evolution in Application and Future Trends
by Yetunde Adebayo, Paul Udoh, Xebiso Blessing Kamudyariwa and Oluyomi Abayomi Osobajo
Digital 2025, 5(3), 26; https://doi.org/10.3390/digital5030026 - 9 Jul 2025
Viewed by 615
Abstract
The integration of Artificial Intelligence (AI) in construction project management is revolutionising the industry; offering innovative solutions to enhance efficiency, reduce costs, and improve decision making. This structured literature review explored the current applications, benefits, challenges, and future trends of AI in construction [...] Read more.
The integration of Artificial Intelligence (AI) in construction project management is revolutionising the industry; offering innovative solutions to enhance efficiency, reduce costs, and improve decision making. This structured literature review explored the current applications, benefits, challenges, and future trends of AI in construction project management. This study synthesised findings from 135 peer-reviewed articles published between 1985 and 2024; representing Industry 3.0 (3IR), Industry 4.0 (4IR), and Industry 4.0 Post COVID-19 (4IR PC). Analysis showed that the Planning and Monitoring and Control phases of the project have the greatest application of AI, while decision making, prediction, optimisation, and performance improvement are the most common purposes of AI use in the construction industry. The drivers of AI adoption within the construction industry include technology availability, project outcome and performance improvement, a competitive advantage, and a focus on sustainability. Despite these advancements, the review revealed several barriers to AI adoption, including data integration issues, the high cost of AI implementation, resistance to change among stakeholders, and ethical concerns surrounding data privacy, amongst others. This review also identified future ongoing applications of AI in the construction industry, such as sustainability and energy efficiency, digital twins, advanced robotics and autonomous construction, and optimisation. By providing a comprehensive analysis of the evolution of practices and the future direction of AI application, this study serves as a resource for researchers, practitioners, and policymakers seeking to understand the evolving landscape of AI in construction project management. Full article
(This article belongs to the Special Issue AI-Driven Innovations in Ubiquitous Computing and Smart Environments)
Show Figures

Figure 1

32 pages, 1126 KiB  
Review
Exploring the Role of Artificial Intelligence in Smart Healthcare: A Capability and Function-Oriented Review
by Syed Raza Abbas, Huiseung Seol, Zeeshan Abbas and Seung Won Lee
Healthcare 2025, 13(14), 1642; https://doi.org/10.3390/healthcare13141642 - 8 Jul 2025
Viewed by 738
Abstract
Artificial Intelligence (AI) is transforming smart healthcare by enhancing diagnostic precision, automating clinical workflows, and enabling personalized treatment strategies. This review explores the current landscape of AI in healthcare from two key perspectives: capability types (e.g., Narrow AI and AGI) and functional architectures [...] Read more.
Artificial Intelligence (AI) is transforming smart healthcare by enhancing diagnostic precision, automating clinical workflows, and enabling personalized treatment strategies. This review explores the current landscape of AI in healthcare from two key perspectives: capability types (e.g., Narrow AI and AGI) and functional architectures (e.g., Limited Memory and Theory of Mind). Based on capabilities, most AI systems today are categorized as Narrow AI, performing specific tasks such as medical image analysis and risk prediction with high accuracy. More advanced forms like General Artificial Intelligence (AGI) and Superintelligent AI remain theoretical but hold transformative potential. From a functional standpoint, Limited Memory AI dominates clinical applications by learning from historical patient data to inform decision-making. Reactive systems are used in rule-based alerts, while Theory of Mind (ToM) and Self-Aware AI remain conceptual stages for future development. This dual perspective provides a comprehensive framework to assess the maturity, impact, and future direction of AI in healthcare. It also highlights the need for ethical design, transparency, and regulation as AI systems grow more complex and autonomous, by incorporating cross-domain AI insights. Moreover, we evaluate the viability of developing AGI in regionally specific legal and regulatory frameworks, using South Korea as a case study to emphasize the limitations imposed by infrastructural preparedness and medical data governance regulations. Full article
(This article belongs to the Special Issue The Role of AI in Predictive and Prescriptive Healthcare)
Show Figures

Figure 1

42 pages, 8877 KiB  
Review
Artificial-Intelligence-Based Energy Management Strategies for Hybrid Electric Vehicles: A Comprehensive Review
by Bin Huang, Wenbin Yu, Minrui Ma, Xiaoxu Wei and Guangya Wang
Energies 2025, 18(14), 3600; https://doi.org/10.3390/en18143600 - 8 Jul 2025
Viewed by 407
Abstract
The worldwide drive towards low-carbon transportation has made Hybrid Electric Vehicles (HEVs) a crucial component of sustainable mobility, particularly in areas with limited charging infrastructure. The core of HEV efficiency lies in the Energy Management Strategy (EMS), which regulates the energy distribution between [...] Read more.
The worldwide drive towards low-carbon transportation has made Hybrid Electric Vehicles (HEVs) a crucial component of sustainable mobility, particularly in areas with limited charging infrastructure. The core of HEV efficiency lies in the Energy Management Strategy (EMS), which regulates the energy distribution between the internal combustion engine and the electric motor. While rule-based and optimization methods have formed the foundation of EMS, their performance constraints under dynamic conditions have prompted researchers to explore artificial intelligence (AI)-based solutions. This paper systematically reviews four main AI-based EMS approaches—the knowledge-driven, data-driven, reinforcement learning, and hybrid methods—highlighting their theoretical foundations, core technologies, and key applications. The integration of AI has led to notable benefits, such as improved fuel efficiency, enhanced emission control, and greater system adaptability. However, several challenges remain, including generalization to diverse driving conditions, constraints in real-time implementation, and concerns related to data-driven interpretability. The review identifies emerging trends in hybrid methods, which combine AI and conventional optimization approaches to create more adaptive and effective HEV energy management systems. The paper concludes with a discussion of future research directions, focusing on safety, system resilience, and the role of AI in autonomous decision-making. Full article
(This article belongs to the Special Issue Optimized Energy Management Technology for Electric Vehicle)
Show Figures

Figure 1

26 pages, 5672 KiB  
Review
Development Status and Trend of Mine Intelligent Mining Technology
by Zhuo Wang, Lin Bi, Jinbo Li, Zhaohao Wu and Ziyu Zhao
Mathematics 2025, 13(13), 2217; https://doi.org/10.3390/math13132217 - 7 Jul 2025
Viewed by 464
Abstract
Intelligent mining technology, as the core driving force for the digital transformation of the mining industry, integrates cyber-physical systems, artificial intelligence, and industrial internet technologies to establish a “cloud–edge–end” collaborative system. In this paper, the development trajectory of intelligent mining technology has been [...] Read more.
Intelligent mining technology, as the core driving force for the digital transformation of the mining industry, integrates cyber-physical systems, artificial intelligence, and industrial internet technologies to establish a “cloud–edge–end” collaborative system. In this paper, the development trajectory of intelligent mining technology has been systematically reviewed, which has gone through four stages: stand-alone automation, integrated automation and informatization, digital and intelligent initial, and comprehensive intelligence. And the current development status of “cloud–edge–end” technologies has been reviewed: (i) The end layer achieves environmental state monitoring and precise control through a multi-source sensing network and intelligent equipment. (ii) The edge layer leverages 5G and edge computing to accomplish real-time data processing, 3D dynamic modeling, and safety early warning. (iii) The cloud layer realizes digital planning and intelligent decision-making, based on the industrial Internet platform. The three-layer collaboration forms a “perception–analysis–decision–execution” closed loop. Currently, there are still many challenges in the development of the technology, including the lack of a standardization system, the bottleneck of multi-source heterogeneous data fusion, the lack of a cross-process coordination of the equipment, and the shortage of interdisciplinary talents. Accordingly, this paper focuses on future development trends from four aspects, providing systematic solutions for a safe, efficient, and sustainable mining operation. Technological evolution will accelerate the formation of an intelligent ecosystem characterized by “standard-driven, data-empowered, equipment-autonomous, and human–machine collaboration”. Full article
(This article belongs to the Special Issue Mathematical Modeling and Analysis in Mining Engineering)
Show Figures

Figure 1

17 pages, 8187 KiB  
Article
Ground-Level Surface Reconstruction and Soil Volume Estimation in Construction Sites Using Marching Cubes Method
by Fattah Hanafi Sheikhha, Jaho Seo and Hanmin Lee
Appl. Sci. 2025, 15(13), 7595; https://doi.org/10.3390/app15137595 - 7 Jul 2025
Viewed by 157
Abstract
Accurate environmental sensing is pivotal for advancing automation in construction, particularly in autonomous excavation. Precise 3D representations of complex and dynamic site geometries is essential for obstacle detection, progress monitoring, and safe operation. However, existing sensing techniques often struggle with capturing irregular surfaces [...] Read more.
Accurate environmental sensing is pivotal for advancing automation in construction, particularly in autonomous excavation. Precise 3D representations of complex and dynamic site geometries is essential for obstacle detection, progress monitoring, and safe operation. However, existing sensing techniques often struggle with capturing irregular surfaces and incomplete data in real-time, leading to significant challenges in practical deployment. To address these gaps, we present a novel framework integrating curve approximation, surface reconstruction, and marching cubes algorithm to transform raw sensor data into a detailed and computationally efficient soil surface representation. Our approach improves site modeling accuracy, paving the way for reliable and efficient construction automation. This paper enhances sensory data quality using surface reconstruction techniques, followed by the marching cubes algorithm to generate an accurate and flexible 3D soil model. This model facilitates rapid estimation of soil volume, weight, and shape, offering an efficient approach for environmental analysis and decision-making in automated systems. Experimental validation demonstrated the effectiveness of the proposed method, achieving relative errors of 4.92% and 1.42% across two excavation cycles. Additionally, the marching cubes algorithm completed volume estimation in just 0.05 s, confirming the approach’s accuracy and suitability for real-time applications in dynamic construction environments. Full article
(This article belongs to the Section Applied Industrial Technologies)
Show Figures

Figure 1

12 pages, 349 KiB  
Article
Agentic AI for Cultural Heritage: Embedding Risk Memory in Semantic Digital Twins
by George Pavlidis
Computers 2025, 14(7), 266; https://doi.org/10.3390/computers14070266 - 7 Jul 2025
Viewed by 549
Abstract
Cultural heritage preservation increasingly relies on data-driven technologies, yet most existing systems lack the cognitive and temporal depth required to support meaningful, transparent, and policy-informed decision-making. This paper proposes a conceptual framework for memory-enabled, semantically grounded AI agents in the cultural domain, showing [...] Read more.
Cultural heritage preservation increasingly relies on data-driven technologies, yet most existing systems lack the cognitive and temporal depth required to support meaningful, transparent, and policy-informed decision-making. This paper proposes a conceptual framework for memory-enabled, semantically grounded AI agents in the cultural domain, showing how the integration of the ICCROM/CCI ABC method for risk assessment into the Panoptes ontology enables the structured encoding of risk cognition over time. This structured risk memory becomes the foundation for agentic reasoning, supporting prioritization, justification, and long-term preservation planning. It is argued that this approach constitutes a principled step toward the development of Cultural Agentic AI: autonomous systems that remember, reason, and act in alignment with cultural values. Proof-of-concept simulations illustrate how memory-enabled agents can trace evolving risk patterns, trigger policy responses, and evaluate mitigation outcomes through structured, explainable reasoning. Full article
Show Figures

Figure 1

Back to TopTop