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Abstract: Owing to stringent international environmental and fuel efficiency requirements for
lightweight automotive systems, polymer composites have attracted widespread attention. Polypropy-
lene (PP) is a widely employed commercial polymer because of its lightweight and low cost. In
this study, PP nanocomposites were fabricated to reduce the moisture absorption of PP composites
in automotive headlamp housings. Alkylated chemically modified graphene (CMG-R) was syn-
thesized to reduce the surface hydrophilicity of graphene and increase compatibility with the PP
matrix. Fourier transform-infrared spectroscopy and scanning electron microscopy were performed
to analyze the nanofillers. X-ray diffraction was performed to determine the interlayer spacing of the
nanofiller resulting from surface treatment. Differential scanning calorimetry was used to analyze the
crystallinity of the nanocomposites. The results indicated that the improved hydrophobicity of the
nanofiller due to alkylation reduced the maximum moisture absorption of the PP nanocomposites
by 15% compared to PP composites. The findings of this study are useful for reducing fogging in
automotive headlamps.

Keywords: nanocomposites; graphene; moisture; automotive

1. Introduction

Nanofiller-reinforced polymer nanocomposites have been studied for use in various
fields, including automotive, architecture, and electronics. Examples of nanofillers for
reinforcement include graphene, carbon nanotubes, whiskers, nano-talc, mica, and mont-
morillonite (MMT) [1–6]. The mechanical properties of polymer nanocomposites generally
depend on the particle size, degree of dispersion, interfacial characteristics, and additive
content [7]. Incorporation of nanofiller has a significant effect on the melt flow and viscosity
of composite and parts processing [8]. The surface treatment of nanofillers is being actively
researched as uniform dispersion and interface characteristics are crucial to achieving
superior physical properties compared to general polymer composites [1–8]. Graphene, a
nanomaterial made of two-dimensional single layers of pure carbon, has recently emerged
as a nanofiller. It has remarkable properties such as excellent electrical conductivity, thermal
properties, mechanical strength, moisture barrier properties, and wear resistance. Owing
to these advantages, it is employed in various industries [9–13].

Polymer composites have attracted attention because international environmental and
fuel efficiency regulations require lightweight automotive systems. Polypropylene (PP) is a
commercial polymer that is widely used in several industries owing to its low cost and light
weight [14]. In particular, PP–talc composites are used in the internal, external, and electric
components of automotives, owing to their low cost and excellent formability. Headlamps
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that assist in safe night driving have also evolved because of recent advancements in
automotive technology. For more than a century, headlamps have served to illuminate
highways under low-light conditions. Although headlamps have recently transformed
beyond standard safety devices, their primary role of ensuring a proper field-of-view
during night driving has not changed. The internal temperature of headlamps increases
via the operation of the light source, and condensation occurs because of the temperature
difference with the external environment. This in turn occurs because of the moisture inside
the headlamp’s components [15–17], thereby requiring strategies to mitigate moisture
absorption of such components. The moisture resistance of polymers can be improved by
mixing an inorganic lamellar filler with an aspect ratio sufficient to alter the diffusion path
of water molecules [4–6,18,19].

PP–talc composites are used in the headlamps’ housing components and are thought
to be the primary source of moisture in headlamps. An organically modified graphene
filler is manufactured in this study to generate PP nanocomposites with poor hygroscopic
properties. An alkyl group with high compatibility with PP is grafted to enhance the
dispersibility of the graphene nanofiller [20]. The characteristics of the nanofiller created
are then analyzed, and the moisture absorption and thermal characteristics of the PP
nanocomposites are investigated

2. Materials and Methods
2.1. Materials

Octan-1-amine (>98.0%), decan-1-amine (>98.0%), and octadecan-1-amine (>98.0%)
were obtained from TCI (Tokyo, Japan) and used without additional pretreatment. PP was
prepared by mixing J370 (Lotte Chemical Co., Seoul, Republic of Korea) and CB5108 (Korea
Petrochemical Ind. Co., Seoul, Republic of Korea) in a 1:1 weight ratio. A KCNAP400 grade
talc (KOCH Co., Ltd., Seongnam-Si, Republic of Korea) was used. Chemically modified
graphene (CMG) was produced using 150 µm-grade graphite flakes purchased from the
Graphene Supermarket (Ronkonkoma, NY, USA).

2.2. Preparation of Alkylated CMG (CMG-R)

Graphene oxide was produced using the method presented in [13,21] (described
below), after which graphene functionalized with a linear alkyl group (CMG-R) was
synthesized through a surface alkylation reaction using three types of alkylamines: octan-
1-amine (CMG-R1, eight hydrocarbons per length of a linear alkyl chain), decan-1-amine
(CMG-R2, 10 hydrocarbons), and octadecane-1-amine (CMG-R3, 18 hydrocarbons). The
designed alkylated CMG (CMG-R) was able to interact with the alkyl chain of PP at the
molecular level.

First, 150 µm-grade graphite flakes (30 g, 1 wt equiv.) were added to a mixture of
H2SO4/H3PO4 (3600:400 mL) and KMnO4 (180 g, 3 wt equiv.) at a ratio of 9:1 and stirred
at 50 ◦C for 12 h. When the reaction was completed, the mixture was cooled to room
temperature (23 ◦C) and diluted using ice water (4000 mL) containing 30% H2O2 (3 mL).
Then, the nonoxidized graphite was removed through filtration, followed by centrifugation
at 4000 rpm for 2 h to precipitate oxidized graphite. The precipitate was washed at least
three times in a mixed solution of DI water (2000 mL), 30% HCl (2000 mL), and ethanol
(2000 mL) to obtain an aqueous graphite oxide solution. Finally, the 2 g/L aqueous graphite
oxide solution was subjected to ultrasonic treatment using an ultrasonic homogenizer for
more than 6 h to obtain a graphene oxide (GO) aqueous solution [13].

Second, to obtain linearly alkylated graphene to enhance the compatibility between
graphene and PP, a graphene surface alkylation reaction was performed using the three
aforementioned types of alkylamines. Initially, 500 mL of a 0.1% GO aqueous solution was
prepared via ultrasonic treatment for at least 2 h using an ultrasonic homogenizer and
10 g of octadecane-1-amine was added to 500 mL of ethanol. Subsequently, the ethanol
solution, which had been stirred for 1 h at 60 ◦C, was mixed with the GO aqueous solution
and stirred again for 40 h at 90 ◦C to initiate a surface alkylation reaction. The reaction
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product was cooled to room temperature, after which the precipitate was obtained via
centrifugation, washed five to eight times with ethanol, and filtered to obtain graphene.
The precipitate was dried in a convection oven at 60 ◦C for 4 h to obtain functionalized
graphene (CMG-R3) with a linearly alkylated surface and affinity toward PP in terms of the
molecular structure. CMG-R1 and CMG-R2 were also obtained after performing surface
functionalization reactions by varying the alkylamine type using the same method.

2.3. Preparation of Nanocomposites

The PP/CMG-R nanocomposites were fabricated using twin-screw extruders
(L/D = 40/1, 32 mm, Unee Plus Co., Hwaseong-si, Republic of Korea) with an extruder
temperature set to 210 ◦C at the feeder and 200 ◦C at the die hole with a rotor speed of
400 rpm. First, PP was supplied to the main feeder at 30 kg h−1 and additionally supplied
to the side feeder to achieve a talc content of 25 wt% (base sample). The nanocomposite was
then prepared by supplying PP to the side feeder to achieve CMG-R contents of 0.05, 0.1,
0.3, and 0.5 wt%. Samples with thicknesses of 1 mm were prepared for the moisture absorp-
tion test via injection molding (NE80 injection machine, Woojin Plaimm Co., Chungbuk,
Republic of Korea).

2.4. Characterization and Instruments

The nanofillers were analyzed using Fourier transform-infrared (FT-IR; Spectrum Two,
PerkinElmer, Waltham, MA, USA) spectroscopy and scanning electron microscopy (SEM;
Helios 5 Hydra CX, Thermo Fisher Scientific, Waltham, MA, USA). The interlayer spacing
of the nanofiller resulting from surface treatment was determined by X-ray diffraction
(XRD; EMPYREAN, Malvern Panalytical B.V, Malvern, UK). XRD using a Cu Kα radiation
(λ = 0.1542 nm) source was operated at 40 kV and 30 mA, and the data were selected within
the scattering angle ranges (2θ) of 15–40◦ at a rate of 2◦/min. The water contact angle
measurements were analyzed with PHEONIX-MT(T) (Surface & Electro-Optics Co., Suwon-
si, Republic of Korea) under ambient conditions (23 ◦C). Differential scanning calorimetry
(DSC) was used to analyze nanocomposite crystallinity at a heating rate of 5 ◦C/min in
the range of 50–200 ◦C. The moisture absorption of the nanocomposites was calculated by
measuring their weight before and after absorption experiments, which were conducted by
leaving the samples in a chamber (TH-G-180, Jeio Tech, Daejeon-si, Republic of Korea) at
85% RH for ca. 1500 h at different temperatures of 35, 50, and 80 ◦C. Moisture absorption
was determined by taking 15 measurements for each composition and averaging the results.

3. Results
3.1. Characterization of CMG-R

Figure 1a shows a schematic depicting the reactions of the linear alkylamines (R1, R2,
and R3) of various lengths with the graphene oxide surface. The hydroxyl and carboxyl
groups of the graphene oxide surface can introduce alkyl groups to the graphene surface
by reacting with the amine group of the linear alkylamine. Figure 1b–e shows SEM im-
ages of the CMG-R samples according to the length of the alkyl chain. GO (Figure 1b)
generally shows a smooth surface, whereas CMG-R forms randomly oriented large aggre-
gated domains. Aggregation is expected to occur when the solvents exhibit more polar
dispersibilities than GO, such as ethanol, and this is significantly increased as the alkyl
chain length increases [22].
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Figure 1. (a) Schematic of the graphene surface treatment process. Scanning electron microscopy
images of graphene oxide (b), CMG-R1 (c), CMG-R2 (d), and CMG-R3 (e).

Figure 2 presents the FT-IR spectra of GO and CMG-R. As shown in Figure 2 curve (a),
GO exhibits peaks at 1725, 1620, and 1055 cm−1, corresponding to C=O (carboxyl group),
C=C (aromatic group), and C–O–C (epoxide group) [22,23]. As shown in Figure 2 curves
(b)–(d), the CMG-R samples have two peaks in the region of 2850–2920 cm−1 and one peak
at 1486 cm−1, which are attributed to –CH of the alkyl group [19–24]. It is observed that the
intensity of the -CH peak increases with the length of the alkyl chain. Furthermore, peaks
denoting C–N and N-H appear at 1080 and 1570 cm−1, respectively. However, the peak
resulting from the carboxyl group of GO (1725 cm−1) is weakened. These FT-IR results
demonstrate that alkylation is effectively achieved.

XRD analysis was performed to investigate the interlayer structure of GO and CMG-R,
and the distance between graphene was calculated using Bragg’s law [25]:

Bragg’s Law, λ = 2d sinθ (λ = 1.54 Å, Cu Kα)

where λ, d, and θ denote the wavelength of the light source, lattice spacing, and angle
between the crystal surface and incident light, respectively. The d-spacing calculated
from the 2θ values of the peaks of each sample are 0.960 nm for GO, 0.408 nm for CMG-
R1, 0.416 nm for CMG-R2, and 0.428 nm for CMG-R3 (Figure 3). The typical reflection
peak (002) of the graphite in graphene oxides, which have their lattice spacing widened
because of the oxidation of graphene, is broadened, and the 2θ of the peak shifts to a
low angle [1,24,25]. This occurs because oxygen-containing functional groups form on the
graphene sheet surface, thereby weakening the van der Waals interactions between the
graphene sheets. The peak at (002) is generated after the alkylated reaction has occurred, as
the crystal structure of the graphene sheet is restacked by reduction and functionalization.
The d-spacing increases as the length of the alkylamine chain increases (Figure 3). This
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indicates that the graphene sheet does not aggregate as strongly as graphite even after
drying, and dispersion is facilitated during compounding with the polymer matrix.
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Figure 3. X-ray diffraction patterns of graphene oxide (GO) and the CMG-R samples.

Figure 4 shows the water contact angle measurements of GO and CMG-R. The surface
of GO exhibits hydrophilic properties because of the hydroxyl and carboxyl groups, thereby
exhibiting a low contact angle (53.5◦). However, the contact angle of the CMG-R surface
treated with the linear alkylamine increases owing to the hydrophobicity of the alkyl group.
CMG-R3, which has a longer alkyl chain than CMG-R1 and CMG-R2, is expected to be
more hydrophobic. Therefore, we selected CMG-R3, which exhibits superior hydrophobic
properties, to fabricate the PP nanocomposites.
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3.2. Characterization of Nanocomposites

Figure 5 shows the degree of crystallinity of the nanocomposite materials with vary-
ing nano-additive contents. The crystallinities of the PP/CMG-R nanocomposites were
measured using DSC, which can be calculated using the following equation [26]:

Xc =
∆Hm

(
mt/mp

)
∆H0

× 100

where ∆Hm denotes the melting enthalpy, ∆H0 denotes the theoretical enthalpy of PP at
100% crystallinity (207.1 J g−1), mt denotes the total mass of the sample, and mp denotes the
mass of PP in the sample. As shown in Figure 5, the crystallinity increases with the nano-
additive content because a small amount of graphene potentially serves as a nucleating
agent to enhance the crystallinity of PP. However, excess graphene (0.5 wt% in this study)
has been confirmed to interfere with and reduce the crystallinity of nanocomposites. The
crystallinity of the polymer is likely to interfere with moisture diffusion.
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Figure 6 shows TGA profiles of the PP/CMG-R nanocomposites. The addition of
CMG-R enhances the thermal stability when compared to the PP–talc composite. The
weight loss that occurs above 420 ◦C is caused by the gradation of the PP chains and
CMG-R decomposition. Notably, clear improvement in the thermal stabilities of the PP
nanocomposites is observed with the addition of a small amount of CMG-R. However,
thermal degradation occurs rapidly at 0.5% loading. The exact mechanism of the above-
mentioned phenomenon has not been elucidated; nevertheless, the thermal stabilities of
nanocomposites is improving because the degradation products have difficulty penetrating
graphene layers. Therefore, the thermal stabilities of the nanocomposite materials were
improved at low filler contents. However, graphene promotes the thermal decomposition
of the nanocomposite materials, acting as a heat source domain. Consequently, the thermal
stabilities of the PP nanocomposites were significantly enhanced at low CMG-R loadings
rather than at high CMG-R loadings [20].
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Figure 7 shows the maximum moisture absorption (Mmax.) of the nanocomposites
based on the CMG-R content and atmospheric temperature. Many studies have been con-
ducted on the moisture absorption behavior of polymer materials [5,19,27–29]. Fick’s 2nd
Law, a diffusion equation, can be derived from Fick’s 1st Law and the Law of Conservation
of Mass. This law explains the diffusion coefficient (D) via the accumulation of water
in a sample as a function of time. The diffusion coefficient is fundamentally interpreted
as an energy activation process and can be expressed as an Arrhenius relationship that
exponentially depends on the activation energy and temperature. Accordingly, as shown
in Figure 7, moisture absorption increases as the atmospheric temperature increases.

A lower CMG-R content results in higher moisture absorption (Figure 7) because of
the strong hydrophobicity of CMG-R; it prevents moisture dispersion inside the nanocom-
posite. Furthermore, the moisture in the nanocomposite may be distributed in the overall
noncrystalline matrix, including the noncrystalline sections of the polymer and functional
groups in CMG-R [5]. Therefore, the increased moisture absorption in CMG-R 0.5 wt% may
be attributed to a decrease in the crystallinity of the nanocomposite.

This study verified the moisture absorption reduction effect of the fabricated CMG-R
in PP nanocomposites. However, housing fabrication and headlamp assembly are required
to measure the effect of decreased fogging in real headlamps. As part of our future work,
we intend to fabricate a headlamp with the PP nanocomposites and test its efficacy.
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4. Conclusions
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