error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = atomic-level dispersion of a promoter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1502 KB  
Article
Hydroxyl Radical Scavenging by Aucubin: A Mechanistic Study
by Kunzhe Jiang, Jingran Wang, Wang Yang, Ying Xiong, Meiling Chen, Qiang Zhou and Yanhong Wang
Antioxidants 2025, 14(11), 1342; https://doi.org/10.3390/antiox14111342 - 7 Nov 2025
Viewed by 727
Abstract
This study investigates the antioxidant properties of aucubin (AU), an iridoid compound, focusing on its ability to scavenge hydroxyl radicals (OH) through its hydroxyl functional groups. Gaussian software was employed to model and validate the underlying antioxidant reaction mechanisms. Three primary [...] Read more.
This study investigates the antioxidant properties of aucubin (AU), an iridoid compound, focusing on its ability to scavenge hydroxyl radicals (OH) through its hydroxyl functional groups. Gaussian software was employed to model and validate the underlying antioxidant reaction mechanisms. Three primary pathways were examined: hydrogen atom transfer (HAT), sequential electron transfer-proton transfer (SET-PT), and sequential proton loss–electron transfer (SPLET). All calculations were performed using the M06-2X functional within density functional theory (DFT) at the def2-TZVP level, incorporating Grimme’s D3 dispersion correction and the implicit solvation model based on solute electron density (SMD) for water. Various thermodynamic parameters were determined to analyze and compare the antioxidant reactions, including the O-H bond dissociation energy (BDE), ionization potential (IP), proton dissociation enthalpy (PDE), electron transfer enthalpy (ETE), and proton affinity (PA) of the hydroxy groups. The results indicated that the HAT mechanism is the dominant pathway in the scavenging of OH radicals by AU. The key active sites were identified as the 6-OH group in the aglycone structure and the 6′-OH group in the sugar moiety. Moreover, the polar aqueous environment promoted O-H bond homolysis to enhance the antioxidant activity. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

12 pages, 4827 KB  
Article
DFT Insights into the Adsorption of Organophosphate Pollutants on Mercaptobenzothiazole Disulfide-Modified Graphene Surfaces
by Kayim Pineda-Urbina, Gururaj Kudur Jayaprakash, Juan Pablo Mojica-Sánchez, Andrés Aparicio-Victorino, Zeferino Gómez-Sandoval, José Manuel Flores-Álvarez and Ulises Guadalupe Reyes-Leaño
Compounds 2025, 5(4), 43; https://doi.org/10.3390/compounds5040043 - 22 Oct 2025
Viewed by 456
Abstract
Organophosphate pesticides are among the most persistent and toxic contaminants in aquatic environments, requiring effective strategies for detection and remediation. In this work, density functional theory (DFT) calculations were employed to investigate the adsorption of nine representative organophosphates (glyphosate, malathion, diazinon, azinphos-methyl, fenitrothion, [...] Read more.
Organophosphate pesticides are among the most persistent and toxic contaminants in aquatic environments, requiring effective strategies for detection and remediation. In this work, density functional theory (DFT) calculations were employed to investigate the adsorption of nine representative organophosphates (glyphosate, malathion, diazinon, azinphos-methyl, fenitrothion, parathion-methyl, disulfoton, tokuthion, and ethoprophos) on mercaptobenzothiazole disulfide (MBTS) and MBTS-functionalized graphene (G–MBTS). All simulations were performed in aqueous solution using the SMD solvation model with dispersion corrections and counterpoise correction for basis set superposition error. MBTS alone displayed a range of affinities, suggesting potential selectivity across the organophosphates, with adsorption energies ranging from 0.27 to 1.05 eV, malathion being the strongest binder and glyphosate the weakest. Anchoring of MBTS to graphene was found to be highly favorable (1.26 eV), but the key advantage is producing stable adsorption platforms that promote planar orientations and ππ/dispersive interactions. But the key advantage is not stronger binding but the tuning of interfacial electronic properties: all G–MBTS–OP complexes show uniform, narrow HOMO-LUMO gaps (∼0.79 eV) and systematically larger charge redistribution. These features are expected to enhance electrochemical readout even when adsorption strength was comparable or slightly lower (0.47–0.88 eV) relative to MBTS alone. A Quantum Theory of Atoms in Molecules (QTAIM) analysis of the G–MBTS–malathion complex revealed a dual stabilization mechanism: multiple weak C–H⋯π interactions with graphene combined with stronger S⋯O and hydrogen-bonding interactions with MBTS. These results advance the molecular-level understanding of pesticide–surface interactions and highlight MBTS-functionalized graphene as a promising platform for the selective detection of organophosphates in water. Full article
Show Figures

Figure 1

23 pages, 8618 KB  
Article
MWCNT Localization and Electrical Percolation in Thin Films of Semifluorinated PMMA Block Copolymers
by Ulrike Staudinger, Andreas Janke, Frank Simon, Lothar Jakisch, Eva Bittrich, Petr Formanek, Lukas Mielke, Hendrik Schlicke, Qiong Li, Kathrin Eckstein and Doris Pospiech
Polymers 2025, 17(9), 1271; https://doi.org/10.3390/polym17091271 - 6 May 2025
Cited by 1 | Viewed by 906
Abstract
Diblock copolymers (BCP) consisting of poly(methyl methacrylate) (PMMA) and poly(1H,1H,2H,2H-perfluorodecyl methacrylate) (PsfMA) blocks are employed as templates for controlled dispersion and localization of multi-walled carbon nanotubes (MWCNT). Short MWCNT are modified with perfluoroalkyl groups to increase the compatibility between MWCNT and the semifluorinated [...] Read more.
Diblock copolymers (BCP) consisting of poly(methyl methacrylate) (PMMA) and poly(1H,1H,2H,2H-perfluorodecyl methacrylate) (PsfMA) blocks are employed as templates for controlled dispersion and localization of multi-walled carbon nanotubes (MWCNT). Short MWCNT are modified with perfluoroalkyl groups to increase the compatibility between MWCNT and the semifluorinated (PsfMA) phase and to promote a defined arrangement of MWCNT in the BCP morphology. Thin BCP and BCP/MWCNT composite films are prepared by dip-coating using tetrahydrofuran as solvent with dispersed MWCNT. Atomic force microscopy, scanning and transmission electron microscopy reveal a strong tendency of the BCP to form micelle-like domains consisting of a PMMA shell and a semifluorinated PsfMA core, embedded in a soft phase, containing also semifluorinated blocks. MWCNT preferentially localized in the embedding phase outside the micelles. Perfluoroalkyl-modification leads to significant improvement in the dispersion of MWCNT, both in the polymer solution and the resulting nanocomposite film due to increased interaction of MWCNT with the semifluorinated side chains in the soft phase outside the micelle domains. As a result, reliable electrical conductivity is observed in contrast to films with non-modified MWCNT. Thus, well-dispersed, modified MWCNT provide a defined electrical conduction path at the micrometer level, which is interesting for applications in electronics and vapor sensing. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

21 pages, 10683 KB  
Article
Effect of Stress Aging on Strength, Toughness and Corrosion Resistance of Al-10Zn-3Mg-3Cu Alloy
by Dongchu Yang, Xi Zhao, Xianwei Ren, Shiliang Yan, Yihan Gao and Hongbin Liu
Materials 2025, 18(1), 181; https://doi.org/10.3390/ma18010181 - 3 Jan 2025
Cited by 2 | Viewed by 1168
Abstract
The 7000 series aluminum alloy represented by Al-Zn-Mg-Cu has good strength and toughness and is widely used in the aerospace field. However, its high Zn content results in poor corrosion resistance, limiting its application in other fields. In order to achieve the synergistic [...] Read more.
The 7000 series aluminum alloy represented by Al-Zn-Mg-Cu has good strength and toughness and is widely used in the aerospace field. However, its high Zn content results in poor corrosion resistance, limiting its application in other fields. In order to achieve the synergistic improvement of both strength and corrosion resistance, this study examines the response of strength, toughness and corrosion resistance of a high-strength aluminum alloy tail frame under aging conditions with external stresses of 135 MPa, 270 MPa and 450 MPa. The results show that with the increase in the external stress level, the strength of the alloy improves, while its corrosion resistance decreases. An optimal balance of strength, toughness and corrosion resistance is achieved at the conditions of 270 MPa-120–24 h. This phenomenon can be attributed to two main factors: first, lattice defects such as vacancy and dislocation are introduced into the stress aging process. The introduction of a vacancy makes it easier for neighboring solute atoms to migrate there. This makes the crystal precipitates more dispersed. Also, the number of precipitates in the matrix increases from 2650 to 3117, and the size is refined from 2.96 nm to 2.64 nm. At the same time, the dislocation entanglement within the crystal structure promotes the dislocation strengthening mechanism and promotes the solute atoms to have enough channels for migration. Since too many dislocations can cause the crystal to become brittle and thus reduce its strength, entangled dislocations hinder the movement of the dislocations, thereby increasing the strength of the alloy. Secondly, under the action of external force, the precipitated phase is discontinuous, which hinders the corrosion expansion at the grain boundary, thus improving the corrosion resistance of the alloy. At low-stress states, the binding force of vacancy is stronger, the precipitation free zone (PFZ) is significantly inhibited, and the intermittent distribution effect of intergranular precipitates is the most obvious. As a result, the self-corrosion current decreases from 1.508 × 10−4 A∙cm−2 in the non-stress state to 1.999 × 10−5 A∙cm−2, representing an order of magnitude improvement. Additionally, the maximum depth of intergranular corrosion is reduced from 274.9 μm in the non-stress state to 237.7 μm. Full article
Show Figures

Figure 1

14 pages, 4750 KB  
Article
Understanding Lignin Dissolution with Urea and the Formation of a Lignin Nano-Aggregate: A Multiscale Approach
by Jinxin Lin, Liheng Chen, Yanlin Qin and Xueqing Qiu
Nanomaterials 2024, 14(7), 593; https://doi.org/10.3390/nano14070593 - 27 Mar 2024
Cited by 6 | Viewed by 2876
Abstract
This study employs a combined computational and experimental approach to elucidate the mechanisms governing the interaction between lignin and urea, impacting lignin dissolution and subsequent aggregation behavior. Molecular dynamics (MD) simulations reveal how the urea concentration and temperature influence lignin conformation and interactions. [...] Read more.
This study employs a combined computational and experimental approach to elucidate the mechanisms governing the interaction between lignin and urea, impacting lignin dissolution and subsequent aggregation behavior. Molecular dynamics (MD) simulations reveal how the urea concentration and temperature influence lignin conformation and interactions. Higher urea concentrations and temperatures promote lignin dispersion by disrupting intramolecular interactions and enhancing solvation. Density functional theory (DFT) calculations quantitatively assess the interaction energy between lignin and urea, supporting the findings from MD simulations. Anti-solvent precipitation demonstrates that increasing the urea concentration hinders the self-assembly of lignin nanoclusters. The findings provide valuable insights for optimizing lignin biorefinery processes by tailoring the urea concentration and temperature for efficient extraction and dispersion. Understanding the influence of urea on lignin behavior opens up avenues for designing novel lignin-based materials with tailored properties. This study highlights the potential for the synergetic application of MD simulations and DFT calculations to unravel complex material interactions at the atomic level. Full article
(This article belongs to the Special Issue Biomass-Derived Nanocomposites)
Show Figures

Figure 1

22 pages, 18333 KB  
Article
Influence of Topography and Composition of Commercial Titanium Dental Implants on Cell Adhesion of Human Gingiva-Derived Mesenchymal Stem Cells: An In Vitro Study
by Vanessa Campos-Bijit, Nicolás Cohn Inostroza, Rocío Orellana, Alejandro Rivera, Alfredo Von Marttens, Cristian Cortez and Cristian Covarrubias
Int. J. Mol. Sci. 2023, 24(23), 16686; https://doi.org/10.3390/ijms242316686 - 24 Nov 2023
Cited by 9 | Viewed by 3150
Abstract
The topography and composition of dental implant surfaces directly impact mesenchymal cell adhesion, proliferation, and differentiation, crucial aspects of achieving osseointegration. However, cell adhesion to biomaterials is considered a key step that drives cell proliferation and differentiation. The aim of this study was [...] Read more.
The topography and composition of dental implant surfaces directly impact mesenchymal cell adhesion, proliferation, and differentiation, crucial aspects of achieving osseointegration. However, cell adhesion to biomaterials is considered a key step that drives cell proliferation and differentiation. The aim of this study was to characterize characterize the topography and composition of commercial titanium dental implants manufactured with different surface treatments (two sandblasted/acid-etched (SLA) (INNO Implants, Busan, Republic of Korea; BioHorizonsTM, Oceanside, CA, USA) and two calcium phosphate (CaP) treated (Biounite®, Berazategui, Argentina; Zimmer Biomet, Inc., Warsaw, IN, USA)) and to investigate their influence on the process of cell adhesion in vitro. A smooth surface implant (Zimmer Biomet, Inc.) was used as a control. For that, high-resolution methodologies such as scanning electron microscopy (SEM), X-ray dispersive spectroscopy (EDX), laser scanning confocal microscopy (LSCM), and atomic force microscopy (AFM) were employed. Protein adsorption and retromolar gingival mesenchymal stem cells (GMSCs) adhesion to the implant surfaces were evaluated after 48 h. The adherent cells were examined by SEM and LSCM for morphologic and quantitative analyses. ANOVA and Tukey tests (α = 0.05) were employed to determine statistical significance. SEM revealed that INNO, BioHorizonsTM, and Zimmer implants have an irregular surface, whereas Biounite® has a regular topography consisting of an ordered pattern. EDX confirmed a calcium and phosphate layer on the Biounite® and Zimmer surfaces, and AFM exhibited different roughness parameters. Protein adsorption and cell adhesion were detected on all the implant surfaces studied. However, the Biounite® implant with CaP and regular topography showed the highest protein adsorption capacity and density of adherent GMSCs. Although the Zimmer implant also had a CaP treatment, protein and cell adhesion levels were lower than those observed with Biounite®. Our findings indicated that the surface regularity of the implants is a more determinant factor in the cell adhesion process than the CaP treatment. A regular, nanostructured, hydrophilic, and moderately rough topography generates a higher protein adsorption capacity and thus promotes more efficient cell adhesion. Full article
(This article belongs to the Special Issue Advances and Challenges in Dental Materials)
Show Figures

Figure 1

20 pages, 5044 KB  
Review
Comprehensive Review on Multifaceted Carbon Dot Nanocatalysts: Sources and Energy Applications
by Anju Singh, Saroj Raj Kafle, Mukesh Sharma and Beom Soo Kim
Catalysts 2023, 13(11), 1446; https://doi.org/10.3390/catal13111446 - 16 Nov 2023
Cited by 9 | Viewed by 3735
Abstract
In recent decades, several studies have been conducted on sustainability progress with high efficiency of renewable energies by utilizing advanced nano-module catalysts. Some collaborative studies advocate the unique characteristics of unconventional materials, including carbon nanotubes, nanosheets, nanoparticles, conducting polymers, integrated nano polymers, nano [...] Read more.
In recent decades, several studies have been conducted on sustainability progress with high efficiency of renewable energies by utilizing advanced nano-module catalysts. Some collaborative studies advocate the unique characteristics of unconventional materials, including carbon nanotubes, nanosheets, nanoparticles, conducting polymers, integrated nano polymers, nano enzymes, and zero-dimensional nanomaterials/carbon dots (CDs) at the atomic and molecular level to generate efficient energy from various biomass substrates. Nanotechnology-based catalysts are considered a crucial tool for revolutionizing various energy-related applications. This review article addresses the sustainable and scarce biomass resources to synthesize CDs, properties, mechanisms, and insights with the advancement of research on CDs as nanocatalysts in the field of energy applications. These materials possess exceptional and rapidly expanding features such as being non-toxic, biocompatible, having excellent electrocatalytic activity and photoluminescence, and being highly dispersible in water. Because of these advantages, they are appealing for use in energy conversion and as storage material. Moreover, the emphasis is placed on the function of CDs as nanocatalysts for energy storage devices, and relevant instances are provided to clarify the concepts. These advanced strategies of nanotechnology for energy storage and conversion are expected to play a vital role in promoting sustainability. Full article
(This article belongs to the Special Issue Nanotechnology in Catalysis, 2nd Edition)
Show Figures

Graphical abstract

9 pages, 3059 KB  
Communication
WCx-Supported RuNi Single Atoms for Electrocatalytic Oxygen Evolution
by Jirong Bai, Yaoyao Deng, Yuebin Lian, Quanfa Zhou, Chunyong Zhang and Yaqiong Su
Molecules 2023, 28(20), 7040; https://doi.org/10.3390/molecules28207040 - 12 Oct 2023
Cited by 1 | Viewed by 1959
Abstract
Single-atom catalysts anchored to oxide or carbonaceous substances are typically tightly coordinated by oxygen or heteroatoms, which certainly impact their electronic structure and coordination environment, thereby affecting their catalytic activity. In this study, we prepared a stable oxygen evolution reaction (OER) catalyst on [...] Read more.
Single-atom catalysts anchored to oxide or carbonaceous substances are typically tightly coordinated by oxygen or heteroatoms, which certainly impact their electronic structure and coordination environment, thereby affecting their catalytic activity. In this study, we prepared a stable oxygen evolution reaction (OER) catalyst on tungsten carbide using a simple pyrolysis method. The unique structure of tungsten carbide allows the atomic RuNi catalytic site to weakly bond to the surface W and C atoms. XRD patterns and HRTEM images of the WCx-RuNi showed the characteristics of phase-pure WC and W2C, and the absence of nanoparticles. Combined with XPS, the atomic dispersion of Ru/Ni in the catalyst was confirmed. The catalyst exhibits excellent catalytic ability, with a low overpotential of 330 mV at 50 mA/cm2 in 1 m KOH solutions, and demonstrates high long-term stability. This high OER activity is ascribed to the synergistic action of metal Ru/Ni atoms with double monomers. The addition of Ni increases the state density of WCx-RuNi near the Fermi level, promoting the adsorption of oxygen-containing intermediates and enhancing electron exchange. The larger proximity of the d band center to the Fermi level suggests a strong interaction between the d electrons and the valence or conduction band, facilitating charge transfer. Our research offers a promising avenue for reasonable utilization of inexpensive and durable WCx carrier-supported metal single-atom catalysts for electrochemical catalysis. Full article
Show Figures

Figure 1

13 pages, 3067 KB  
Article
Surface Morphology and Optical Properties of Hafnium Oxide Thin Films Produced by Magnetron Sputtering
by José de Jesús Araiza, Leo Álvarez-Fraga, Raúl Gago and Olga Sánchez
Materials 2023, 16(15), 5331; https://doi.org/10.3390/ma16155331 - 29 Jul 2023
Cited by 13 | Viewed by 4250
Abstract
Hafnium oxide films were deposited on sapphire and silicon (100) substrates using the DC reactive magnetron sputtering technique from a pure hafnium target at different discharge power levels. The influence of the cathode power on the chemical composition, morphology, crystallographic structure and optical [...] Read more.
Hafnium oxide films were deposited on sapphire and silicon (100) substrates using the DC reactive magnetron sputtering technique from a pure hafnium target at different discharge power levels. The influence of the cathode power on the chemical composition, morphology, crystallographic structure and optical properties of the films was investigated. X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX) and Fourier-transform infrared spectroscopy (FTIR) were employed to determine the chemical composition and bonding structure. In all cases, the films were found to be amorphous or nanocrystalline with increased crystalline content as the sputtering power was increased, according to XRD and FTIR. In addition, EDX showed that the films were oxygen-rich. The effect of power deposition on the surface topography and morphology of the films was studied using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The AFM and SEM images revealed the emergence of mound morphologies as the cathode power was increased. These features are related to blistering effects probably due to the presence of stress and its promotion within the film thickness. Finally, the optical properties showed an average transmission of 80% in the visible range, and the refractive index determined by spectral ellipsometry (SE) was found to be in the range of 1.85–1.92, close to the reported bulk value. SE was also used to study the film porosity observed by SEM, which can be related to the oxygen-rich character of the films. Full article
(This article belongs to the Special Issue Advanced Multifunctional Coatings for New Applications)
Show Figures

Figure 1

16 pages, 5702 KB  
Article
Microstructure and Wear Resistance of Laser-Clad Ni–Cu–Mo–W–Si Coatings on a Cu–Cr–Zr Alloy
by Xiaojun Zhao, Qi Zhong, Pengyuan Zhai, Pengyu Fan, Ruiling Wu, Jianxiao Fang, Yuxiang Xiao, Yuxiang Jiang, Sainan Liu and Wei Li
Materials 2023, 16(1), 284; https://doi.org/10.3390/ma16010284 - 28 Dec 2022
Cited by 7 | Viewed by 3329
Abstract
To improve the wear resistance of high-strength and high-conductivity Cu–Cr–Zr alloys in high-speed and heavy load friction environments, coatings including Ni–Cu, Ni–Cu-10(W,Si), Ni–Cu–10(Mo,W,Si), and Ni–Cu–15(Mo,W,Si) (with an atomic ratio of Mo,W to Si of 1:2) were prepared using coaxial powder-feeding laser cladding technology. [...] Read more.
To improve the wear resistance of high-strength and high-conductivity Cu–Cr–Zr alloys in high-speed and heavy load friction environments, coatings including Ni–Cu, Ni–Cu-10(W,Si), Ni–Cu–10(Mo,W,Si), and Ni–Cu–15(Mo,W,Si) (with an atomic ratio of Mo,W to Si of 1:2) were prepared using coaxial powder-feeding laser cladding technology. The microstructure and wear performance of coatings were chiefly investigated. The results revealed that (Mo,W)Si2 and MoNiSi phases are found in the Ni–Cu–10(Mo,W,Si) and Ni–Cu–15(Mo,W,Si) coating. WSi2 phases are found in the Ni–Cu–10(W,Si) coating. The degree of grain refinement in Ni–Cu–10(Mo,W,Si) was greater than that of the Ni–Cu–10(W,Si) coating after the effect of Mo. The excellent wear resistance and micro-hardness of the Ni–Cu–15(Mo,W,Si) coating were attributed to the increase in its dispersion phase, which were approximately 34.72 mg/km and 428 HV, 27.1% and 590% higher than the Cu–Cr–Zr substrate, respectively. The existence of silicide plays an important role in grain refinement due to the promotion of nucleation and the inhibition of grain growth. In addition, the wear mechanism transformed from adhesive wear in the Ni–Cu coating with no silicides to abrasive wear in the Ni–Cu–15(Mo,W,Si) coating with high levels of silicides. Full article
Show Figures

Figure 1

13 pages, 2697 KB  
Article
Atomic-Level Dispersion of Bismuth over Co3O4 Nanocrystals—Outstanding Promotional Effect in Catalytic DeN2O
by Sylwia Wójcik, Thomas Thersleff, Klaudia Gębska, Gabriela Grzybek and Andrzej Kotarba
Catalysts 2020, 10(3), 351; https://doi.org/10.3390/catal10030351 - 22 Mar 2020
Cited by 7 | Viewed by 5235
Abstract
A series of cobalt spinel catalysts doped with bismuth in a broad range of 0–15.4 wt % was prepared by the co-precipitation method. The catalysts were thoroughly characterized by several physicochemical methods (X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), Raman spectroscopy (µRS), X-ray [...] Read more.
A series of cobalt spinel catalysts doped with bismuth in a broad range of 0–15.4 wt % was prepared by the co-precipitation method. The catalysts were thoroughly characterized by several physicochemical methods (X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), Raman spectroscopy (µRS), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption analyzed with Brunaer-Emmett-Teller theory (N2-BET), work function measurements (WF)), as well as aberration-corrected scanning transmission electron microscopy (STEM) coupled with energy-dispersive X-ray spectroscopy (EDX) and electron energy-loss spectroscopy (EELS). The optimal bismuth promoter content was found to be 6.6 wt %, which remarkably enhanced the performance of the cobalt spinel catalyst, shifting the N2O decomposition (deN2O) temperature window (T50%) down from approximately 400 °C (for Co3O4) to 240 °C (for the 6.6 wt % Bi-Co3O4 catalyst). The high-resolution STEM images revealed that the high activity of the 6.6 wt % Bi-Co3O4 catalyst can be associated with an even, atomic-level dispersion (3.5 at. nm−2) of bismuth over the surface of cobalt spinel nanocrystals. The improvement in catalytic activity was accompanied by an observed increase in the work function. We concluded that Bi promoted mostly the oxygen recombination step of a deN2O reaction, thus demonstrating for the first time the key role of the atomic-level dispersion of a surface promoter in deN2O reactions. Full article
(This article belongs to the Special Issue Catalytic Decomposition of N2O and NO)
Show Figures

Graphical abstract

11 pages, 3422 KB  
Article
Effects of Different Melting Technologies on the Purity of Superalloy GH4738
by Zhengyang Chen, Shufeng Yang, Jinglong Qu, Jingshe Li, Anping Dong and Yu Gu
Materials 2018, 11(10), 1838; https://doi.org/10.3390/ma11101838 - 27 Sep 2018
Cited by 30 | Viewed by 4857
Abstract
The choice of melting technique is crucial for controlling the purity of a superalloy, which is especially important because purity has come to limit progress in the superalloy field. In this study, double- and triple-melting techniques were used to refine the GH4738 superalloy. [...] Read more.
The choice of melting technique is crucial for controlling the purity of a superalloy, which is especially important because purity has come to limit progress in the superalloy field. In this study, double- and triple-melting techniques were used to refine the GH4738 superalloy. Elemental analyses, inductively coupled plasma-atomic emission spectroscopy, X-ray diffraction analysis, scanning electron microscopy with energy-dispersive spectroscopy, high-temperature cupping machine, high-temperature fatigue testing machine, and Image-Pro Plus software were used to analyze and compare the contents of specific elements, the types and sizes of inclusions, the mechanical properties, and the probabilities of white spot formation using the two melting techniques. The effects of the different melting processes on the purity of the superalloy were systematically studied. In terms of controlling the presence of impurities, the triple-melting process resulted in lower levels of harmful N, S, and O impurities in the superalloy, the triple-melted superalloy also contained fewer types of inclusion of smaller sizes and in smaller amounts than the double-melted alloy. Triple melting also promotes tensile strength and fatigue life, and minimizes the probability of forming defects in the superalloy. Full article
Show Figures

Figure 1

16 pages, 5150 KB  
Article
Micromechanism of the Dispersion Behavior of Polymer-Modified Rejuvenators in Aged Asphalt Material
by Mingyu Zhao, Fan Shen and Qingjun Ding
Appl. Sci. 2018, 8(9), 1591; https://doi.org/10.3390/app8091591 - 8 Sep 2018
Cited by 28 | Viewed by 4099
Abstract
Polymer-modified rejuvenator has a different composition and dispersion behavior to traditional rejuvenators. The objective of this study was to investigate the micromechanism of polymer-modified rejuvenators on the behavior of aged asphalt binder. Firstly, gel permeation chromatography (GPC) analysis was conducted to determine the [...] Read more.
Polymer-modified rejuvenator has a different composition and dispersion behavior to traditional rejuvenators. The objective of this study was to investigate the micromechanism of polymer-modified rejuvenators on the behavior of aged asphalt binder. Firstly, gel permeation chromatography (GPC) analysis was conducted to determine the dispersion effectiveness. Secondly, the dispersal behavior of polymer-modified rejuvenators was studied by means of atomic force microscopy (AFM) and scanning electron microscopy (SEM). Rheological, toughness-tenacity, and force–ductility analyses of the rejuvenated asphalt binder were additionally performed. The results indicate that the contacted asphaltenic micelles in aged asphalt binder were dispersed by dispersion agent in the polymer-modified rejuvenator, and that the dispersion ability of the polymer-modified rejuvenator was promoted to the commercial rejuvenator level. Additionally, the polymer-modified rejuvenator was found to improve the rejuvenated asphalt binder’s resistance to deformation, through the formation of polymeric network structures in the asphalt binder. The results may be used to improve the performance of rejuvenated asphalt binder in recycled-pavement engineering. Full article
Show Figures

Figure 1

13 pages, 3072 KB  
Article
Dechlorination of Hexachlorobenzene in Contaminated Soils Using a Nanometallic Al/CaO Dispersion Mixture: Optimization through Response Surface Methodology
by Yuhui Jiang, Yixuan Shang, Shuyao Yu and Jianguo Liu
Int. J. Environ. Res. Public Health 2018, 15(5), 872; https://doi.org/10.3390/ijerph15050872 - 27 Apr 2018
Cited by 17 | Viewed by 5579
Abstract
Hexachlorobenzene (HCB) contamination of soils remains a significant environmental challenge all over the world. Reductive stabilization is a developing technology that can decompose the HCB with a dechlorination process. A nanometallic Al/CaO (n-Al/CaO) dispersion mixture was developed utilizing ball-milling technology in this study. [...] Read more.
Hexachlorobenzene (HCB) contamination of soils remains a significant environmental challenge all over the world. Reductive stabilization is a developing technology that can decompose the HCB with a dechlorination process. A nanometallic Al/CaO (n-Al/CaO) dispersion mixture was developed utilizing ball-milling technology in this study. The dechlorination efficiency of HCB in contaminated soils by the n-Al/CaO grinding treatment was evaluated. Response surface methodology (RSM) was employed to investigate the effects of three variables (soil moisture content, n-Al/CaO dosage and grinding time) and the interactions between these variables under the Box-Behnken Design (BBD). A high regression coefficient value (R2 = 0.9807) and low p value (<0.0001) of the quadratic model indicated that the model was accurate in predicting the experimental results. The optimal soil moisture content, n-Al/CaO dosage, and grinding time were found to be 7% (m/m), 17.7% (m/m), and 24 h, respectively, in the experimental ranges and levels. Under optimal conditions, the dechlorination efficiency was 80%. The intermediate product analysis indicated that dechlorination was the process by stepwise loss of chloride atoms. The main pathway observed within 24 h was HCB → pentachlorobenzene (PeCB) → 1,2,3,4-tetrachlorobenzene (TeCB) and 1,2,4,5-TeCB. The results indicated that the moderate soil moisture content was crucial for the hydrodechlorination of HCB. A probable mechanism was proposed wherein water acted like a hydrogen donor and promoted the hydrodechlorination process. The potential application of n-Al/CaO is an environmentally-friendly and cost-effective option for decontamination of HCB-contaminated soils. Full article
(This article belongs to the Special Issue Soil Pollution and Remediation)
Show Figures

Figure 1

Back to TopTop