WCx-Supported RuNi Single Atoms for Electrocatalytic Oxygen Evolution
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterisation
2.2. OER Electrocatalytic Performance
2.3. Catalytic Mechanism
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, L.; Guo, T.; Li, T. Machine learning-accelerated prediction of overpotential of oxygen evolution reaction of single-atom catalysts. iScience 2021, 24, 102398. [Google Scholar] [CrossRef]
- Zhang, J.-Y.; Yan, Y.; Mei, B.; Qi, R.; He, T.; Wang, Z.; Fang, W.; Zaman, S.; Su, Y.; Ding, S.; et al. Local spin-state tuning of cobalt–iron selenide nanoframes for the boosted oxygen evolution. Energ. Environ. Sci. 2021, 14, 365–373. [Google Scholar] [CrossRef]
- Paul, A.; Radinovic, K.; Hazra, S.; Mladenovic, D.; Sljukic, B.; Khan, R.A.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L. Electrocatalytic Behavior of an Amide Functionalized Mn(II) Coordination Polymer on ORR, OER and HER. Molecules 2022, 27, 7323. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Lu, R.; Cen, Y.; Wang, D.; Jin, S.; Chen, W.; Geoffrey, I.; Waterhouse, N.; Wang, Z.; Tian, S.; et al. Micropore-confined Ru nanoclusters catalyst for efficient pH-universal hydrogen evolution reaction. Nano Res. 2023, 16, 9073–9080. [Google Scholar] [CrossRef]
- Solangi, M.Y.; Aftab, U.; Tahira, A.; Abro, M.I.; Mazarro, R.; Morandi, V.; Nafady, A.; Medany, S.S.; Infantes-Molina, A.; Ibupoto, Z.H. An efficient palladium oxide nanoparticles@Co3O4 nanocomposite with low chemisorbed species for enhanced oxygen evolution reaction. Int. J. Hydrogen Energy 2022, 47, 3834–3845. [Google Scholar] [CrossRef]
- Wang, X.; Xi, S.; Huang, P.; Du, Y.; Zhong, H.; Wang, Q.; Borgna, A.; Zhang, Y.-W.; Wang, Z.; Wang, H.; et al. Pivotal role of reversible NiO6 geometric conversion in oxygen evolution. Nature 2022, 611, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Haase, F.T.; Bergmann, A.; Jones, T.E.; Timoshenko, J.; Herzog, A.; Jeon, H.S.; Rettenmaier, C.; Cuenya, B.R. Size effects and active state formation of cobalt oxide nanoparticles during the oxygen evolution reaction. Nat. Energy 2022, 7, 765–773. [Google Scholar] [CrossRef]
- Zeng, L.; Cao, B.; Wang, X.; Liu, H.; Shang, J.; Lang, J.; Cao, X.; Gu, H. Ultrathin amorphous iron-doped cobalt-molybdenum hydroxide nanosheets for advanced oxygen evolution reactions. Nanoscale 2021, 13, 3153–3160. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Chen, H.; Xiang, M.; Yu, C.; Hui, J.; Dong, S. Coral reef structured cobalt-doped vanadate oxometalate nanoparticle for a high-performance electrocatalyst in water splitting. Int. J. Hydrogen Energy 2022, 47, 31566–31574. [Google Scholar] [CrossRef]
- Tahira, A.; Aftab, U.; Solangi, M.Y.; Gradone, A.; Morandi, V.; Medany, S.S.; Kasry, A.; Infantes-Molina, A.; Nafady, A.; Ibupoto, Z.H. Facile deposition of palladium oxide (PdO) nanoparticles on CoNi2S4 microstructures towards enhanced oxygen evolution reaction. Nanotechnology 2022, 33, 275402. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Xu, P.; Zhou, P.; Deng, Y.; Xiang, M.; Zhou, Q. Highly-dispersed mesoporous AgPtPd nanotubes as efficient electrocatalysts for hydrogen evolution reaction. Mater. Lett. 2021, 283, 128830. [Google Scholar] [CrossRef]
- Huang, S.; Wang, J.; Hu, H.; Li, Y.; Xu, F.; Duan, F.; Zhu, H.; Lu, S.; Du, M. Bimetallic palladium-copper nanoplates with optimized d-band center simultaneously boost oxygen reduction activity and methanol tolerance. J. Colloid Interface Sci. 2023, 630, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Zhou, X.; Cong, B.; Hong, W.; Chen, G. Tailoring the d-Band Centers Endows (NixFe1–x)2P Nanosheets with Efficient Oxygen Evolution Catalysis. ACS Catal. 2020, 10, 9086–9097. [Google Scholar] [CrossRef]
- Peng, X.; Li, M.; Huang, L.; Chen, Q.; Fang, W.; Hou, Y.; Zhu, Y.; Ye, J.; Liu, L.; Wu, Y. RuO2-Incorporated Co3O4 Nanoneedles Grown on Carbon Cloth as Binder-Free Integrated Cathodes for Tuning Favorable Li2O2 Formation. ACS Appl. Mater. Interfaces 2022, 15, 1401–1409. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Liu, H.; Jiang, Y.; Mao, Y.; Shen, W.; Li, M.; He, R. Adjustable heterointerface-vacancy enhancement effect in RuO2@Co3O4 electrocatalysts for efficient overall water splitting. Appl. Catal. B-Environ. 2023, 324, 122294. [Google Scholar] [CrossRef]
- Yang, J.X.; Dai, B.H.; Chiang, C.Y.; Chiu, I.C.; Pao, C.W.; Lu, S.Y.; Tsao, I.Y.; Lin, S.T.; Chiu, C.T.; Yeh, J.W.; et al. Rapid Fabrication of High-Entropy Ceramic Nanomaterials for Catalytic Reactions. ACS Nano 2021, 15, 12324–12333. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Yang, Z.; Fu, Y.; Chen, Z.; Hu, Y.; Zhou, Y.; Qin, H. Aminated lignin chelated metal derived bifunctional electrocatalyst with high catalytic performance. Appl. Surf. Sci. 2022, 580, 152205. [Google Scholar] [CrossRef]
- Bai, L.; Hsu, C.-S.; Alexander, D.T.L.; Chen, H.M.; Hu, X. Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. Nat. Energy 2021, 6, 1054–1066. [Google Scholar] [CrossRef]
- Kumar, P.; Kannimuthu, K.; Zeraati, A.S.; Roy, S.; Wang, X.; Wang, X.; Samanta, S.; Miller, K.A.; Molina, M.; Trivedi, D.; et al. High-Density Cobalt Single-Atom Catalysts for Enhanced Oxygen Evolution Reaction. J. Am. Chem. Soc. 2023, 145, 8052–8063. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; Wang, J.; Xu, H.; Cheng, D. Construction of Dual-Site Atomically Dispersed Electrocatalysts with Ru-C5 Single Atoms and Ru-O4 Nanoclusters for Accelerated Alkali Hydrogen Evolution. Small 2021, 17, e2101163. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Lian, Z.; Si, C.; Jan, F.; Li, B. Revealing the intrinsic relation between heteroatom dopants and graphene quantum dots as a bi-functional ORR/OER catalyst. Mol. Catal. 2022, 518, 112109. [Google Scholar] [CrossRef]
- Liang, J.; Wang, Z.; Huang, L.; Zou, P.; Liu, X.; Ni, Q.; Wang, X.; Wang, W.; Tao, R. Facile and Tunable Synthesis of Nitrogen-Doped Graphene with Different Microstructures for High-Performance Supercapacitors. ACS Mater. Lett. 2023, 5, 944–954. [Google Scholar] [CrossRef]
- Cao, L.; Luo, Q.; Chen, J.; Wang, L.; Lin, Y.; Wang, H.; Liu, X.; Shen, X.; Zhang, W.; Liu, W.; et al. Dynamic oxygen adsorption on single-atomic Ruthenium catalyst with high performance for acidic oxygen evolution reaction. Nat. Commun. 2019, 10, 4849. [Google Scholar] [CrossRef]
- Zhang, M.; Li, H.; Chen, J.; Yi, L.; Shao, P.; Xu, C.-Y.; Wen, Z. Nitrogen-doped graphite encapsulating RuCo nanoparticles toward high-activity catalysis of water oxidation and reduction. Chem. Eng. J. 2021, 422, 130077. [Google Scholar] [CrossRef]
- Chen, Z.; Gong, W.; Cong, S.; Wang, Z.; Song, G.; Pan, T.; Tang, X.; Chen, J.; Lu, W.; Zhao, Z. Eutectoid-structured WC/W2C heterostructures: A new platform for long-term alkaline hydrogen evolution reaction at low overpotentials. Nano Energy 2020, 68, 104335. [Google Scholar] [CrossRef]
- Wang, L.; Xu, Z.; Kuo, C.H.; Peng, J.; Hu, F.; Li, L.; Chen, H.Y.; Wang, J.; Peng, S. Stabilizing Low-Valence Single Atoms by Constructing Metalloid Tungsten Carbide Supports for Efficient Hydrogen Oxidation and Evolution. Angew. Chem. Int. Ed. Engl. 2023, 62, e202311937. [Google Scholar] [PubMed]
- Li, S.; Chen, B.; Wang, Y.; Ye, M.Y.; van Aken, P.A.; Cheng, C.; Thomas, A. Oxygen-evolving catalytic atoms on metal carbides. Nat. Mater. 2021, 20, 1240–1247. [Google Scholar] [CrossRef]
- Diao, J.; Qiu, Y.; Liu, S.; Wang, W.; Chen, K.; Li, H.; Yuan, W.; Qu, Y.; Guo, X. Interfacial Engineering of W2N/WC Heterostructures Derived from Solid-State Synthesis: A Highly Efficient Trifunctional Electrocatalyst for ORR, OER, and HER. Adv. Mater. 2020, 32, e1905679. [Google Scholar] [CrossRef]
- Liu, W.; Wang, X.; Qu, J.; Ma, Y.; Liu, X.; Kuai, C.; Guo, Y.; Yin, H.; Wang, D. Computation-guided design and preparation of durable and efficient WC-Mo2C heterojunction for hydrogen evolution reaction. Cell Rep. Phys. Sci. 2022, 3, 100784. [Google Scholar] [CrossRef]
- Wang, L.; Li, Z.; Wang, K.; Dai, Q.; Lei, C.; Yang, B.; Zhang, Q.; Lei, L.; Leung, M.K.H.; Hou, Y. Tuning d-band center of tungsten carbide via Mo doping for efficient hydrogen evolution and Zn–H2O cell over a wide pH range. Nano Energy 2020, 74, 104850. [Google Scholar] [CrossRef]
- Sun, S.C.; Jiang, H.; Chen, Z.Y.; Chen, Q.; Ma, M.Y.; Zhen, L.; Song, B.; Xu, C.Y. Bifunctional WC-Supported RuO2 Nanoparticles for Robust Water Splitting in Acidic Media. Angew. Chem. Int. Ed. Engl. 2022, 61, e202202519. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Cao, H.; Li, S.; Cao, S.; Zhao, Z.; Wu, Z.; Yan, R.; Yang, C.; Wang, Y.; van Aken, P.A.; et al. Crystalline Lattice-Confined Atomic Pt in Metal Carbides to Match Electronic Structures and Hydrogen Evolution Behaviors of Platinum. Adv. Mater. 2022, 34, e2206368. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.T.; Xiao, X.; Ye, Z.M.; Zhao, S.; Shen, R.; He, C.T.; Zhang, J.P.; Li, Y.; Chen, X.M. Cage-Confinement Pyrolysis Route to Ultrasmall Tungsten Carbide Nanoparticles for Efficient Electrocatalytic Hydrogen Evolution. J. Am. Chem. Soc. 2017, 139, 5285–5288. [Google Scholar] [CrossRef] [PubMed]
- Yue, C.; Liu, N.; Li, Y.; Liu, Y.; Sun, F.; Bao, W.; Tuo, Y.; Pan, Y.; Jiang, P.; Zhou, Y.; et al. From atomic bonding to heterointerfaces: Co2P/WC constructed by lacunary polyoxometalates induced strategy as efficient hydrogen evolution electrocatalysts at all pH values. J. Colloid Interface Sci. 2023, 645, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.; Kazim, F.M.D.; Zhang, Q.; Xiao, S.; Li, M.; Yang, Z. Construction of Mo2C/W2C heterogeneous electrocatalyst for efficient hydrogen evolution reaction. Int. J. Hydrogen Energy 2021, 46, 9699–9706. [Google Scholar] [CrossRef]
- Yao, M.; Wang, B.; Sun, B.; Luo, L.; Chen, Y.; Wang, J.; Wang, N.; Komarneni, S.; Niu, X.; Hu, W. Rational design of self-supported Cu@WC core-shell mesoporous nanowires for pH-universal hydrogen evolution reaction. Appl. Catal. B-Environ. 2021, 280, 119451. [Google Scholar] [CrossRef]
- Yang, Y.; Shao, X.; Zhou, S.; Yan, P.; Isimjan, T.T.; Yang, X. Interfacial Electronic Coupling of NC@WO3-W2C Decorated Ru Clusters as a Reversible Catalyst toward Electrocatalytic Hydrogen Oxidation and Evolution Reactions. ChemSusChem 2021, 14, 2992–3000. [Google Scholar] [CrossRef] [PubMed]
- Han, N.; Yang, K.R.; Lu, Z.; Li, Y.; Xu, W.; Gao, T.; Cai, Z.; Zhang, Y.; Batista, V.S.; Liu, W.; et al. Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nat. Commun. 2018, 9, 924. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Jiang, Y.; Li, Y.; Chen, J.; He, Z.; Meng, W.; Dai, L.; Wang, L. Electrospun carbon nanofiber inlaid with tungsten carbide nanoparticle by in-situ carbothermal reaction as bifunctional electrode for vanadium redox flow battery. Electrochim. Acta 2020, 362, 137178. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, X.; Zhao, Z.L.; Wang, M.; Xiang, B.; Li, J.; Feng, Z.; Xu, H.; Gu, M. Ultrahigh-Loading of Ir Single Atoms on NiO Matrix to Dramatically Enhance Oxygen Evolution Reaction. J. Am. Chem. Soc. 2020, 142, 7425–7433. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Tang, Y.; Lin, C.; Jiang, X.; Zhang, C.; Qin, H.; Zhou, Q.; Xiang, M.; Lian, Y.; Deng, Y. Iron Clusters Regulate Local Charge Distribution in Fe-N4 Sites to Boost Oxygen Electroreduction. J. Colloid Interface Sci. 2023, 648, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, L.; He, H.; Chen, Y.; Gao, Z.; Ma, N.; Wang, B.; Zheng, L.; Li, R.; Wei, Y.; et al. Interface construction of NiCo LDH/NiCoS based on the 2D ultrathin nanosheet towards oxygen evolution reaction. Nano Res. 2022, 15, 4986–4995. [Google Scholar] [CrossRef]
- Wang, T.; Li, Z.; Jang, H.; Kim, M.G.; Qin, Q.; Liu, X. Interface Engineering of Oxygen Vacancy-Enriched Ru/RuO2–Co3O4 Heterojunction for Efficient Oxygen Evolution Reaction in Acidic Media. ACS Sustain. Chem. Eng. 2023, 11, 5155–5163. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Chen, F.Y.; Li, B.; Yu, S.W.; Finfrock, Y.Z.; Meira, D.M.; Yan, Q.Q.; Zhu, P.; Chen, M.X.; Song, T.W.; et al. Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. Nat. Mater. 2022, 22, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Xue, J.; Zeng, L.; Shang, J.; Lu, S.; Cao, X.; Abrahams, B.F.; Gu, H.; Lang, J. One-pot pyrolysis synthesis of highly active Ru/RuOX nanoclusters for water splitting. Nano Res. 2021, 15, 1020–1026. [Google Scholar] [CrossRef]
- Jiang, J.; Sun, F.; Zhou, S.; Hu, W.; Zhang, H.; Dong, J.; Jiang, Z.; Zhao, J.; Li, J.; Yan, W.; et al. Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy)hydroxide. Nat. Commun. 2018, 9, 2885. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, J.; Deng, Y.; Lian, Y.; Zhou, Q.; Zhang, C.; Su, Y. WCx-Supported RuNi Single Atoms for Electrocatalytic Oxygen Evolution. Molecules 2023, 28, 7040. https://doi.org/10.3390/molecules28207040
Bai J, Deng Y, Lian Y, Zhou Q, Zhang C, Su Y. WCx-Supported RuNi Single Atoms for Electrocatalytic Oxygen Evolution. Molecules. 2023; 28(20):7040. https://doi.org/10.3390/molecules28207040
Chicago/Turabian StyleBai, Jirong, Yaoyao Deng, Yuebin Lian, Quanfa Zhou, Chunyong Zhang, and Yaqiong Su. 2023. "WCx-Supported RuNi Single Atoms for Electrocatalytic Oxygen Evolution" Molecules 28, no. 20: 7040. https://doi.org/10.3390/molecules28207040
APA StyleBai, J., Deng, Y., Lian, Y., Zhou, Q., Zhang, C., & Su, Y. (2023). WCx-Supported RuNi Single Atoms for Electrocatalytic Oxygen Evolution. Molecules, 28(20), 7040. https://doi.org/10.3390/molecules28207040