Atomic-Level Dispersion of Bismuth over Co3O4 Nanocrystals—Outstanding Promotional Effect in Catalytic DeN2O
Abstract
1. Introduction
2. Results and Discussion
2.1. Catalytic Activity and Work Function Measurements
2.2. Physicochemical Characterization
2.3. High-Resolution Microscopy and Spectroscopy
3. Materials and Methods
3.1. Synthesis of Co3O4-Based Catalysts
3.2. DeN2O Tests and Work Function Measurements
3.3. Physicochemical Characterization
3.4. High-Resolution Microscopy and Spectroscopy
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Reducing Global Health Risk. Through Mitigation of Short-Lived Climate Pollutants Scoping Report for Policymakers; World Health Organization: Geneva, Switzerland, 2015.
- Inventory of Greenhouse Gas Emissions and Sinks: 1990–2016; Environmental Protection Agency: Washington, DC, USA, 2018.
- Denisovа, K.O.; Ilyin, A.A.; Rumyantsev, R.N.; Ilyin, A.P.; Volkova, A.V. Nitrous Oxide: Production, Application, and Protection of the Environment. Russ. J. Gen. Chem. 2019, 89, 46–54. [Google Scholar] [CrossRef]
- Global Warming Potential Values. Available online: https://www.ghgprotocol.org/sites/default/files/ghgp/Global-Warming-Potential-Values%20%28Feb%2016%202016%29_1.pdf (accessed on 22 March 2020).
- Drawing Down N2O To Protect Climate and the Ozone Layer A UNEP Synthesis Report; United Nations Environment Programme (UNEP): Nairobi, Kenya, 2013.
- Nitrous Oxide Market Size & Share|Global Industry Report, 2018–2025. Available online: https://www.grandviewresearch.com/industry-analysis/nitrous-oxide-market (accessed on 4 March 2020).
- Ek, M.; Tjus, K. Destruction of Medical N2O in Sweden. Greenhouse Gases—Capturing, Utilization and Reduction; InTech: London, UK, 2012. [Google Scholar]
- Husum, B.; Stenqvist, O.; Alahuhta, S.; Sigurdsson, G.H.; Dale, O. Current use of nitrous oxide in public hospitals in Scandinavian countries. Acta Anaesthesiol. Scand. 2013, 57, 1131–1137. [Google Scholar] [CrossRef] [PubMed]
- Konsolakis, M. Recent Advances on Nitrous Oxide (N2O) Decomposition over Non-Noble-Metal Oxide Catalysts: Catalytic Performance, Mechanistic Considerations, and Surface Chemistry Aspects. ACS Catal. 2015, 5, 6397–6421. [Google Scholar] [CrossRef]
- Obalová, L.; Pacultová, K.; Balabánová, J.; Jirátová, K.; Bastl, Z.; Valášková, M.; Lacný, Z.; Kovanda, F. Effect of Mn/Al ratio in Co-Mn-Al mixed oxide catalysts prepared from hydrotalcite-like precursors on catalytic decomposition of N2O. Catal. Today 2007, 119, 233–238. [Google Scholar] [CrossRef]
- Kaczmarczyk, J.; Zasada, F.; Janas, J.; Indyka, P.; Piskorz, W.; Kotarba, A.; Sojka, Z. Thermodynamic Stability, Redox Properties, and Reactivity of Mn3O4, Fe3O4, and Co3O4 Model Catalysts for N2O Decomposition: Resolving the Origins of Steady Turnover. ACS Catal. 2016, 6, 1235–1246. [Google Scholar] [CrossRef]
- Abu-Zied, B.M.; Asiri, A.M. The role of alkali promoters in enhancing the direct N2O decomposition reactivity over NiO catalysts. Cuihua Xuebao/Chin. J. Catal. 2015, 36, 1837–1845. [Google Scholar] [CrossRef]
- Gudyka, S.; Grzybek, G.; Gryboś, J.; Indyka, P.; Leszczyński, B.; Kotarba, A.; Sojka, Z. Enhancing the deN2O activity of the supported Co3O4|α-Al2O3 catalyst by glycerol-assisted shape engineering of the active phase at the nanoscale. Appl. Catal. B Environ. 2017, 201, 339–347. [Google Scholar] [CrossRef]
- Wójcik, S.; Grzybek, G.; Stelmachowski, P.; Sojka, Z.; Kotarba, A. Bulk, Surface and Interface Promotion of Co3O4 for the Low-Temperature N2O Decomposition Catalysis. Catalysts 2019, 10, 41. [Google Scholar] [CrossRef]
- Rico-Pérez, V.; Kotarba, A.; Sojka, Z.; Indyka, P.; Guillén-Hurtado, N.; Bueno-López, A.; Grzybek, G.; Gudyka, S.; Stelmachowski, P. Strong dispersion effect of cobalt spinel active phase spread over ceria for catalytic N2O decomposition: The role of the interface periphery. Appl. Catal. B Environ. 2015, 180, 622–629. [Google Scholar]
- Grzybek, G.; Ciura, K.; Wójcik, S.; Gryboś, J.; Indyka, P.; Inger, M.; Antoniak-Jurak, K.; Kowalik, P.; Kotarba, A.; Sojka, Z. On the selection of the best polymorph of Al2O3 carriers for supported cobalt nano-spinel catalysts for N2O abatement: An interplay between preferable surface spreading and damaging active phase-support interaction. Catal. Sci. Technol. 2017, 7, 5723–5732. [Google Scholar] [CrossRef]
- Grzybek, G.; Wójcik, S.; Legutko, P.; Gryboś, J.; Indyka, P.; Leszczyński, B.; Kotarba, A.; Sojka, Z. Thermal stability and repartition of potassium promoter between the support and active phase in the K-Co2.6Zn0.4O4|α-Al2O3catalyst for N2O decomposition: Crucial role of activation temperature on catalytic performance. Appl. Catal. B Environ. 2017, 205, 597–604. [Google Scholar] [CrossRef]
- Denton, A.R.; Ashcroft, N.W. Vegard’s Law. Phys Rev A 1991, 43, 3161–3164. [Google Scholar] [CrossRef] [PubMed]
- Tolman, W.B. Binding and activation of N2O at transition-metal centers: Recent mechanistic insights. Angew. Chem. Int. Ed. 2010, 49, 1018–1024. [Google Scholar] [CrossRef] [PubMed]
- Piskorz, W.; Zasada, F.; Stelmachowski, P.; Kotarba, A.; Sojka, Z. Decomposition of N2O over the surface of cobalt spinel: A DFT account of reactivity experiments. Catal. Today 2008, 137, 418–422. [Google Scholar] [CrossRef]
- Wójcik, S.; Indyka, P.; Sojka, Z.; Kotarba, A. Development of structured Co3O4-based catalyst for N2O removal from hospital ventilation systems. Catal. Today 2019. [CrossRef]
- Shang, Z.; Sun, M.; Chang, S.; Che, X.; Cao, X.; Wang, L.; Guo, Y.; Zhan, W.; Guo, Y.; Lu, G. Activity and stability of Co3O4-based catalysts for soot oxidation: The enhanced effect of Bi2O3 on activation and transfer of oxygen. Appl. Catal. B Environ. 2017, 209, 33–44. [Google Scholar] [CrossRef]
- Lou, Y.; Ma, J.; Cao, X.; Wang, L.; Dai, Q.; Zhao, Z.; Cai, Y.; Zhan, W.; Guo, Y.; Hu, P.; et al. Promoting Effects of In2O3 on Co3O4 for CO Oxidation: Tuning O2 Activation and CO Adsorption Strength Simultaneously. ACS Catal. 2014, 4, 4143–4152. [Google Scholar] [CrossRef]
- XPS Interpretation of Bishmuth. Available online: https://xpssimplified.com/elements/bismuth.php (accessed on 4 March 2020).
- Yamashita, S.; Kikkawa, J.; Yanagisawa, K.; Nagai, T.; Ishizuka, K.; Kimoto, K. Atomic number dependence of Z contrast in scanning transmission electron microscopy. Sci. Rep. 2018, 8, 1–7. [Google Scholar] [CrossRef]
- Shannon Radii. Available online: http://abulafia.mt.ic.ac.uk/shannon/ptable.php (accessed on 4 March 2020).
- Srinivasa Rao, N.; Srinivasa Rao, L.; Srinivasa Rao, C.; Raghavaiah, B.V.; Ravi Kumar, V.; Brik, M.G.; Veeraiah, N. Influence of valence states and co-ordination of cobalt ions on dielectric properties of PbOBi2O3As2O3:CoO glass system. Phys. B Condens. Matter 2012, 407, 581–588. [Google Scholar] [CrossRef]
- Zhang, Z. Surface effects in the energy loss near edge structure of different cobalt oxides. Ultramicroscopy 2007, 107, 598–603. [Google Scholar] [CrossRef]
- Zhao, Y.; Feltes, T.E.; Regalbuto, J.R.; Meyer, R.J.; Klie, R.F. In situ electron energy loss spectroscopy study of metallic Co and Co oxides. J. Appl. Phys. 2010, 108, 063704. [Google Scholar] [CrossRef]
- Inger, M.; Wilk, M.; Saramok, M.; Grzybek, G.; Grodzka, A.; Stelmachowski, P.; Makowski, W.; Kotarba, A.; Sojka, Z. Cobalt spinel catalyst for N2O abatement in the pilot plant operation-long-term activity and stability in tail gases. Ind. Eng. Chem. Res. 2014, 53, 10335–10342. [Google Scholar] [CrossRef]
- EUROKIN_fixed-bed_html, EUROKIN spreadsheet on requirements for measurement of intrinsic kinetics in the gas-solid fixed-bed reactor. Available online: https://www.eurokin.org/wp-content/uploads/webtool/EUROKIN_fixed-bed_html.htm (accessed on 22 March 2020).
Sample | Nominal Concentration of Bi (wt %) | Experimental Concentration of Bi (wt %) | Surface Concentration of Bi (at. %) | SSA (m2 g−1) | Co3O4 Crystals Size by the W–H Method (nm) |
---|---|---|---|---|---|
1 | 0 | 0 | 0 | 33.1 | 56 |
2 | 1.7 | 1.7 ± 0.3 | 1.8 | 32.3 | 47 |
3 | 3.4 | 3.4 ± 0.2 | 2.1 | 43.0 | 38 |
4 | 6.6 | 6.6 ± 0.4 | 3.7 | 57.7 | 24 |
5 | 8.2 | 9.0 ± 0.3 | - | 80.8 | 14 |
6 | 15.4 | 14.6 ± 0.6 | 3.7 | 53.7 | 28 |
d-Spacing Plane | Theoretical Distances for Bulk Spinel (Å) | * Measured Distances for Co3O4 (Å) | * Measured Distances for 0.08Bi-Co3O4 (Å) |
---|---|---|---|
111 | 4.67 | 4.72 ± 0.04 | 4.71 ± 0.05 |
200 | 4.04 | 4.09 ± 0.02 | 4.06 ± 0.01 |
210 | 3.62 | 3.58 ± 0.01 | 3.65 ± 0.01 |
220 | 2.86 | 2.88 ± 0.01 | 2.89 ± 0.01 |
310 | 2.56 | 2.53 ± 0.01 | 2.54 ± 0.01 |
311 | 2.44 | 2.45 ± 0.01 | 2.45 ± 0.02 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wójcik, S.; Thersleff, T.; Gębska, K.; Grzybek, G.; Kotarba, A. Atomic-Level Dispersion of Bismuth over Co3O4 Nanocrystals—Outstanding Promotional Effect in Catalytic DeN2O. Catalysts 2020, 10, 351. https://doi.org/10.3390/catal10030351
Wójcik S, Thersleff T, Gębska K, Grzybek G, Kotarba A. Atomic-Level Dispersion of Bismuth over Co3O4 Nanocrystals—Outstanding Promotional Effect in Catalytic DeN2O. Catalysts. 2020; 10(3):351. https://doi.org/10.3390/catal10030351
Chicago/Turabian StyleWójcik, Sylwia, Thomas Thersleff, Klaudia Gębska, Gabriela Grzybek, and Andrzej Kotarba. 2020. "Atomic-Level Dispersion of Bismuth over Co3O4 Nanocrystals—Outstanding Promotional Effect in Catalytic DeN2O" Catalysts 10, no. 3: 351. https://doi.org/10.3390/catal10030351
APA StyleWójcik, S., Thersleff, T., Gębska, K., Grzybek, G., & Kotarba, A. (2020). Atomic-Level Dispersion of Bismuth over Co3O4 Nanocrystals—Outstanding Promotional Effect in Catalytic DeN2O. Catalysts, 10(3), 351. https://doi.org/10.3390/catal10030351