Reducing Moisture Absorption in Polypropylene Nanocomposites for Automotive Headlamps Using Hydrophobicity-Modified Graphene/Montmorillonite
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Nanofiller Preparation
2.3. Nanocomposite Preparation
2.4. Characterization and Instruments
3. Results and Discussion
3.1. Nanofiller Characterization
3.2. Nanocomposite Characterization
3.3. Application as a Headlamp Housing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Watson, J.C.; Dumnov, G.; Muslaev, A.; Ivanov, A.; Shtilkind, S. Condensation Modeling during Automotive Lighting Product Development Using CFD Simulation. SAE Int. J. Passeng. Cars—Mech. Syst. 2016, 9, 507–516. [Google Scholar] [CrossRef]
- Guzej, M.; Zachar, M. CFD Simulation of Defogging Effectivity in Automotive Headlamp. Energies 2019, 12, 2609. [Google Scholar] [CrossRef][Green Version]
- Singh, R.; Kuzhikkali, R.; Shet, N.; Natarajan, S.; Kizhedath, G.; Arumugam, M. Automotive LED Headlamp Defogging: Experimental and Numerical Investigation; SAE Technical Paper; SAE: Warrendale, PA, USA, 2016. [Google Scholar] [CrossRef]
- Drapala, E. Experimental Study on Water Condensation in Automotive Headlamp; SAE Technical Paper; SAE: Warrendale, PA, USA, 2010. [Google Scholar] [CrossRef]
- Bielecki, J.W.; Chang, M.; Poorman, T. Effect of Moisture Absorption in Plastic on Automotive Lamp Venting; SAE Technical Paper; SAE: Warrendale, PA, USA, 2004. [Google Scholar] [CrossRef]
- Kim, B.R.; Jeoung, S.K.; Ko, V.K.; Ha, J.U.; Kim, Y.W.; Lee, S.Y.; Kim, J.; Lee, J.H.; Lee, P.C. Study of Dimensional Changes Depending on Moisture Sorption of Change in Polymeric Materials for Automotive Exterior Lamp. Polymer-Korea 2018, 42, 1030–1034. [Google Scholar] [CrossRef]
- Kim, Y.W.; Kim, B.R.; Ko, Y.K.; Jeoung, S.K.; Lee, S.Y.; Kim, J.S.; Lee, J.H.; Lee, P.C. Study of Moisture Desorption in Polymer Materials for Automotive Lamp. Trans. Korean Soc. Automot. Eng. 2018, 26, 638–645. [Google Scholar] [CrossRef]
- Stamm, M.; Carlowitz, B. Plastics, Properties and Testing. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2000. [Google Scholar] [CrossRef]
- Gahleitner, M.; Paulik, C. Polypropylene and Other Polyolefins. In Brydson’s Plastics Materials; Butterworth-Heinemann: Oxford, UK, 2017; pp. 279–309. [Google Scholar]
- Gates, W.P.; Aldridge, L.P.; Carnero-Guzman, G.G.; Mole, R.A.; Yu, D.; Iles, G.N.; Klapproth, A.; Bordallo, H.N. Water Desorption and Absorption Isotherms of Sodium Montmorillonite: A QENS Study. Appl. Clay Sci. 2017, 147, 97–104. [Google Scholar] [CrossRef]
- Vlasveld, D.P.N.; Groenewold, J.; Bersee, H.E.N.; Picken, S.J. Moisture Absorption in Polyamide-6 Silicate Nanocomposites and Its Influence on the Mechanical Properties. Polymer 2005, 46, 12567–12576. [Google Scholar] [CrossRef]
- Saravanan, S.; Ramamurthy, P.C.; Madras, G. Effects of Temperature and Clay Content on Water Absorption Characteristics of Modified MMT Clay/Cyclic Olefin Copolymer Nanocomposite Films: Permeability, Dynamic Mechanical Properties and the Encapsulated Organic Device Performance. Compos. Part B Eng. 2015, 73, 1–9. [Google Scholar] [CrossRef]
- Paul, D.R.; Robeson, L.M. Polymer Nanotechnology: Nanocomposites. Polymer 2008, 49, 3187–3204. [Google Scholar] [CrossRef][Green Version]
- Chen, Y.; Li, D.; Yang, W.; Xiao, C. Enhancement of Mechanical, Thermal and Tribological Properties of AAPS-Modified Graphene Oxide/ Polyamide 6 Nanocomposites. Compos. Part B Eng. 2018, 138, 55–65. [Google Scholar] [CrossRef]
- Raji, M.; Mekhzoum, M.E.M.; Rodrigue, D.; el kacem Qaiss, A.; Bouhfid, R. Effect of Silane Functionalization on Properties of Polypropylene/Clay Nanocomposites. Compos. Part B Eng. 2018, 146, 106–115. [Google Scholar] [CrossRef]
- Bee, S.L.; Abdullah, M.A.A.; Mamat, M.; Bee, S.T.; Sin, L.T.; Hui, D.; Rahmat, A.R. Characterization of Silylated Modified Clay Nanoparticles and Its Functionality in PMMA. Compos. Part B Eng. 2017, 110, 83–95. [Google Scholar] [CrossRef]
- Kang, D.; Kim, S.H.; Shin, D.; Oh, J.T.; Kim, M.G.; Lee, P.C. Hygroscopic Behavior of Polypropylene Nanocomposites Filled with Graphene Functionalized by Alkylated Chains. Nanomaterials 2022, 12, 4130. [Google Scholar] [CrossRef] [PubMed]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.C.; Kim, S.Y.; Ko, Y.K.; Ha, J.U.; Jeoung, S.K.; Shin, D.; Kim, J.H.; Kim, M.G. Tribological Properties of Polyamide 46/Graphene Nanocomposites. Polymers 2022, 14, 1139. [Google Scholar] [CrossRef]
- Mekhzoum, M.E.M.; Essabir, H.; Rodrigue, D.; Qaiss, A.e.K.; Bouhfid, R. Graphene/Montmorillonite Hybrid Nanocomposites Based on Polypropylene: Morphological, Mechanical, and Rheological Properties. Polym. Compos. 2018, 39, 2046–2053. [Google Scholar] [CrossRef]
- Jlassi, K.; Krupa, I.; Chehimi, M.M. Overview: Clay Preparation, Properties, Modification. In Clay-Polymer Nanocomposites; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 1–28. [Google Scholar] [CrossRef]
- Shanmugharaj, A.M.; Yoon, J.H.; Yang, W.J.; Ryu, S.H. Synthesis, Characterization, and Surface Wettability Properties of Amine Functionalized Graphene Oxide Films with Varying Amine Chain Lengths. J. Colloid Interface Sci. 2013, 401, 148–154. [Google Scholar] [CrossRef]
- Nimita Jebaranjitham, J.; Mageshwari, C.; Saravanan, R.; Mu, N. Fabrication of Amine Functionalized Graphene Oxide—AgNPs Nanocomposite with Improved Dispersibility for Reduction of 4-Nitrophenol. Compos. Part B Eng. 2019, 171, 302–309. [Google Scholar] [CrossRef]
- Daud, N.A.; Chieng, B.W.; Ibrahim, N.A.; Talib, Z.A.; Muhamad, E.N.; Abidin, Z.Z. Functionalizing Graphene Oxide with Alkylamine by Gamma-Ray Irradiation Method. Nanomaterials 2017, 7, 135. [Google Scholar] [CrossRef][Green Version]
- de Mello Ferreira Guimarães, A.; Ciminelli, V.S.T.; Vasconcelos, W.L. Smectite Organofunctionalized with Thiol Groups for Adsorption of Heavy Metal Ions. Appl. Clay Sci. 2009, 42, 410–414. [Google Scholar] [CrossRef]
- Amir Faiz, M.S.; Che Azurahanim, C.A.; Raba’ah, S.A.; Ruzniza, M.Z. Low Cost and Green Approach in the Reduction of Graphene Oxide (GO) Using Palm Oil Leaves Extract for Potential in Industrial Applications. Results Phys. 2020, 16, 102954. [Google Scholar] [CrossRef]
- Yun, S.S.; Shin, D.H.; Jang, K.S. Influence of Ionomer and Cyanuric Acid on Antistatic, Mechanical, Thermal, and Rheological Properties of Extruded Carbon Nanotube (CNT)/Polyoxymethylene (POM) Nanocomposites. Polymers 2022, 14, 1849. [Google Scholar] [CrossRef] [PubMed]
- Helle, R.H.; Lemu, H.G. A Case Study on Use of 3D Scanning for Reverse Engineering and Quality Control. Mater. Today Proc. 2021, 45, 5255–5262. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, P.-C.; Kang, D.; Oh, J.T.; Seo, J.Y.; Shin, D.; Jung, J.-U.; Ko, Y.K.; Ha, J.U.; Kim, M.-G. Reducing Moisture Absorption in Polypropylene Nanocomposites for Automotive Headlamps Using Hydrophobicity-Modified Graphene/Montmorillonite. Nanomaterials 2023, 13, 1439. https://doi.org/10.3390/nano13091439
Lee P-C, Kang D, Oh JT, Seo JY, Shin D, Jung J-U, Ko YK, Ha JU, Kim M-G. Reducing Moisture Absorption in Polypropylene Nanocomposites for Automotive Headlamps Using Hydrophobicity-Modified Graphene/Montmorillonite. Nanomaterials. 2023; 13(9):1439. https://doi.org/10.3390/nano13091439
Chicago/Turabian StyleLee, Pyoung-Chan, Dongwoo Kang, Ji Taek Oh, Jae Young Seo, Donghyeok Shin, Jae-Uk Jung, Youn Ki Ko, Jin Uk Ha, and Myeong-Gi Kim. 2023. "Reducing Moisture Absorption in Polypropylene Nanocomposites for Automotive Headlamps Using Hydrophobicity-Modified Graphene/Montmorillonite" Nanomaterials 13, no. 9: 1439. https://doi.org/10.3390/nano13091439
APA StyleLee, P.-C., Kang, D., Oh, J. T., Seo, J. Y., Shin, D., Jung, J.-U., Ko, Y. K., Ha, J. U., & Kim, M.-G. (2023). Reducing Moisture Absorption in Polypropylene Nanocomposites for Automotive Headlamps Using Hydrophobicity-Modified Graphene/Montmorillonite. Nanomaterials, 13(9), 1439. https://doi.org/10.3390/nano13091439