Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (150)

Search Parameters:
Keywords = attitude maneuvering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4462 KiB  
Article
Precise Cruise Control for Fixed-Wing Aircraft Based on Proximal Policy Optimization with Nonlinear Attitude Constraints
by Haotian Wu, Yan Guo, Juliang Cao, Zhiming Xiong and Junda Chen
Aerospace 2025, 12(8), 670; https://doi.org/10.3390/aerospace12080670 - 27 Jul 2025
Viewed by 216
Abstract
In response to the issues of severe pitch oscillation and unstable roll attitude present in existing reinforcement learning-based aircraft cruise control methods during dynamic maneuvers, this paper proposes a precise control method for aircraft cruising based on proximal policy optimization (PPO) with nonlinear [...] Read more.
In response to the issues of severe pitch oscillation and unstable roll attitude present in existing reinforcement learning-based aircraft cruise control methods during dynamic maneuvers, this paper proposes a precise control method for aircraft cruising based on proximal policy optimization (PPO) with nonlinear attitude constraints. This method first introduces a combination of long short-term memory (LSTM) and a fully connected layer (FC) to form the policy network of the PPO method, improving the algorithm’s learning efficiency for sequential data while avoiding feature compression. Secondly, it transforms cruise control into tracking target heading, altitude, and speed, achieving a mapping from motion states to optimal control actions within the policy network, and designs nonlinear constraints as the maximum reward intervals for pitch and roll to mitigate abnormal attitudes during maneuvers. Finally, a JSBSim simulation platform is established to train the network parameters, obtaining the optimal strategy for cruise control and achieving precise end-to-end control of the aircraft. Experimental results show that, compared to the cruise control method without dynamic constraints, the improved method reduces heading deviation by approximately 1.6° during ascent and 4.4° during descent, provides smoother pitch control, decreases steady-state altitude error by more than 1.5 m, and achieves higher accuracy in overlapping with the target trajectory during hexagonal trajectory tracking. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

16 pages, 3620 KiB  
Article
Wind Tunnel Experimental Study on Dynamic Coupling Characteristics of Flexible Refueling Hose–Drogue System
by Yinzhu Wang, Jiangtao Huang, Qisheng Chen, Enguang Shan and Yufeng Guo
Aerospace 2025, 12(7), 646; https://doi.org/10.3390/aerospace12070646 - 21 Jul 2025
Viewed by 169
Abstract
During the process of flexible aerial refueling, the flexible structure of the hose drogue assembly is affected by internal and external interference, such as docking maneuvering, deformation of the hose, attitude changes, and body vibrations, causing the hose to swing and the whipping [...] Read more.
During the process of flexible aerial refueling, the flexible structure of the hose drogue assembly is affected by internal and external interference, such as docking maneuvering, deformation of the hose, attitude changes, and body vibrations, causing the hose to swing and the whipping phenomenon, which greatly limits the success rate and safety of aerial refueling operations. Based on a 2.4 m transonic wind tunnel, high-speed wind tunnel test technology of a flexible aerial refueling hose–drogue system was established to carry out experimental research on the coupling characteristics of aerodynamics and multi-body dynamics. Based on the aid of Videogrammetry Model Deformation (VMD), high-speed photography, dynamic balance, and other wind tunnel test technologies, the dynamic characteristics of the hose–drogue system in a high-speed airflow and during the approach of the receiver are obtained. Adopting flexible multi-body dynamics, a dynamic system of the tanker, hose, drogue, and receiver is modeled. The cable/beam model is based on an arbitrary Lagrange–Euler method, and the absolute node coordinate method is used to describe the deformation, movement, and length variation in the hose during both winding and unwinding. The aerodynamic forces of the tanker, receiver, hose, and drogue are modeled, reflecting the coupling influence of movement of the tanker and receiver, the deformation of the hose and drogue, and the aerodynamic forces on each other. The tests show that during the approach of the receiver (distance from 1000 mm to 20 mm), the sinking amount of the drogue increases by 31 mm; due to the offset of the receiver probe, the drogue moves sideways from the symmetric plane of the receiver. Meanwhile, the oscillation magnitude of the drogue increases (from 33 to 48 and from 48 to 80 in spanwise and longitudinal directions, respectively). The simulation results show that the shear force induced by the oscillation of the hose and the propagation velocity of both the longitudinal and shear waves are affected by the hose stiffness and Mach number. The results presented in this work can be of great reference to further increase the safety of aerial refueling. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

17 pages, 9561 KiB  
Article
Magnetic Data Correction for Fluxgate Magnetometers on a Paramagnetic Unmanned Surface Vehicle: A Comparative Analysis in Marine Surveys
by Seonggyu Choi, Mijeong Kim, Yosup Park, Gidon Moon and Hanjin Choe
Sensors 2025, 25(14), 4511; https://doi.org/10.3390/s25144511 - 21 Jul 2025
Viewed by 344
Abstract
Unmanned Surface Vehicle (USV) offers a cost-effective platform for high-resolution marine magnetic surveys using shipborne fluxgate magnetometers. However, platform-induced magnetic interference and electromagnetic interference (EMI) can degrade data quality, even with paramagnetic hulls. This study evaluates fluxgate magnetometer data acquired from a paramagnetic-hulled [...] Read more.
Unmanned Surface Vehicle (USV) offers a cost-effective platform for high-resolution marine magnetic surveys using shipborne fluxgate magnetometers. However, platform-induced magnetic interference and electromagnetic interference (EMI) can degrade data quality, even with paramagnetic hulls. This study evaluates fluxgate magnetometer data acquired from a paramagnetic-hulled USV. Noise characterization identified EMI and maneuver-induced high-frequency noise, the latter of which was effectively reduced through low-pass filtering. We compared four different correction approaches addressing both vessel attitude and magnetization. The results demonstrate that the paramagnetic hull significantly reduces magnetic interference and shortens the duration of viscous magnetization (VM) effects caused by eddy currents in the platform, compared to conventional ferromagnetic vessels. Nonetheless, residual magnetization from onboard ferromagnetic components still requires correction. A method utilizing all nine components of the susceptibility tensor demonstrated improved accuracy and stability. Despite corrections, low-frequency VM-related noise during azimuth changes and a consistent absolute offset (~200 nT) remain when compared to towed scalar magnetometer data. These findings validate the use of paramagnetic USV for vector magnetic surveys, highlighting their benefit in VM mitigation while emphasizing the need for further development in VM correction and offset correction to achieve high-precision measurements. Full article
Show Figures

Figure 1

23 pages, 3056 KiB  
Article
Methodology for Evaluating Collision Avoidance Maneuvers Using Aerodynamic Control
by Desiree González Rodríguez, Pedro Orgeira-Crespo, Jose M. Nuñez-Ortuño and Fernando Aguado-Agelet
Remote Sens. 2025, 17(14), 2437; https://doi.org/10.3390/rs17142437 - 14 Jul 2025
Viewed by 206
Abstract
The increasing congestion of low Earth orbit (LEO) has raised the need for efficient collision avoidance strategies, especially for CubeSats without propulsion systems. This study proposes a methodology for evaluating passive collision avoidance maneuvers using aerodynamic control via a satellite’s Attitude Determination and [...] Read more.
The increasing congestion of low Earth orbit (LEO) has raised the need for efficient collision avoidance strategies, especially for CubeSats without propulsion systems. This study proposes a methodology for evaluating passive collision avoidance maneuvers using aerodynamic control via a satellite’s Attitude Determination and Control System (ADCS). By adjusting orientation, the satellite modifies its exposed surface area, altering atmospheric drag and lift forces to shift its orbit. This new approach integrates atmospheric modeling (NRLMSISE-00), aerodynamic coefficient estimation using the ADBSat panel method, and orbital simulations in Systems Tool Kit (STK). The LUME-1 CubeSat mission is used as a reference case, with simulations at three altitudes (500, 460, and 420 km). Results show that attitude-induced drag modulation can generate significant orbital displacements—measured by Horizontal and Vertical Distance Differences (HDD and VDD)—sufficient to reduce collision risk. Compared to constant-drag models, the panel method offers more accurate, orientation-dependent predictions. While lift forces are minor, their inclusion enhances modeling fidelity. This methodology supports the development of low-resource, autonomous collision avoidance systems for future CubeSat missions, particularly in remote sensing applications where orbital precision is essential. Full article
(This article belongs to the Special Issue Advances in CubeSat Missions and Applications in Remote Sensing)
Show Figures

Figure 1

17 pages, 2032 KiB  
Article
Measurement Techniques for Highly Dynamic and Weak Space Targets Using Event Cameras
by Haonan Liu, Ting Sun, Ye Tian, Siyao Wu, Fei Xing, Haijun Wang, Xi Wang, Zongyu Zhang, Kang Yang and Guoteng Ren
Sensors 2025, 25(14), 4366; https://doi.org/10.3390/s25144366 - 12 Jul 2025
Viewed by 358
Abstract
Star sensors, as the most precise attitude measurement devices currently available, play a crucial role in spacecraft attitude estimation. However, traditional frame-based cameras tend to suffer from target blur and loss under high-dynamic maneuvers, which severely limit the applicability of conventional star sensors [...] Read more.
Star sensors, as the most precise attitude measurement devices currently available, play a crucial role in spacecraft attitude estimation. However, traditional frame-based cameras tend to suffer from target blur and loss under high-dynamic maneuvers, which severely limit the applicability of conventional star sensors in complex space environments. In contrast, event cameras—drawing inspiration from biological vision—can capture brightness changes at ultrahigh speeds and output a series of asynchronous events, thereby demonstrating enormous potential for space detection applications. Based on this, this paper proposes an event data extraction method for weak, high-dynamic space targets to enhance the performance of event cameras in detecting space targets under high-dynamic maneuvers. In the target denoising phase, we fully consider the characteristics of space targets’ motion trajectories and optimize a classical spatiotemporal correlation filter, thereby significantly improving the signal-to-noise ratio for weak targets. During the target extraction stage, we introduce the DBSCAN clustering algorithm to achieve the subpixel-level extraction of target centroids. Moreover, to address issues of target trajectory distortion and data discontinuity in certain ultrahigh-dynamic scenarios, we construct a camera motion model based on real-time motion data from an inertial measurement unit (IMU) and utilize it to effectively compensate for and correct the target’s trajectory. Finally, a ground-based simulation system is established to validate the applicability and superior performance of the proposed method in real-world scenarios. Full article
Show Figures

Figure 1

28 pages, 3444 KiB  
Review
A Review on Liquid Pulsed Laser Propulsion
by Sai Li, Baosheng Du, Qianqian Cui, Jifei Ye, Haichao Cui, Heyan Gao, Ying Wang, Yongzan Zheng and Jianhui Han
Aerospace 2025, 12(7), 604; https://doi.org/10.3390/aerospace12070604 - 2 Jul 2025
Viewed by 525
Abstract
Laser propulsion is a new conceptual technology that drives spacecraft and possesses advantages such as high specific impulse, large payload ratio, and low launch cost. It has potential applications in diverse areas, such as space debris mitigation and removal, microsatellite attitude control, and [...] Read more.
Laser propulsion is a new conceptual technology that drives spacecraft and possesses advantages such as high specific impulse, large payload ratio, and low launch cost. It has potential applications in diverse areas, such as space debris mitigation and removal, microsatellite attitude control, and orbital maneuvering. Liquid pulse laser propulsion has notable advantages among the various laser propulsion systems. We review the concept and the theory of liquid laser propulsion. Then, we categorize the current state of research based on three types of propellants—non-energetic liquids, energetic liquids, and liquid metals—and provide an analysis of the propulsion characteristics arising from the laser ablation of liquids such as water, glycidyl azide polymer (GAP), hydroxylammonium nitrate (HAN), and ammonium dinitramide (ADN). We also discuss future research directions and challenges of pulsed liquid laser propulsion. Although experiments have yielded encouraging outcomes due to the distinctive properties of liquid propellants, continued investigation is essential to ensure that this technology performs reliably in actual aerospace applications. Consistent results under both spatial and ground conditions remain a key research content for fully realizing its potential. Full article
(This article belongs to the Special Issue Laser Propulsion Science and Technology (2nd Edition))
Show Figures

Figure 1

32 pages, 36414 KiB  
Article
Stealth-Maneuver Generation for Non-Stealth Aircraft: A Control Barrier Function Approach
by Mustafa Demir, Ege C. Altunkaya, Akın Çatak, Fatih Erol, Emre Koyuncu, İbrahim Özkol and Uğur Zengin
Aerospace 2025, 12(6), 478; https://doi.org/10.3390/aerospace12060478 - 28 May 2025
Viewed by 483
Abstract
Aiming to address the vulnerability of non-stealth aircraft to radar detection due to inherent design limitations, this paper proposes a method to generate maneuvers that reduce an aircraft’s radar cross-section (RCS) value below a specified threshold. The proposed method employs control barrier functions [...] Read more.
Aiming to address the vulnerability of non-stealth aircraft to radar detection due to inherent design limitations, this paper proposes a method to generate maneuvers that reduce an aircraft’s radar cross-section (RCS) value below a specified threshold. The proposed method employs control barrier functions and leverages the relationship between control inputs and the RCS. Due to confidentiality concerns, the required RCS database for the F-16 aircraft was generated through analyses performed using the created geometry. The results are compared with a virtual path that excludes RCS constraints and does not alter the aircraft’s attitude. Simulations reveal that 89.6% of the cases using the proposed method achieve a mean RCS value below the threshold, compared to only 1.26% for the virtual path. Moreover, the ratio of the time during which the RCS constraint is successfully met to the total simulation time averages over 78% across all simulations, demonstrating the method’s effectiveness in reducing the RCS value below the specified threshold. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

22 pages, 1739 KiB  
Article
Design of a Lorentz Force Magnetic Bearing Group Steering Law Based on an Adaptive Weighted Pseudo-Inverse Law
by Chenyu Wang, Lei Li, Weijie Wang, Yanbin Zhao, Baiqi Li and Yuan Ren
Sensors 2025, 25(10), 3242; https://doi.org/10.3390/s25103242 - 21 May 2025
Viewed by 495
Abstract
Aiming at the high-precision torque output and saturation singularity avoidance problems in Lorentz force magnetic bearing (LFMB) swarms for magnetic levitation spacecraft, this study designs a manipulation law based on an adaptive weighted pseudo-inverse law. The system monitors each magnetic bearing’s working state [...] Read more.
Aiming at the high-precision torque output and saturation singularity avoidance problems in Lorentz force magnetic bearing (LFMB) swarms for magnetic levitation spacecraft, this study designs a manipulation law based on an adaptive weighted pseudo-inverse law. The system monitors each magnetic bearing’s working state in real time using high-precision position and current sensors. As the key input for the adaptive weighted pseudo-inverse control law, the sensor data’s measurement accuracy directly determines torque distribution effectiveness and attitude control precision. First, considering electromagnetic back-EMF effects, individual LFMB dynamics are modeled via the equivalent magnetic circuit method, with working principles elucidated. Subsequently, saturation coefficients for LFMB swarms are designed. Incorporating spacecraft maneuvering requirements, a genetic optimization algorithm establishes the optimal mounting configuration under task constraints. Considering the LFMB swarm configuration characteristics, this study proposes an adaptive weighted pseudo-inverse maneuvering law tailored to operational constraints. By designing an adaptive weighting matrix, the maneuvering law adjusts each LFMB’s torque output in real time, reducing residual saturation effects on attitude control speed and accuracy. Simulation results demonstrate that the proposed mounting configuration and adaptive weighted pseudo-inverse maneuvering law effectively mitigate saturation singularity’s impact on attitude control accuracy while reducing total energy consumption by 22%, validating the method’s effectiveness and superiority. Full article
Show Figures

Figure 1

16 pages, 1807 KiB  
Article
Collision Detection and Recovery Control of Drones Using Onboard Inertial Measurement Unit
by Xisheng Huang, Guangjun Liu and Yugang Liu
Drones 2025, 9(5), 380; https://doi.org/10.3390/drones9050380 - 18 May 2025
Viewed by 765
Abstract
This paper presents a strategy for collision detection and recovery control of drones using an onboard Inertial Measurement Unit (IMU). The collision detection algorithm compares the expected response of the drone with the measurements from the IMU to identify and characterize collisions. The [...] Read more.
This paper presents a strategy for collision detection and recovery control of drones using an onboard Inertial Measurement Unit (IMU). The collision detection algorithm compares the expected response of the drone with the measurements from the IMU to identify and characterize collisions. The recovery controller implements a gain scheduling approach, adjusting its parameters based on the characteristics of the collision and the drone’s attitude. Simulations were conducted to compare the proposed collision detection strategy with a popular detection method with fixed thresholds, and the simulation results showed that the proposed approach outperformed the existing method in terms of detection accuracy. Furthermore, the proposed collision detection and recovery control approaches were tested with physical experiments using a custom-built drone. The experimental results confirmed that the proposed collision detection algorithm was able to distinguish between actual collisions and aggressive flight maneuvers, and the recovery controller can recover the drone within 0.8 s. Full article
(This article belongs to the Special Issue Flight Control and Collision Avoidance of UAVs)
Show Figures

Figure 1

16 pages, 4397 KiB  
Article
Simulation and Optimization of Multi-Phase Terminal Trajectory for Three-Dimensional Anti-Ship Missiles Based on Hybrid MOPSO
by Jiandong Sun, Shixun You, Di Hua, Zhiwei Xu, Peiyao Wang and Zihang Yang
Algorithms 2025, 18(5), 278; https://doi.org/10.3390/a18050278 - 8 May 2025
Viewed by 610
Abstract
In high-dynamic battlefield environments, anti-ship missiles must perform intricate attitude adjustments and energy management within time constraints to hit a target accurately. Traditional optimization methods face challenges due to the high speed, flexibility, and varied constraints inherent to anti-ship missiles. To overcome these [...] Read more.
In high-dynamic battlefield environments, anti-ship missiles must perform intricate attitude adjustments and energy management within time constraints to hit a target accurately. Traditional optimization methods face challenges due to the high speed, flexibility, and varied constraints inherent to anti-ship missiles. To overcome these challenges, this research introduces a three-dimensional (3D) multi-stage trajectory optimization approach based on the hybrid multi-objective particle swarm optimization algorithm (MOPSO-h). A multi-stage optimization model is developed for terminal trajectory, dividing the flight process into three stages: cruising, altitude adjustment, and penetration dive. Dynamic equations are formulated for each stage, incorporating real-time observations and overload constraints and ensuring the trajectory remains smooth, continuous, and compliant with physical limitations. The proposed algorithm integrates an adaptive hybrid mutation strategy, effectively balancing global search with local exploitation, thus preventing premature convergence. The simulation results demonstrate that, in typical scenarios, the mean miss distance optimized by MOPSO-h remains no greater than 2.34 m, while the terminal landing angle is consistently no less than 85.68°. Furthermore, MOPSO-h enables the missile’s cruise altitude and speed, driven by multiple models, to maintain long-term stability, ensuring that the maneuver overload adheres to physical constraints. This research provides a rigorous and practical solution for anti-ship missile trajectory design and engagement with shipborne air defense systems in high-dynamic environments, achieved through a multi-stage collaborative optimization mechanism and error analysis. Full article
Show Figures

Figure 1

18 pages, 611 KiB  
Article
Finite-Time Control for Maneuvering Aircraft with Input Constraints and Disturbances
by Zhangyong Zhou, Yaohua Shen and Mou Chen
Actuators 2025, 14(4), 194; https://doi.org/10.3390/act14040194 - 14 Apr 2025
Cited by 1 | Viewed by 435
Abstract
In this paper, a finite-time control method integrating a high-order disturbance observer (HODO) and a finite-time auxiliary system (FTAS) is proposed for maneuvering aircraft under disturbances and input constraints. To attenuate the adverse effects of disturbances, the HODOs were designed to obtain their [...] Read more.
In this paper, a finite-time control method integrating a high-order disturbance observer (HODO) and a finite-time auxiliary system (FTAS) is proposed for maneuvering aircraft under disturbances and input constraints. To attenuate the adverse effects of disturbances, the HODOs were designed to obtain their estimations, which were then incorporated into the control channel as feedforward compensation. To solve the issue of input constraints, a novel FTAS was developed to ensure effective control performance. To achieve rapid attitude tracking for maneuvering aircraft and address the issue of singularity caused by the virtual control derivative, finite-time control with a piecewise function technique was employed. Furthermore, the stability analysis of the closed-loop system was conducted through Lyapunov stability theory. Finally, the efficacy of the proposed control method was demonstrated by simulation results. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

24 pages, 5207 KiB  
Article
Finite-Time Formation Control for Clustered UAVs with Obstacle Avoidance Inspired by Pigeon Hierarchical Behavior
by Zhaoyu Zhang, Yang Yuan and Haibin Duan
Drones 2025, 9(4), 276; https://doi.org/10.3390/drones9040276 - 4 Apr 2025
Cited by 1 | Viewed by 725
Abstract
To address the formation control issue of multiple unmanned aerial vehicles (UAVs), a finite-time control scheme based on terminal sliding mode (TSM) is investigated in this paper. A quadcopter UAV with the vertical takeoff property is considered, with cascaded kinematics composed of rotational [...] Read more.
To address the formation control issue of multiple unmanned aerial vehicles (UAVs), a finite-time control scheme based on terminal sliding mode (TSM) is investigated in this paper. A quadcopter UAV with the vertical takeoff property is considered, with cascaded kinematics composed of rotational and translational loops. To strengthen the application in the low-cost UAV system, the applied torque is synthesized with an auxiliary rotational system, which can avoid utilizing direct attitude measurement. Furthermore, a terminal sliding mode surface is established and employed in the finite-time formation control protocol (FTFCP) as the driven thrust of multiple UAVs over an undirected topology in the translational system. To maintain the safe flight of the UAV clusters in an environment to avoid collision with obstacles or with other UAV neighbors, a pigeon-hierarchy-inspired obstacle avoidance protocol (PHOAP) is proposed. By imitating the interactive hierarchy that exists among the homing pigeon flocks, the collision avoidance scheme is separately enhanced to generate the repulsive potential field for the leader maneuver target and the follower UAV cluster. Subsequently, the collision avoidance laws based on pigeon homing behavior are combined with the finite-time sliding mode formation protocol, and the applied torque is attached as a cascaded structure in the attitude loop to synthesize an obstacle avoidance cooperative control framework. Finally, simulation scenarios of multiple UAVs to reach a desired formation among obstacles is investigated, and the effectiveness of the proposed approach is validated. Full article
(This article belongs to the Special Issue Biological UAV Swarm Control)
Show Figures

Figure 1

24 pages, 5235 KiB  
Article
An Innovative Priority-Aware Mission Planning Framework for an Agile Earth Observation Satellite
by Guangtong Zhu, Zixuan Zheng, Chenhao Ouyang, Yufei Guo and Pengyu Sun
Aerospace 2025, 12(4), 309; https://doi.org/10.3390/aerospace12040309 - 4 Apr 2025
Viewed by 2073
Abstract
Earth observation satellites, particularly agile Earth observation satellites (AEOSs) with enhanced attitude maneuverability, have become increasingly crucial in emergency response and disaster monitoring operations. Efficient mission planning for densely distributed ground targets with diverse priorities poses significant challenges, especially when considering strict attitude [...] Read more.
Earth observation satellites, particularly agile Earth observation satellites (AEOSs) with enhanced attitude maneuverability, have become increasingly crucial in emergency response and disaster monitoring operations. Efficient mission planning for densely distributed ground targets with diverse priorities poses significant challenges, especially when considering strict attitude maneuver constraints and time-sensitive requirements. To address these challenges, this paper proposes a target clusters and dual-timeline optimization (TCDO) framework that integrates priority-based geographical clustering with temporal–spatial coordination mechanisms for efficient mission planning. The proposed approach effectively maintains satellite maneuver constraints while achieving significant improvements in priority-based target acquisition and computational efficiency. Experimental results demonstrate the framework’s superior performance, achieving a 94% coverage rate and a 99.5% reduction in computation time compared to traditional scheduling methods, such as linear programming and genetic algorithms. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

20 pages, 6823 KiB  
Article
Hybrid Heading Estimation Approach for Micro Coaxial Drones Based on Motion-Adaptive Stabilization and APEKF
by Haoming Yang, Xukai Ding, Liye Zhao and Xingyu Chen
Drones 2025, 9(4), 255; https://doi.org/10.3390/drones9040255 - 27 Mar 2025
Viewed by 520
Abstract
Coaxial drones have garnered popularity owing to their energy efficiency and compact design. However, the precise navigation of these drones in complex and dynamic flight scenarios is limited by inaccuracies in heading/yaw estimation. Conventional heading estimation methods rely on magnetometers and real-time kinematic [...] Read more.
Coaxial drones have garnered popularity owing to their energy efficiency and compact design. However, the precise navigation of these drones in complex and dynamic flight scenarios is limited by inaccuracies in heading/yaw estimation. Conventional heading estimation methods rely on magnetometers and real-time kinematic Global Navigation Satellite Systems (RTK-GNSS), which directly measure heading angle. However, the small size of microdrones restricts the placement of magnetometers away from magnetic interference and prevents the use of directional antennas. Moreover, single-antenna alignment algorithms are highly susceptible to errors caused by nonlinearity, leading to significant inaccuracies in heading estimation. To address these challenges, this paper proposes a hybrid heading estimation approach that integrates Motion-Adaptive Stabilization with an Angle-Parameterized Extended Kalman Filter (APEKF). This method utilizes low-cost GNSS, a magnetometer, and an Inertial Measurement Unit (IMU). Heading is initialized based on the drone’s static attitude, with an adaptive threshold established during takeoff to account for varying flight conditions. As the drone reaches higher altitudes, heading estimation is further stabilized. GNSS velocity observations enhance estimation accuracy through horizontal maneuvering alignment achieved by incorporating multiple sub-filter techniques and residual-based fusion. In the simulations and onboard experiments in this study, the proposed heading estimation method demonstrated a precision of approximately 1.01° post-takeoff, with the alignment speed enhanced by 43%. Moreover, the method outperformed existing estimation techniques and, owing to its low computational overhead, can serve as a reliable full-stage backup across various drone applications. Full article
Show Figures

Figure 1

25 pages, 6012 KiB  
Article
Design of Flight Attitude Simulator for Plant Protection UAV Based on Simulation of Pesticide Tank Sloshing
by Pengxiang Ren, Junke Rong, Ruichang Zhao and Pei Cao
Agronomy 2025, 15(4), 822; https://doi.org/10.3390/agronomy15040822 - 26 Mar 2025
Viewed by 370
Abstract
Changes in the flight attitude of plant protection unmanned aerial vehicles (UAVs) can lead to oscillations in the liquid level of their medicine tanks, which may affect operational accuracy and stability, and could even pose a threat to flight safety. To address this [...] Read more.
Changes in the flight attitude of plant protection unmanned aerial vehicles (UAVs) can lead to oscillations in the liquid level of their medicine tanks, which may affect operational accuracy and stability, and could even pose a threat to flight safety. To address this issue, this article presents the design of a flight attitude simulator for crop protection UAVs, constructed on a six-degree-of-freedom motion platform. This simulator can replicate the various flight attitudes, such as emergency stops, turns, and point rotations, of plant protection UAVs. This article initially outlines the determination and design process for the structural parameters and 3D model of the flight attitude simulator specific to plant protection UAVs. Subsequently, simulations were performed to analyze liquid sloshing in the pesticide tank under various liquid flushing ratios during flight conditions, including emergency stops, climbs, and circling maneuvers. Finally, the influence of liquid sloshing on the flight stability of the plant protection UAVs in different attitudes and with varying liquid flushing ratios is presented. These results serve as a cornerstone for optimizing the flight parameters of plant protection UAVs, analyzing the characteristics of pesticide application, and designing effective pesticide containers. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

Back to TopTop