Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = automotive headlamps

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1917 KiB  
Perspective
A Perspective on Software-in-the-Loop and Hardware-in-the-Loop Within Digital Twin Frameworks for Automotive Lighting Systems
by George Balan, Philipp Neninger, Enrique Ruiz Zúñiga, Elena Serea, Dorin-Dumitru Lucache and Alexandru Sălceanu
Appl. Sci. 2025, 15(15), 8445; https://doi.org/10.3390/app15158445 - 30 Jul 2025
Viewed by 258
Abstract
The increasing complexity of modern automotive lighting systems requires advanced validation strategies that ensure both functional performance and regulatory compliance. This study presents a structured integration of Software-in-the-Loop (SiL) and Hardware-in-the-Loop (HiL) testing within a digital twin (DT) framework for validating headlamp systems. [...] Read more.
The increasing complexity of modern automotive lighting systems requires advanced validation strategies that ensure both functional performance and regulatory compliance. This study presents a structured integration of Software-in-the-Loop (SiL) and Hardware-in-the-Loop (HiL) testing within a digital twin (DT) framework for validating headlamp systems. A gated validation process (G10–G120) is proposed, aligning each development phase with corresponding simulation stages from early requirements and concept validation to real-world scenario testing and continuous integration. A key principle of this approach is the adoption of a framework built upon the V-Cycle, adapted to integrate DT technology with SiL and HiL workflows. This architectural configuration ensures a continuous data flow between the physical system, the digital twin, and embedded software components, enabling real-time feedback, iterative model refinement, and traceable system verification throughout the development lifecycle. The paper also explores strategies for effective DT integration, such as digital twin-as-a-service, which combines virtual testing with physical validation to support earlier fault detection, streamlined simulation workflows, and reduced dependency on physical prototypes during lighting system development. Unlike the existing literature, which often treats SiL, HiL, and DTs in isolation, this work proposes a unified, domain-specific validation framework. The methodology addresses a critical gap by aligning simulation-based testing with development milestones and regulatory standards, offering a foundation for industrial adoption. Full article
Show Figures

Figure 1

14 pages, 4544 KiB  
Article
Intelligent DC-DC Controller for Glare-Free Front-Light LED Headlamp
by Paolo Lorenzi, Roberto Penzo, Enrico Tonazzo, Edoardo Bezzati, Maurizio Galvano and Fausto Borghetti
Chips 2025, 4(3), 29; https://doi.org/10.3390/chips4030029 - 27 Jun 2025
Viewed by 284
Abstract
A new control system implemented with a single-stage DC-DC controller to power an LED headlamp for automotive applications is presented in this work. Daytime running light (DRL), low beam (LB), high beam (HB) and adaptive driving beam (ADB) are typical functions requiring a [...] Read more.
A new control system implemented with a single-stage DC-DC controller to power an LED headlamp for automotive applications is presented in this work. Daytime running light (DRL), low beam (LB), high beam (HB) and adaptive driving beam (ADB) are typical functions requiring a dedicated LED driver solution to fulfill car maker requirements for front-light applications. Single-stage drivers often exhibit a significant overshoot in LED current during transitions from driving a higher number of LEDs to a lower number. To maintain LED reliability, this current overshoot must remain below the maximum current rating of the LEDs. If the overshoot overcomes this limit, it can cause permanent damage to the LEDs or reduce their lifespan. To preserve LED reliability, a comprehensive system has been proposed to minimize the peak of LED current overshoots, especially during transitions between different operating modes or LED string configurations. A key feature of the proposed system is the implementation of a parallel discharging path to be activated only when the current flowing in the LEDs is higher than a predefined threshold. A prototype incorporating an integrated test chip has been developed to validate this approach. Measurement results and comparison with state-of-the-art solutions available in the market are shown. Furthermore, a critical aspect to be considered is the proper dimensioning of the discharging path. It requires careful considerations about the gate driver capabilities, the discharging resistor values, and the thermal management of the dumping element. For this purpose, an extensive study on how to size the relative components is also presented. Full article
(This article belongs to the Special Issue New Research in Microelectronics and Electronics)
Show Figures

Figure 1

13 pages, 4920 KiB  
Article
Thermal Performance of T-Shaped Ultra-Thin Vapor Chamber with Double-Sided Heating for LED Automotive Headlamp Cooling
by Yaokang Zhang, Tengqing Liu, Yu Bai, Shuangfeng Wang, Qianxi Zhang and Huifeng Kang
Micromachines 2025, 16(5), 571; https://doi.org/10.3390/mi16050571 - 12 May 2025
Viewed by 551
Abstract
High heat flux brings about severe thermal problems for light-emitting diode (LED) automotive headlamps in narrow heat removal spaces, which will degrade their performance and lifespan. This study proposes an easily fabricated and feasible 1.3 mm thick 2D T-shaped in-plane ultra-thin vapor chamber [...] Read more.
High heat flux brings about severe thermal problems for light-emitting diode (LED) automotive headlamps in narrow heat removal spaces, which will degrade their performance and lifespan. This study proposes an easily fabricated and feasible 1.3 mm thick 2D T-shaped in-plane ultra-thin vapor chamber (UTVC) for cooling the high heat flux of LED automotive headlamps. The effects of heating modes, unequal input heat load, and orientations on the thermal performance of the T-shaped UTVC are investigated. The results show that double-sided heating can improve the temperature uniformity of the T-shaped UTVC and reduce the thermal resistance compared to the single-sided heating. The lowest thermal resistances under single-sided and double-sided heating are 1.127 K/W at 12 W and 0.898 K/W at 16 W, respectively. When the total power is identical, the proposed 2D T-shaped UTVC can work effectively at unequal input power. The orientations have a significant impact on the thermal performance of the 2D T-shaped UTVC, and the thermal performance under different orientations changes with anti-gravity state < horizontal state < gravity-assisted state. The proposed T-shaped UTVC can work effectively under diverse operating ranges. Full article
(This article belongs to the Special Issue Functional Materials and Microdevices, 2nd Edition)
Show Figures

Figure 1

22 pages, 11551 KiB  
Article
Adaptive Freeform Optics Design and Multi-Objective Genetic Optimization for Energy-Efficient Automotive LED Headlights
by Shaohui Xu, Xing Peng and Ci Song
Photonics 2025, 12(4), 388; https://doi.org/10.3390/photonics12040388 - 16 Apr 2025
Viewed by 618
Abstract
In addressing the design imperatives of automotive headlight miniaturization and energy conservation, this paper puts forth a design methodology for vehicle lighting systems that is predicated on free surface optics and an intelligent optimization algorithm. The establishment of the energy mapping relationship between [...] Read more.
In addressing the design imperatives of automotive headlight miniaturization and energy conservation, this paper puts forth a design methodology for vehicle lighting systems that is predicated on free surface optics and an intelligent optimization algorithm. The establishment of the energy mapping relationship between the light source surface and the target surface is predicated on relevant performance standards. The numerical calculation is then integrated with MATLAB R2022a to obtain the free-form surface coordinate points and establish a three-dimensional model. To optimize the parameter design, a genetic algorithm is employed to fine-tune the design parameter θmax, thereby attaining the optimal θmax that strikes a balance between volume and luminous efficiency. The experimental results demonstrate that by integrating the optimal incidence angle into the design of the high beam and low beam, the final simulation results show that the optical efficiency of the low beam is 88.89%, and the optical efficiency of the high beam is 89.40%. This enables the automotive headlamp system to achieve a balance between volume and luminous efficiency. The free-form lamp design framework proposed in this study provides a reference for the compact design and intelligent optimization of the lamp system. Full article
(This article belongs to the Special Issue New Perspectives in Micro-Nano Optical Design and Manufacturing)
Show Figures

Figure 1

15 pages, 11371 KiB  
Article
Thermal and Optical Characterization of Polycarbonate Reflectors Doped with Titanium Dioxide Using Thermography
by Isabella Luísa Vieira Aquino Cassimiro, Juan Ignacio Tomsich, Matheus Pereira Porto, Rosemary do Bom Conselho Sales, Izabella Helena Werneck Soares Rezende, Nathan Funchal de Rezende and Maria Teresa Paulino Aguilar
Materials 2025, 18(7), 1628; https://doi.org/10.3390/ma18071628 - 2 Apr 2025
Cited by 1 | Viewed by 629
Abstract
Automotive reflectors used in headlamps and rear lamps are typically made of polycarbonate. However, this polymer has low light reflectivity. To enhance its reflective properties, it undergoes a metallization process, which significantly increases production costs. Therefore, it is of interest to develop polymers [...] Read more.
Automotive reflectors used in headlamps and rear lamps are typically made of polycarbonate. However, this polymer has low light reflectivity. To enhance its reflective properties, it undergoes a metallization process, which significantly increases production costs. Therefore, it is of interest to develop polymers that do not require metallization for the manufacturing of automotive reflectors. In this regard, the use of polycarbonate reinforced with titanium dioxide nanoparticles may be an alternative. Studies indicate that incorporating these nanoparticles can improve the degradation temperature and mechanical properties of the composites. In the case of automotive reflectors, in addition to degradation due to temperature, it is crucial to assess the thermal diffusivity and reflectivity of these composites, thus ensuring the lighting performance of the component. Studies on such characteristics in polycarbonates with titanium dioxide nanoparticles are mostly limited to investigations of hardness and optical properties using Raman and UV–Vis spectroscopy tests. This article investigates the thermal and lighting performance of polycarbonate (PC) samples with 10 wt% titanium dioxide (TiO2) nanoparticles and automotive reflectors with the same chemical composition. The thermal stability of PC and PC-10%TiO2 was analyzed by thermogravimetry (TGA), whereas the reflectors were evaluated using active infrared thermography. Spectral thermographic analysis in the mid- and long-wave infrared range provided thermal diffusivity data for the polycarbonates and offered important insights into their optical behavior under operational conditions (up to 70 °C). Furthermore, illumination tests were conducted on PC-10%TiO2, using metalized polymeric reflectors commonly employed in the automotive industry as a reference. The TGA results showed that incorporating 10 wt% TiO2 into PC increased the degradation temperature from 167 °C to 495 °C. The long-wave infrared emissivity of PC-10%TiO2 (averaging 0.96) was 3% lower than that of polycarbonate. PC-10%TiO2 exhibited a thermal diffusivity of 0.20 mm2/s, which was 28.6% lower than that of PC, indicating greater thermal inertia due to the presence of nanoparticles. The lighting performance of the PC-10%TiO2 reflector was on average 4% lower than that of a commercially available metallized polycarbonate reflector. However, for automotive reflectors, this value meets the sector’s regulatory criteria. These findings suggest that PC-10%TiO2 has potential for use in the production of internal vehicle lighting reflectors, without significantly compromising light reflectivity, while offering the advantages of thermal stability and reduced heating around the reflector. Full article
Show Figures

Figure 1

22 pages, 5903 KiB  
Article
FPGA-Based Manchester Decoder for IEEE 802.15.7 Visible Light Communications
by Stefano Ricci, Stefano Caputo and Lorenzo Mucchi
Electronics 2025, 14(1), 96; https://doi.org/10.3390/electronics14010096 - 29 Dec 2024
Viewed by 1214
Abstract
Visible Light Communication (VLC) is a cutting-edge transmission technique where data is sent by modulating light intensity. Manchester On–Off Keying (OOK) is among the most used modulation techniques in VLC and is normed by IEEE 802.15.7 standard for wireless networks. Various Manchester decoder [...] Read more.
Visible Light Communication (VLC) is a cutting-edge transmission technique where data is sent by modulating light intensity. Manchester On–Off Keying (OOK) is among the most used modulation techniques in VLC and is normed by IEEE 802.15.7 standard for wireless networks. Various Manchester decoder schemes are documented in the literature, often leveraging minimal two-level analog-to-digital converters followed by straightforward digital logic. These methods often compromise performance for simplicity. However, the VLC applications in fields like automotive and/or aerospace require the maximum performance in terms of bit error rate (BER) with respect to Signal-to-Noise Ratio (SNR), together with a real-time low-latency implementation. In this work, we introduce a high-performance Manchester decoder and detail its implementation in a Field Programmable Gate Array (FPGA). The decoder operates by acquiring a fully resolved signal (12-bit resolution) and by calculating the phase of the transmitted bit. Additionally, the proposed decoder achieves and maintains synchronization with the incoming signal, tolerating frequency shifts and jitter up to 1%. The Manchester decoder was tested in a VLC system with automotive-certified headlamps, realizing an IEEE 802.15.7-compliant link at 100 kb/s. The proposed decoder ensures a BER below 10−2 for SNR > −12 dB and, compared to a standard decoder, achieves the same BER when the input signal has an SNR of 10 dB lower. Full article
(This article belongs to the Special Issue System-on-Chip (SoC) and Field-Programmable Gate Array (FPGA) Design)
Show Figures

Figure 1

16 pages, 11639 KiB  
Article
Tribological and Hygroscopic Behavior of Polybutylene Terephthalate/Acrylonitrile Styrene Acrylate (PBT/ASA) Nanocomposites with Graphene Nanofiller
by Pyoung-Chan Lee, Seo-Hwa Hong, Ji Taek Oh, Donghyeok Shin, Jae-Uk Jung, Youn Ki Ko, Jin Uk Ha, Myeong-Gi Kim and Beom-Gon Cho
Polymers 2024, 16(22), 3149; https://doi.org/10.3390/polym16223149 - 12 Nov 2024
Cited by 2 | Viewed by 1293
Abstract
Fogging in automotive headlamps is a significant issue that affects both aesthetics and functionality. This study investigates the use of graphene-based nanocomposites to mitigate fogging by enhancing the hygroscopic properties of polybutylene terephthalate/acrylonitrile styrene acrylate (PBT/ASA) composites commonly used in headlamps. The incorporation [...] Read more.
Fogging in automotive headlamps is a significant issue that affects both aesthetics and functionality. This study investigates the use of graphene-based nanocomposites to mitigate fogging by enhancing the hygroscopic properties of polybutylene terephthalate/acrylonitrile styrene acrylate (PBT/ASA) composites commonly used in headlamps. The incorporation of functionalized graphene improved the tensile and flexural strength of the nanocomposites, though it led to a reduction in elongation and melt flow. Additionally, the solid lubrication properties and increased surface hardness of the graphene contributed to enhanced wear resistance. The presence of graphene in the nanocomposites also reduced moisture diffusion, lowering the rates of both hygroscopic and desorption when compared to commercial PBT/ASA composites. Furthermore, the nanocomposites exhibited a reduction in maximum moisture uptake. These improvements are expected to reduce the absolute humidity inside the headlamp, thereby effectively mitigating the fogging issue. Full article
(This article belongs to the Special Issue Advances in Functional Polymer Nanocomposites)
Show Figures

Graphical abstract

20 pages, 1472 KiB  
Article
Machine Vision System for Automatic Adjustment of Optical Components in LED Modules for Automotive Lighting
by Silvia Satorres Martínez, Diego Manuel Martínez Gila, Sergio Illana Rico and Daniel Teba Camacho
Sensors 2023, 23(21), 8988; https://doi.org/10.3390/s23218988 - 5 Nov 2023
Cited by 2 | Viewed by 1966
Abstract
This paper presents a machine vision system that performs the automatic positioning of optical components in LED modules of automotive headlamps. The automatic adjustment of the module is a process of great interest at the industrial level, as it allows us to reduce [...] Read more.
This paper presents a machine vision system that performs the automatic positioning of optical components in LED modules of automotive headlamps. The automatic adjustment of the module is a process of great interest at the industrial level, as it allows us to reduce reworks, increasing the company profits. We propose a machine vision system with a flexible hardware–software structure that allows it to adapt to a wide range of LED modules. Its hardware is composed of image-capturing devices, which enable us to obtain the LED module light pattern, and mechanisms for manipulating and holding the module to be adjusted. Its software design follows a component-based approach which allows us to increase the reusage of the code, decreasing the time required for configuring any type of LED module. To assess the efficiency and robustness of the industrial system, a series of tests, using three commercial models of LED modules, have been performed. In all cases, the automatically adjusted LED modules followed the ECE R112 regulation for automotive lighting. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

14 pages, 762 KiB  
Article
A Novel Way of Optimizing Headlight Distributions Based on Real-Life Traffic and Eye-Tracking Data Part 2: Analysis of Real-World Traffic Environments Data in Germany
by Jonas Kobbert, Anil Erkan, John D. Bullough and Tran Quoc Khanh
Appl. Sci. 2023, 13(17), 9911; https://doi.org/10.3390/app13179911 - 1 Sep 2023
Cited by 1 | Viewed by 1579
Abstract
In order to find optimized headlight distributions based on real traffic data, a three-step approach has been chosen. Since the complete investigations are too extensive to fit into one single publication, this paper is the second of three papers. Over the course of [...] Read more.
In order to find optimized headlight distributions based on real traffic data, a three-step approach has been chosen. Since the complete investigations are too extensive to fit into one single publication, this paper is the second of three papers. Over the course of these papers, a novel way to optimize automotive light distributions based on real-life traffic and eye-tracking data is presented. Over all three papers, 119 test subjects participated in the studies, with over 15,000 km of driving, including recordings of gaze behavior, light data, detection distances and other objects in traffic. In the first paper, an ideal headlight distribution for straight roads with no other road users was identified. The second paper aims to collect the data required to modify this idealized headlight distribution for use on real roads. The first step is to find the extent to which real roads differ from an ideal, straight road. To do this, the German traffic space was analyzed. A new test vehicle recorded video and GPS data over a selected route. The video data were then evaluated by a machine learning algorithm. Object recognition software was used to find different traffic participants and road signs. Camera calibrations were used to find the exact angles of these objects. Using publicly available road data combined with the recorded GPS data, the video data were split into different road categories, and traffic object distributions were calculated for urban roads, country roads and motorways. The resulting analyses provided representative distributions of vehicles and highway signs along different types of roadways and roadway geometries. The GPS data were also used to find the curvature distributions along the selected route. These data were then used to optimize segment sizes for an adaptive driving beam. Overall, increasing the number of segments above 100 did not have appreciable benefits. These data will also be used in the third paper, where along the same route, the gaze distribution of drivers was recorded and analyzed. Full article
(This article belongs to the Special Issue Smart Lighting and Visual Safety)
Show Figures

Figure 1

12 pages, 562 KiB  
Article
A Novel Way of Optimizing Headlight Distributions Based on Real Life Traffic and Eye Tracking Data Part 1: Idealized Baseline Distribution
by Jonas Kobbert, Anil Erkan, John D. Bullough and Tran Quoc Khanh
Appl. Sci. 2023, 13(17), 9908; https://doi.org/10.3390/app13179908 - 1 Sep 2023
Cited by 2 | Viewed by 1562
Abstract
In order to find optimized headlight distributions based on real traffic data, a three-step approach is chosen. Since the complete investigations are too extensive to fit into a single publication, this paper is the first in a series of three publications. Over three [...] Read more.
In order to find optimized headlight distributions based on real traffic data, a three-step approach is chosen. Since the complete investigations are too extensive to fit into a single publication, this paper is the first in a series of three publications. Over three papers, a novel way to optimize automotive headlight distributions based on real-life traffic and eye-tracking data is presented, based on 119 test subjects who participated in over 15,000 km of driving, including recordings of gaze behavior, light data, detection distances, and other objects in traffic. In the present paper, a baseline headlight distribution is derived from a series of detection tests conducted under ideal conditions, with a total of three tests, each with 19–30 subjects, conducted within the same test environment. In the first test, the influence of low beam intensity on the detection of pedestrians on the sidewalk (5.0 m from the center of the driving lane) is investigated. In the second test, the influence of different high beam intensities was investigated for the same detection task. In the third test, the headlight distribution and intensity are kept constant at a representative high beam level, but the detection task is changed. In this test, the pedestrian detection target is placed along different detection angles, ranging from immediately adjacent to the road (2.5°) to 15.5 m away from the center of the driving lane (8.0°). As mentioned, all of these tests were conducted under ideal conditions, with the studies taking place on an airfield with a 1.2 km long straight road and normal road markings, but without oncoming traffic, tasks other than keeping the vehicle with cruise control within its lane, or other distracting objects present. The tests yielded two sets of data; the first is the intensity, based on the first two studies, needed to ensure sufficient intensity to detect objects under ideal conditions at distances needed for different driving speeds. The last test then uses these intensities and necessary variations in the required intensity to create an idealized, symmetric headlight distribution as a baseline for subsequent publications. Although the distribution applies only to passenger vehicles like the one used in the test, the same approach could be applied to other vehicle types. The second paper of this series will focus on real traffic objects and their distributions within the traffic space in order to identify relevant areas in headlight distribution when driving under real traffic conditions. The third paper of this series will analyze driver gaze distributions during real driving scenarios. The data from all three papers are used to create optimized headlight distributions, thereby showing how such an optimized distribution relates to current headlight distributions in terms of luminous flux, intensity, and overall distribution. Full article
(This article belongs to the Special Issue Smart Lighting and Visual Safety)
Show Figures

Figure 1

11 pages, 1561 KiB  
Article
A Novel Way of Optimizing Headlight Distributions Based on Real-Life Traffic and Eye Tracking Data Part 3: Driver Gaze Behaviour on Real Roads and Optimized Light Distribution
by Jonas Kobbert, Anil Erkan, John D. Bullough and Tran Quoc Khanh
Appl. Sci. 2023, 13(17), 9898; https://doi.org/10.3390/app13179898 - 1 Sep 2023
Cited by 1 | Viewed by 1533
Abstract
In order to find optimized headlight distributions based on real traffic data, a three-step approach has been chosen. The complete investigations are too extensive to fit into a single paper; this paper is the last of a three part series. Over the three [...] Read more.
In order to find optimized headlight distributions based on real traffic data, a three-step approach has been chosen. The complete investigations are too extensive to fit into a single paper; this paper is the last of a three part series. Over the three papers, a novel way to optimize automotive headlight distributions based on real-life traffic and eye tracking data is presented. Across all three papers, a total of 119 test subjects participated in the studies with over 15,000 km of driving, including recordings of gaze behaviour, light data, detection distances, and other objects in traffic. In this third paper, driver gaze behaviour is recorded while driving a 128 km round course, covering urban roads, country roads, and motorways. This gaze behaviour is then analysed and compared to prior work covering driver gaze behaviour. Comparing the gaze distributions with roadway object distributions from part two of this series, Analysis of Real-World Traffic Data in Germany and combining them with the idealized baseline headlight distribution from part one, different optimized headlight distributions can be generated. These headlight distributions can be optimized for different driving requirements based on the data that is used and weighting the different road types differently. The resulting headlight distribution is then compared to a standard light distribution in terms of the required luminous flux, angular distribution, and overall shape. Nonetheless, it is the overall approach that has been taken that we see as the primary novel outcome of this investigation, even more than the actual distribution resulting from this effort. Full article
(This article belongs to the Special Issue Smart Lighting and Visual Safety)
Show Figures

Figure 1

12 pages, 4112 KiB  
Article
Reducing Moisture Absorption in Polypropylene Nanocomposites for Automotive Headlamps Using Hydrophobicity-Modified Graphene/Montmorillonite
by Pyoung-Chan Lee, Dongwoo Kang, Ji Taek Oh, Jae Young Seo, Donghyeok Shin, Jae-Uk Jung, Youn Ki Ko, Jin Uk Ha and Myeong-Gi Kim
Nanomaterials 2023, 13(9), 1439; https://doi.org/10.3390/nano13091439 - 22 Apr 2023
Cited by 7 | Viewed by 1628
Abstract
Polypropylene (PP) is used as a housing material in automotive headlamps but can cause fogging as a result of absorbed moisture and temperature differences between the exterior and interior of the housing. In this study, PP was combined with a graphene/montmorillonite hybrid (MMT-G) [...] Read more.
Polypropylene (PP) is used as a housing material in automotive headlamps but can cause fogging as a result of absorbed moisture and temperature differences between the exterior and interior of the housing. In this study, PP was combined with a graphene/montmorillonite hybrid (MMT-G) to yield a nanocomposite with reduced moisture absorption. Crucially, the modified nanofiller had low hydrophilicity and good compatibility with the PP matrix. Notably, the water contact angle of the MMT-G improved by 676%. Furthermore, the maximum moisture absorption of the PP/MMT-G nanocomposites was reduced by up to 11.22% compared to that of commercial PP composites, and the weight of the headlamp housing was decreased by 3.6%. Therefore, the designed nanocomposites are expected to help mitigate headlamp fogging while slightly reducing the housing weight. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

10 pages, 2285 KiB  
Article
Hygroscopic Behavior of Polypropylene Nanocomposites Filled with Graphene Functionalized by Alkylated Chains
by Dongwoo Kang, Sung Hee Kim, Donghyeok Shin, Ji Taek Oh, Myeong-Gi Kim and Pyoung-Chan Lee
Nanomaterials 2022, 12(23), 4130; https://doi.org/10.3390/nano12234130 - 23 Nov 2022
Cited by 7 | Viewed by 1540
Abstract
Owing to stringent international environmental and fuel efficiency requirements for lightweight automotive systems, polymer composites have attracted widespread attention. Polypropylene (PP) is a widely employed commercial polymer because of its lightweight and low cost. In this study, PP nanocomposites were fabricated to reduce [...] Read more.
Owing to stringent international environmental and fuel efficiency requirements for lightweight automotive systems, polymer composites have attracted widespread attention. Polypropylene (PP) is a widely employed commercial polymer because of its lightweight and low cost. In this study, PP nanocomposites were fabricated to reduce the moisture absorption of PP composites in automotive headlamp housings. Alkylated chemically modified graphene (CMG-R) was synthesized to reduce the surface hydrophilicity of graphene and increase compatibility with the PP matrix. Fourier transform-infrared spectroscopy and scanning electron microscopy were performed to analyze the nanofillers. X-ray diffraction was performed to determine the interlayer spacing of the nanofiller resulting from surface treatment. Differential scanning calorimetry was used to analyze the crystallinity of the nanocomposites. The results indicated that the improved hydrophobicity of the nanofiller due to alkylation reduced the maximum moisture absorption of the PP nanocomposites by 15% compared to PP composites. The findings of this study are useful for reducing fogging in automotive headlamps. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

14 pages, 2114 KiB  
Article
Influence of Ambient Temperature on Optical Characteristics and Power Consumption of LED Lamp for Automotive Headlamp
by Chun-Hsin Chang, Tun-Ping Teng and Tun-Chien Teng
Appl. Sci. 2022, 12(22), 11443; https://doi.org/10.3390/app122211443 - 11 Nov 2022
Cited by 6 | Viewed by 1919
Abstract
In this study, the authors propose a method for evaluating the influence of ambient temperature (Ta) on the optical characteristics and power consumption of a LED lamp used for the automotive headlamp, which helps the designer to figure out the [...] Read more.
In this study, the authors propose a method for evaluating the influence of ambient temperature (Ta) on the optical characteristics and power consumption of a LED lamp used for the automotive headlamp, which helps the designer to figure out the acceptable range of the ambient temperature for the LED lamps to work well in the practical case. The LED lamp was fixed on the test holder and placed in a fixed position in the air circulation temperature control oven to measure the illuminance, spectrum in three different directions, and power consumption under various Ta. The experimental results indicate that Ta has little effect on the correlated color temperature (CCT), chromaticity coordinates, and angular distribution of the emitting light. In contrast, Ta has a significant effect on the lamp’s resistance, thus affecting illuminance and power consumption. When the Ta increased from 30 °C to 60 °C, the illuminance of the low beam and high beam decreased on average by 16.6% and 21.7%, respectively, while the power consumption of the low beam and high beam decreased on average by 21.4% and 22.2%, respectively. The drop in the luminous flux output indicates the probability of originally qualified automotive LED headlamps becoming unqualified in high Ta. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

12 pages, 650 KiB  
Article
Czech Drivers’ Glare Perception Survey
by Lucie Viktorová, Klára Mičková and Ladislav Stanke
Sustainability 2022, 14(14), 8922; https://doi.org/10.3390/su14148922 - 21 Jul 2022
Cited by 4 | Viewed by 2108
Abstract
Worldwide, road-users complain about glare from oncoming cars’ headlights, often blaming new light sources such as light-emitting diodes (LEDs). However, drivers’ own behavior and attitudes might contribute to the issue of glare. The aim of this research was to establish the prevalence of [...] Read more.
Worldwide, road-users complain about glare from oncoming cars’ headlights, often blaming new light sources such as light-emitting diodes (LEDs). However, drivers’ own behavior and attitudes might contribute to the issue of glare. The aim of this research was to establish the prevalence of on-road glare and its associations with drivers’ attitudes in a sample of Czech drivers. We used an online survey and gained responses from 539 passenger-car-drivers. The majority experienced glare at least once a week or almost daily, identifying mainly white- or bluish-colored headlights as the source of glare. However, about 60% of participants would prefer the view of the road that is provided by these sources, and an association was found between the preferred part of the lighting color spectrum and the perceived glare source color. A large proportion of drivers were also not aware of the specifics of the lighting sources that they used. These findings suggest the need for driver education in the area of automotive lighting and glare prevention. Full article
(This article belongs to the Topic New Perspectives on Lighting)
Show Figures

Figure 1

Back to TopTop