Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,128)

Search Parameters:
Keywords = autonomic space

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7705 KiB  
Article
Implementation of SLAM-Based Online Mapping and Autonomous Trajectory Execution in Software and Hardware on the Research Platform Nimbulus-e
by Thomas Schmitz, Marcel Mayer, Theo Nonnenmacher and Matthias Schmitz
Sensors 2025, 25(15), 4830; https://doi.org/10.3390/s25154830 - 6 Aug 2025
Abstract
This paper presents the design and implementation of a SLAM-based online mapping and autonomous trajectory execution system for the Nimbulus-e, a concept vehicle designed for agile maneuvering in confined spaces. The Nimbulus-e uses individual steer-by-wire corner modules with in-wheel motors at all four [...] Read more.
This paper presents the design and implementation of a SLAM-based online mapping and autonomous trajectory execution system for the Nimbulus-e, a concept vehicle designed for agile maneuvering in confined spaces. The Nimbulus-e uses individual steer-by-wire corner modules with in-wheel motors at all four corners. The associated eight joint variables serve as control inputs, allowing precise trajectory following. These control inputs can be derived from the vehicle’s trajectory using nonholonomic constraints. A LiDAR sensor is used to map the environment and detect obstacles. The system processes LiDAR data in real time, continuously updating the environment map and enabling localization within the environment. The inclusion of vehicle odometry data significantly reduces computation time and improves accuracy compared to a purely visual approach. The A* and Hybrid A* algorithms are used for trajectory planning and optimization, ensuring smooth vehicle movement. The implementation is validated through both full vehicle simulations using an ADAMS Car—MATLABco-simulation and a scaled physical prototype, demonstrating the effectiveness of the system in navigating complex environments. This work contributes to the field of autonomous systems by demonstrating the potential of combining advanced sensor technologies with innovative control algorithms to achieve reliable and efficient navigation. Future developments will focus on improving the robustness of the system by implementing a robust closed-loop controller and exploring additional applications in dense urban traffic and agricultural operations. Full article
Show Figures

Figure 1

22 pages, 3217 KiB  
Article
A Deep Reinforcement Learning Approach for Energy Management in Low Earth Orbit Satellite Electrical Power Systems
by Silvio Baccari, Elisa Mostacciuolo, Massimo Tipaldi and Valerio Mariani
Electronics 2025, 14(15), 3110; https://doi.org/10.3390/electronics14153110 - 5 Aug 2025
Abstract
Effective energy management in Low Earth Orbit satellites is critical, as inefficient energy management can significantly affect mission objectives. The dynamic and harsh space environment further complicates the development of effective energy management strategies. To address these challenges, we propose a Deep Reinforcement [...] Read more.
Effective energy management in Low Earth Orbit satellites is critical, as inefficient energy management can significantly affect mission objectives. The dynamic and harsh space environment further complicates the development of effective energy management strategies. To address these challenges, we propose a Deep Reinforcement Learning approach using Deep-Q Network to develop an adaptive energy management framework for Low Earth Orbit satellites. Compared to traditional techniques, the proposed solution autonomously learns from environmental interaction, offering robustness to uncertainty and online adaptability. It adjusts to changing conditions without manual retraining, making it well-suited for handling modeling uncertainties and non-stationary dynamics typical of space operations. Training is conducted using a realistic satellite electric power system model with accurate component parameters and single-orbit power profiles derived from real space missions. Numerical simulations validate the controller performance across diverse scenarios, including multi-orbit settings, demonstrating superior adaptability and efficiency compared to conventional Maximum Power Point Tracking methods. Full article
Show Figures

Figure 1

27 pages, 2361 KiB  
Review
Review of Thrust Regulation and System Control Methods of Variable-Thrust Liquid Rocket Engines in Space Drones
by Meng Sun, Xiangzhou Long, Bowen Xu, Haixia Ding, Xianyu Wu, Weiqi Yang, Wei Zhao and Shuangxi Liu
Actuators 2025, 14(8), 385; https://doi.org/10.3390/act14080385 - 4 Aug 2025
Viewed by 36
Abstract
Variable-thrust liquid rocket engines are essential for precision landing in deep-space exploration, reusable launch vehicle recovery, high-accuracy orbital maneuvers, and emergency obstacle evasions of space drones. However, with the increasingly complex space missions, challenges remain with the development of different technical schemes. In [...] Read more.
Variable-thrust liquid rocket engines are essential for precision landing in deep-space exploration, reusable launch vehicle recovery, high-accuracy orbital maneuvers, and emergency obstacle evasions of space drones. However, with the increasingly complex space missions, challenges remain with the development of different technical schemes. In view of these issues, this paper systematically reviews the technology’s evolution through mechanical throttling, electromechanical precision regulation, and commercial space-driven deep throttling. Then, the development of key variable thrust technologies for liquid rocket engines is summarized from the perspective of thrust regulation and control strategy. For instance, thrust regulation requires synergistic flow control devices and adjustable pintle injectors to dynamically match flow rates with injection pressure drops, ensuring combustion stability across wide thrust ranges—particularly under extreme conditions during space drones’ high-maneuver orbital adjustments—though pintle injector optimization for such scenarios remains challenging. System control must address strong multivariable coupling, response delays, and high-disturbance environments, as well as bottlenecks in sensor reliability and nonlinear modeling. Furthermore, prospects are made in response to the research progress, and breakthroughs are required in cryogenic wide-range flow regulation for liquid oxygen-methane propellants, combustion stability during deep throttling, and AI-based intelligent control to support space drones’ autonomous orbital transfer, rapid reusability, and on-demand trajectory correction in complex deep-space missions. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

17 pages, 3062 KiB  
Article
Spatiotemporal Risk-Aware Patrol Planning Using Value-Based Policy Optimization and Sensor-Integrated Graph Navigation in Urban Environments
by Swarnamouli Majumdar, Anjali Awasthi and Lorant Andras Szolga
Appl. Sci. 2025, 15(15), 8565; https://doi.org/10.3390/app15158565 (registering DOI) - 1 Aug 2025
Viewed by 241
Abstract
This study proposes an intelligent patrol planning framework that leverages reinforcement learning, spatiotemporal crime forecasting, and simulated sensor telemetry to optimize autonomous vehicle (AV) navigation in urban environments. Crime incidents from Washington DC (2024–2025) and Seattle (2008–2024) are modeled as a dynamic spatiotemporal [...] Read more.
This study proposes an intelligent patrol planning framework that leverages reinforcement learning, spatiotemporal crime forecasting, and simulated sensor telemetry to optimize autonomous vehicle (AV) navigation in urban environments. Crime incidents from Washington DC (2024–2025) and Seattle (2008–2024) are modeled as a dynamic spatiotemporal graph, capturing the evolving intensity and distribution of criminal activity across neighborhoods and time windows. The agent’s state space incorporates synthetic AV sensor inputs—including fuel level, visual anomaly detection, and threat signals—to reflect real-world operational constraints. We evaluate and compare three learning strategies: Deep Q-Network (DQN), Double Deep Q-Network (DDQN), and Proximal Policy Optimization (PPO). Experimental results show that DDQN outperforms DQN in convergence speed and reward accumulation, while PPO demonstrates greater adaptability in sensor-rich, high-noise conditions. Real-map simulations and hourly risk heatmaps validate the effectiveness of our approach, highlighting its potential to inform scalable, data-driven patrol strategies in next-generation smart cities. Full article
(This article belongs to the Special Issue AI-Aided Intelligent Vehicle Positioning in Urban Areas)
Show Figures

Figure 1

23 pages, 3580 KiB  
Article
Distributed Collaborative Data Processing Framework for Unmanned Platforms Based on Federated Edge Intelligence
by Siyang Liu, Nanliang Shan, Xianqiang Bao and Xinghua Xu
Sensors 2025, 25(15), 4752; https://doi.org/10.3390/s25154752 - 1 Aug 2025
Viewed by 306
Abstract
Unmanned platforms such as unmanned aerial vehicles, unmanned ground vehicles, and autonomous underwater vehicles often face challenges of data, device, and model heterogeneity when performing collaborative data processing tasks. Existing research does not simultaneously address issues from these three aspects. To address this [...] Read more.
Unmanned platforms such as unmanned aerial vehicles, unmanned ground vehicles, and autonomous underwater vehicles often face challenges of data, device, and model heterogeneity when performing collaborative data processing tasks. Existing research does not simultaneously address issues from these three aspects. To address this issue, this study designs an unmanned platform cluster architecture inspired by the cloud-edge-end model. This architecture integrates federated learning for privacy protection, leverages the advantages of distributed model training, and utilizes edge computing’s near-source data processing capabilities. Additionally, this paper proposes a federated edge intelligence method (DSIA-FEI), which comprises two key components. Based on traditional federated learning, a data sharing mechanism is introduced, in which data is extracted from edge-side platforms and placed into a data sharing platform to form a public dataset. At the beginning of model training, random sampling is conducted from the public dataset and distributed to each unmanned platform, so as to mitigate the impact of data distribution heterogeneity and class imbalance during collaborative data processing in unmanned platforms. Moreover, an intelligent model aggregation strategy based on similarity measurement and loss gradient is developed. This strategy maps heterogeneous model parameters to a unified space via hierarchical parameter alignment, and evaluates the similarity between local and global models of edge devices in real-time, along with the loss gradient, to select the optimal model for global aggregation, reducing the influence of device and model heterogeneity on cooperative learning of unmanned platform swarms. This study carried out extensive validation on multiple datasets, and the experimental results showed that the accuracy of the DSIA-FEI proposed in this paper reaches 0.91, 0.91, 0.88, and 0.87 on the FEMNIST, FEAIR, EuroSAT, and RSSCN7 datasets, respectively, which is more than 10% higher than the baseline method. In addition, the number of communication rounds is reduced by more than 40%, which is better than the existing mainstream methods, and the effectiveness of the proposed method is verified. Full article
Show Figures

Figure 1

26 pages, 14849 KiB  
Article
EAB-BES: A Global Optimization Approach for Efficient UAV Path Planning in High-Density Urban Environments
by Yunhui Zhang, Wenhong Xiao and Shihong Yin
Biomimetics 2025, 10(8), 499; https://doi.org/10.3390/biomimetics10080499 - 31 Jul 2025
Viewed by 246
Abstract
This paper presents a multi-strategy enhanced bald eagle search algorithm (EAB-BES) for 3D UAV path planning in urban environments. EAB-BES addresses key limitations of the traditional bald eagle search (BES) algorithm, including slow convergence, susceptibility to local optima, and poor adaptability in complex [...] Read more.
This paper presents a multi-strategy enhanced bald eagle search algorithm (EAB-BES) for 3D UAV path planning in urban environments. EAB-BES addresses key limitations of the traditional bald eagle search (BES) algorithm, including slow convergence, susceptibility to local optima, and poor adaptability in complex urban scenarios. The algorithm enhances solution space exploration through elite opposition-based learning, balances global search and local exploitation via an adaptive weight mechanism, and refines local search directions using block-based elite-guided differential mutation. These innovations significantly improve BES’s convergence speed, path accuracy, and adaptability to urban constraints. To validate its effectiveness, six high-density urban environments with varied obstacles were used for comparative experiments against nine advanced algorithms. The results demonstrate that EAB-BES achieves the fastest convergence speed and lowest stable fitness values and generates the shortest, smoothest collision-free 3D paths. Statistical tests and box plot analysis further confirm its superior performance in multiple performance metrics. EAB-BES has greater competitiveness compared with the comparative algorithms and can provide an efficient, reliable and robust solution for UAV autonomous navigation in complex urban environments. Full article
(This article belongs to the Special Issue Biomimicry for Optimization, Control, and Automation: 3rd Edition)
Show Figures

Figure 1

36 pages, 5053 KiB  
Systematic Review
Prescriptive Maintenance: A Systematic Literature Review and Exploratory Meta-Synthesis
by Marko Orošnjak, Felix Saretzky and Slawomir Kedziora
Appl. Sci. 2025, 15(15), 8507; https://doi.org/10.3390/app15158507 (registering DOI) - 31 Jul 2025
Viewed by 201
Abstract
Prescriptive Maintenance (PsM) transforms industrial asset management by enabling autonomous decisions through simultaneous failure anticipation and optimal maintenance recommendations. Yet, despite increasing research interest, the conceptual clarity, technological maturity, and practical deployment of PsM remains fragmented. Here, we conduct a comprehensive and application-oriented [...] Read more.
Prescriptive Maintenance (PsM) transforms industrial asset management by enabling autonomous decisions through simultaneous failure anticipation and optimal maintenance recommendations. Yet, despite increasing research interest, the conceptual clarity, technological maturity, and practical deployment of PsM remains fragmented. Here, we conduct a comprehensive and application-oriented Systematic Literature Review of studies published between 2013–2024. We identify key enablers—artificial intelligence and machine learning, horizontal and vertical integration, and deep reinforcement learning—that map the functional space of PsM across industrial sectors. The results from our multivariate meta-synthesis uncover three main thematic research clusters, ranging from decision-automation of technical (multi)component-level systems to strategic and organisational-support strategies. Notably, while predictive models are widely adopted, the translation of these capabilities to PsM remains limited. Primary reasons include semantic interoperability, real-time optimisation, and deployment scalability. As a response, a structured research agenda is proposed to emphasise hybrid architectures, context-aware prescription mechanisms, and alignment with Industry 5.0 principles of human-centricity, resilience, and sustainability. The review establishes a critical foundation for future advances in intelligent, explainable, and action-oriented maintenance systems. Full article
Show Figures

Figure 1

17 pages, 1565 KiB  
Article
Highway Autonomous Driving Decision Making Using Reweighting Ego-Attention and Driver Assistance Module
by Junyu Li and Liying Zheng
Drones 2025, 9(8), 525; https://doi.org/10.3390/drones9080525 - 25 Jul 2025
Viewed by 282
Abstract
Decision making is challenging in autonomous driving (AD) under highway scenarios because of the unpredictable behaviors of neighbor vehicles, leading to the necessity of accurately modelling interactions between vehicles. Though ego-attention, a variant of self-attention, provides a way for object interaction extraction, its [...] Read more.
Decision making is challenging in autonomous driving (AD) under highway scenarios because of the unpredictable behaviors of neighbor vehicles, leading to the necessity of accurately modelling interactions between vehicles. Though ego-attention, a variant of self-attention, provides a way for object interaction extraction, its feature expression still needs to improve. This paper improves the original ego-attention by reweighting the encoding vehicle features, forcing them to pay more attention to significant features. Moreover, we designed a rule-based driver assistance module (DAM) to alleviate mis-decisions by constraining action space. Finally, we constructed our final AD decision-making model by integrating the proposed reweighting ego-attention and the DAM into the dual-input decision-making framework trained by enhanced deep reinforcement learning (DRL). We evaluated our decision-making model on highway scenarios. The results show that our model achieves better performance in success step (39.95 steps/episode), speed (29.15 m/s), lane-changing times (5.64 times/episode), and task completion rate (98%) than existing models, including DRL-GAT-SA, AE-D3QN-DA, and ego-attention-based ones, implying the competitive driving accuracy, safety, and comfort of our model. Full article
Show Figures

Figure 1

21 pages, 3005 KiB  
Article
Convex Optimization-Based Constrained Trajectory Planning for Autonomous Vehicles
by Xiaoxiao Song, Songming Chen and Qiang Liu
Electronics 2025, 14(15), 2929; https://doi.org/10.3390/electronics14152929 - 22 Jul 2025
Viewed by 327
Abstract
This paper proposes a constrained trajectory optimization framework for autonomous vehicles (AVs) based on convex programming techniques. An enhanced kinematic vehicle model is introduced to capture dynamic motion characteristics that are often overlooked in conventional models. For obstacle avoidance, environmental constraints are transformed [...] Read more.
This paper proposes a constrained trajectory optimization framework for autonomous vehicles (AVs) based on convex programming techniques. An enhanced kinematic vehicle model is introduced to capture dynamic motion characteristics that are often overlooked in conventional models. For obstacle avoidance, environmental constraints are transformed into convex formulations using free-space corridor methods. The trajectory planning process is further optimized through a linearized model predictive control (MPC) scheme, which considers both vehicle dynamics and environmental safety. The resulting formulation enables efficient convex optimization suitable for real-time implementation. Experimental results in various scenarios demonstrate improvements in both trajectory smoothness and safety. Furthermore, the proposed optimization method reduces the average execution time by nearly 70% compared to the nonlinear alternative, validating its computational efficiency and practical applicability. Full article
Show Figures

Figure 1

19 pages, 1563 KiB  
Review
Autonomous Earthwork Machinery for Urban Construction: A Review of Integrated Control, Fleet Coordination, and Safety Assurance
by Zeru Liu and Jung In Kim
Buildings 2025, 15(14), 2570; https://doi.org/10.3390/buildings15142570 - 21 Jul 2025
Viewed by 297
Abstract
Autonomous earthwork machinery is gaining traction as a means to boost productivity and safety on space-constrained urban sites, yet the fast-growing literature has not been fully integrated. To clarify current knowledge, we systematically searched Scopus and screened 597 records, retaining 157 peer-reviewed papers [...] Read more.
Autonomous earthwork machinery is gaining traction as a means to boost productivity and safety on space-constrained urban sites, yet the fast-growing literature has not been fully integrated. To clarify current knowledge, we systematically searched Scopus and screened 597 records, retaining 157 peer-reviewed papers (2015–March 2025) that address autonomy, integrated control, or risk mitigation for excavators, bulldozers, and loaders. Descriptive statistics, VOSviewer mapping, and qualitative synthesis show the output rising rapidly and peaking at 30 papers in 2024, led by China, Korea, and the USA. Four tightly linked themes dominate: perception-driven machine autonomy, IoT-enabled integrated control systems, multi-sensor safety strategies, and the first demonstrations of fleet-level collaboration (e.g., coordinated excavator clusters and unmanned aerial vehicle and unmanned ground vehicle (UAV–UGV) site preparation). Advances include centimeter-scale path tracking, real-time vision-light detection and ranging (LiDAR) fusion and geofenced safety envelopes, but formal validation protocols and robust inter-machine communication remain open challenges. The review distils five research priorities, including adaptive perception and artificial intelligence (AI), digital-twin integration with building information modeling (BIM), cooperative multi-robot planning, rigorous safety assurance, and human–automation partnership that must be addressed to transform isolated prototypes into connected, self-optimizing fleets capable of delivering safer, faster, and more sustainable urban construction. Full article
(This article belongs to the Special Issue Automation and Robotics in Building Design and Construction)
Show Figures

Figure 1

23 pages, 4361 KiB  
Article
ANHNE: Adaptive Multi-Hop Neighborhood Information Fusion for Heterogeneous Network Embedding
by Hanyu Xie, Hao Shao, Lunwen Wang and Changjian Song
Electronics 2025, 14(14), 2911; https://doi.org/10.3390/electronics14142911 - 21 Jul 2025
Viewed by 286
Abstract
Heterogeneous information network (HIN) embedding transforms multi-type nodes into low-dimensional vectors to preserve structural and semantic information for downstream tasks. However, it struggles with multiplex networks where nodes connect via diverse semantic paths (metapaths). Information fusion mainly improves the quality of node embedding [...] Read more.
Heterogeneous information network (HIN) embedding transforms multi-type nodes into low-dimensional vectors to preserve structural and semantic information for downstream tasks. However, it struggles with multiplex networks where nodes connect via diverse semantic paths (metapaths). Information fusion mainly improves the quality of node embedding by fully exploiting the structure and hidden information within the network. Current metapath-based methods ignore information from intermediate nodes along paths, depend on manually defined metapaths, and overlook implicit relationships between nodes sharing similar attributes. Our objective is to develop an adaptive framework that overcomes limitations in existing metapath-based embedding (incomplete information aggregation, manual path dependency, and ignorance of latent semantics) to learn more discriminative embeddings. We propose an adaptive multi-hop neighbor information fusion model for heterogeneous network embedding (ANHNE), which: (1) autonomously extracts composite metapaths (weighted combinations of relations) via a multipath aggregation matrix to mine hierarchical semantics of varying lengths for task-specific scenarios; (2) projects heterogeneous nodes into a unified space and employs hierarchical attention to selectively fuse neighborhood features across metapath hierarchies; and (3) enhances semantics by identifying potential node correlations via cosine similarity to construct implicit connections, enriching network structure with latent information. Extensive experimental results on multiple datasets show that ANHNE achieves more precise embeddings than comparable baseline models. Full article
(This article belongs to the Special Issue Advances in Learning on Graphs and Information Networks)
Show Figures

Figure 1

22 pages, 6556 KiB  
Article
Multi-Task Trajectory Prediction Using a Vehicle-Lane Disentangled Conditional Variational Autoencoder
by Haoyang Chen, Na Li, Hangguan Shan, Eryun Liu and Zhiyu Xiang
Sensors 2025, 25(14), 4505; https://doi.org/10.3390/s25144505 - 20 Jul 2025
Viewed by 412
Abstract
Trajectory prediction under multimodal information is critical for autonomous driving, necessitating the integration of dynamic vehicle states and static high-definition (HD) maps to model complex agent–scene interactions effectively. However, existing methods often employ static scene encodings and unstructured latent spaces, limiting their ability [...] Read more.
Trajectory prediction under multimodal information is critical for autonomous driving, necessitating the integration of dynamic vehicle states and static high-definition (HD) maps to model complex agent–scene interactions effectively. However, existing methods often employ static scene encodings and unstructured latent spaces, limiting their ability to capture evolving spatial contexts and produce diverse yet contextually coherent predictions. To tackle these challenges, we propose MS-SLV, a novel generative framework that introduces (1) a time-aware scene encoder that aligns HD map features with vehicle motion to capture evolving scene semantics and (2) a structured latent model that explicitly disentangles agent-specific intent and scene-level constraints. Additionally, we introduce an auxiliary lane prediction task to provide targeted supervision for scene understanding and improve latent variable learning. Our approach jointly predicts future trajectories and lane sequences, enabling more interpretable and scene-consistent forecasts. Extensive evaluations on the nuScenes dataset demonstrate the effectiveness of MS-SLV, achieving a 12.37% reduction in average displacement error and a 7.67% reduction in final displacement error over state-of-the-art methods. Moreover, MS-SLV significantly improves multi-modal prediction, reducing the top-5 Miss Rate (MR5) and top-10 Miss Rate (MR10) by 26% and 33%, respectively, and lowering the Off-Road Rate (ORR) by 3%, as compared with the strongest baseline in our evaluation. Full article
(This article belongs to the Special Issue AI-Driven Sensor Technologies for Next-Generation Electric Vehicles)
Show Figures

Figure 1

45 pages, 11380 KiB  
Article
Application of Multi-Strategy Controlled Rime Algorithm in Path Planning for Delivery Robots
by Haokai Lv, Qian Qian, Jiawen Pan, Miao Song, Yong Feng and Yingna Li
Biomimetics 2025, 10(7), 476; https://doi.org/10.3390/biomimetics10070476 - 19 Jul 2025
Viewed by 445
Abstract
As a core component of automated logistics systems, delivery robots hold significant application value in the field of unmanned delivery. This research addresses the robot path planning problem, aiming to enhance delivery efficiency and reduce operational costs through systematic improvements to the RIME [...] Read more.
As a core component of automated logistics systems, delivery robots hold significant application value in the field of unmanned delivery. This research addresses the robot path planning problem, aiming to enhance delivery efficiency and reduce operational costs through systematic improvements to the RIME optimization algorithm. Through in-depth analysis, we identified several major drawbacks in the standard RIME algorithm for path planning: insufficient global exploration capability in the initial stages, a lack of diversity in the hard RIME search mechanism, and oscillatory phenomena in soft RIME step size adjustment. These issues often lead to undesirable phenomena in path planning, such as local optima traps, path redundancy, or unsmooth trajectories. To address these limitations, this study proposes the Multi-Strategy Controlled Rime Algorithm (MSRIME), whose innovation primarily manifests in three aspects: first, it constructs a multi-strategy collaborative optimization framework, utilizing an infinite folding Fuch chaotic map for intelligent population initialization to significantly enhance the diversity of solutions; second, it designs a cooperative mechanism between a controlled elite strategy and an adaptive search strategy that, through a dynamic control factor, autonomously adjusts the strategy activation probability and adaptation rate, expanding the search space while ensuring algorithmic convergence efficiency; and finally, it introduces a cosine annealing strategy to improve the step size adjustment mechanism, reducing parameter sensitivity and effectively preventing path distortions caused by abrupt step size changes. During the algorithm validation phase, comparative tests were conducted between two groups of algorithms, demonstrating their significant advantages in optimization capability, convergence speed, and stability. Further experimental analysis confirmed that the algorithm’s multi-strategy framework effectively suppresses the impact of coordinate and dimensional differences on path quality during iteration, making it more suitable for delivery robot path planning scenarios. Ultimately, path planning experimental results across various Building Coverage Rate (BCR) maps and diverse application scenarios show that MSRIME exhibits superior performance in key indicators such as path length, running time, and smoothness, providing novel technical insights and practical solutions for the interdisciplinary research between intelligent logistics and computer science. Full article
Show Figures

Figure 1

15 pages, 1142 KiB  
Technical Note
Terrain and Atmosphere Classification Framework on Satellite Data Through Attentional Feature Fusion Network
by Antoni Jaszcz and Dawid Połap
Remote Sens. 2025, 17(14), 2477; https://doi.org/10.3390/rs17142477 - 17 Jul 2025
Viewed by 229
Abstract
Surface, terrain, or even atmosphere analysis using images or their fragments is important due to the possibilities of further processing. In particular, attention is necessary for satellite and/or drone images. Analyzing image elements by classifying the given classes is important for obtaining information [...] Read more.
Surface, terrain, or even atmosphere analysis using images or their fragments is important due to the possibilities of further processing. In particular, attention is necessary for satellite and/or drone images. Analyzing image elements by classifying the given classes is important for obtaining information about space for autonomous systems, identifying landscape elements, or monitoring and maintaining the infrastructure and environment. Hence, in this paper, we propose a neural classifier architecture that analyzes different features by the parallel processing of information in the network and combines them with a feature fusion mechanism. The neural architecture model takes into account different types of features by extracting them by focusing on spatial, local patterns and multi-scale representation. In addition, the classifier is guided by an attention mechanism for focusing more on different channels, spatial information, and even feature pyramid mechanisms. Atrous convolutional operators were also used in such an architecture as better context feature extractors. The proposed classifier architecture is the main element of the modeled framework for satellite data analysis, which is based on the possibility of training depending on the client’s desire. The proposed methodology was evaluated on three publicly available classification datasets for remote sensing: satellite images, Visual Terrain Recognition, and USTC SmokeRS, where the proposed model achieved accuracy scores of 97.8%, 100.0%, and 92.4%, respectively. The obtained results indicate the effectiveness of the proposed attention mechanisms across different remote sensing challenges. Full article
Show Figures

Figure 1

19 pages, 1635 KiB  
Article
Integrating AI-Driven Wearable Metaverse Technologies into Ubiquitous Blended Learning: A Framework Based on Embodied Interaction and Multi-Agent Collaboration
by Jiaqi Xu, Xuesong Zhai, Nian-Shing Chen, Usman Ghani, Andreja Istenic and Junyi Xin
Educ. Sci. 2025, 15(7), 900; https://doi.org/10.3390/educsci15070900 - 15 Jul 2025
Viewed by 452
Abstract
Ubiquitous blended learning, leveraging mobile devices, has democratized education by enabling autonomous and readily accessible knowledge acquisition. However, its reliance on traditional interfaces often limits learner immersion and meaningful interaction. The emergence of the wearable metaverse offers a compelling solution, promising enhanced multisensory [...] Read more.
Ubiquitous blended learning, leveraging mobile devices, has democratized education by enabling autonomous and readily accessible knowledge acquisition. However, its reliance on traditional interfaces often limits learner immersion and meaningful interaction. The emergence of the wearable metaverse offers a compelling solution, promising enhanced multisensory experiences and adaptable learning environments that transcend the constraints of conventional ubiquitous learning. This research proposes a novel framework for ubiquitous blended learning in the wearable metaverse, aiming to address critical challenges, such as multi-source data fusion, effective human–computer collaboration, and efficient rendering on resource-constrained wearable devices, through the integration of embodied interaction and multi-agent collaboration. This framework leverages a real-time multi-modal data analysis architecture, powered by the MobileNetV4 and xLSTM neural networks, to facilitate the dynamic understanding of the learner’s context and environment. Furthermore, we introduced a multi-agent interaction model, utilizing CrewAI and spatio-temporal graph neural networks, to orchestrate collaborative learning experiences and provide personalized guidance. Finally, we incorporated lightweight SLAM algorithms, augmented using visual perception techniques, to enable accurate spatial awareness and seamless navigation within the metaverse environment. This innovative framework aims to create immersive, scalable, and cost-effective learning spaces within the wearable metaverse. Full article
Show Figures

Figure 1

Back to TopTop