Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = atmospheric pressure room temperature plasma

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2715 KiB  
Article
Room-Temperature Plasma Hydrogenation of Fatty Acid Methyl Esters (FAMEs)
by Benjamin Wang, Trevor Jehl, Hongtao Zhong and Mark Cappelli
Processes 2025, 13(8), 2333; https://doi.org/10.3390/pr13082333 - 23 Jul 2025
Viewed by 270
Abstract
The increasing demand for sustainable energy has spurred the exploration of advanced technologies for biodiesel production. This paper investigates the use of Dielectric Barrier Discharge (DBD)-generated low-temperature plasmas to enhance the conversion of fatty acid methyl esters (FAMEs) into hydrogenated fatty acid methyl [...] Read more.
The increasing demand for sustainable energy has spurred the exploration of advanced technologies for biodiesel production. This paper investigates the use of Dielectric Barrier Discharge (DBD)-generated low-temperature plasmas to enhance the conversion of fatty acid methyl esters (FAMEs) into hydrogenated fatty acid methyl esters (H-FAMEs) and other high-value hydrocarbons. A key mechanistic advance is achieved via in situ distillation: at the reactor temperature, unsaturated C18 and C20 FAMEs remain liquid due to their low melting points, while the corresponding saturated C18:0 and C20:0 FAMEs (with melting points of approximately 37–39 °C and 46–47 °C, respectively) solidify and deposit on a glass substrate. This phase separation continuously exposes fresh unsaturated FAME to the plasma, driving further hydrogenation and thereby delivering high overall conversion efficiency. The non-thermal, energy-efficient nature of DBD plasmas offers a promising alternative to conventional high-pressure, high-temperature methods; here, we evaluate the process efficiency, product selectivity, and scalability of this room-temperature, atmospheric-pressure approach and discuss its potential for sustainable fuel-reforming applications. Full article
(This article belongs to the Special Issue Plasma Science and Plasma-Assisted Applications)
Show Figures

Figure 1

15 pages, 4340 KiB  
Article
Voltage Dependent Effect of Spiral Wound Plasma Discharge on DBC1.2 Cellular Integrity
by Abubakar Hamza Sadiq, Md Jahangir Alam, Mahedi Hasan, Farhana Begum, Tomoki Yamano, Jaroslav Kristof and Kazuo Shimizu
Plasma 2025, 8(2), 15; https://doi.org/10.3390/plasma8020015 - 12 Apr 2025
Viewed by 1079
Abstract
Low temperature plasmas (LTPs) generated at atmospheric pressure and room temperature have gained increasing attention in biomedical research due to their ability to control cellular behavior through the production of reactive oxygen and nitrogen species (RONS), electric fields, and UV radiation. Among several [...] Read more.
Low temperature plasmas (LTPs) generated at atmospheric pressure and room temperature have gained increasing attention in biomedical research due to their ability to control cellular behavior through the production of reactive oxygen and nitrogen species (RONS), electric fields, and UV radiation. Among several LTP configurations, dielectric barrier discharge (DBD) plasma has been extensively studied for its ability to stimulate controlled biological effects while maintaining low gas temperature, making it suitable for cell-based applications. This study designed a novel spiral-wound DBD plasma device to investigate the voltage-dependent effects of plasma discharge on DBC1.2 epithelial cells. Plasma was applied at 2 kVp-p, 3 kVp-p, and 4 kVp-p to evaluate its effect on cellular permeability, mitochondrial activity, viability, and apoptosis. FITC-dextran-70 (FD-70, MW: 70 kDa) was used as a model permeation marker to assess cellular uptake. The results showed a voltage-dependent increase in FD-70 uptake, suggesting improved plasma-assisted drug delivery. The cell mitochondrial activity, evaluated with a MT-1 MitoMP detection kit, revealed that plasma exposure at 2 kVp-p and 3 kVp-p slightly enhanced mitochondrial membrane potential (MMP), signifying increased metabolic and mitochondrial activity, whereas exposure at 4 kVp-p led to a reduction in MMP, suggesting oxidative stress and early apoptosis. Early and late apoptosis was further assessed using FITC Annexin-V and propidium iodide (PI). The results showed enhanced cell viability and a reduced apoptotic cell at 2 kVp-p and 3 kVp-p plasma exposure when compared to the control. However, at 4 kV, there was a decline in cell viability and an increase in apoptosis, suggesting a shift towards plasma-induced cytotoxicity. This study established a safe plasma exposure threshold for DBC1.2 cells and explored the potential use of a spiral-wound DBD plasma device for biomedical applications, particularly in drug delivery and cell modulation. Full article
(This article belongs to the Special Issue Recent Advances of Dielectric Barrier Discharges)
Show Figures

Graphical abstract

15 pages, 1528 KiB  
Article
Non-Thermal Plasma-Catalytic Conversion of Biogas to Value-Added Liquid Chemicals via Ni-Fe/Al2O3 Catalyst
by Milad Zehtab Salmasi, Razieh Es’haghian, Ali Omidkar and Hua Song
Appl. Sci. 2025, 15(8), 4248; https://doi.org/10.3390/app15084248 - 11 Apr 2025
Viewed by 518
Abstract
This study investigates the transformation of biogas (methane and carbon dioxide) into high-value liquid products using Ni/Al2O3, Fe/Al2O3, and Ni-Fe/Al2O3 catalysts in a non-thermal plasma (NTP)-assisted process within a dielectric barrier discharge [...] Read more.
This study investigates the transformation of biogas (methane and carbon dioxide) into high-value liquid products using Ni/Al2O3, Fe/Al2O3, and Ni-Fe/Al2O3 catalysts in a non-thermal plasma (NTP)-assisted process within a dielectric barrier discharge (DBD) reactor, operating at room temperature and atmospheric pressure. We compared the effectiveness of these three catalysts, with the Ni-Fe/Al2O3 catalyst showing the highest enhancement in conversion rates, achieving 34.8% for CH4 and 19.7% for CO2. This catalyst also promoted the highest liquid yield observed at 38.6% and facilitated a significant reduction in coke formation to 10.4%, minimizing deactivation and loss of efficiency. These improvements underscore the catalyst’s pivotal role in enhancing the overall process efficiency, leading to the production of key gas products such as hydrogen (H2) and carbon monoxide (CO), alongside valuable liquid oxygenates including methanol, ethanol, formaldehyde, acetic acid, and propanoic acid. The findings from this study highlight the efficacy of combining NTP with the Ni-Fe/Al2O3 catalyst as a promising approach for boosting the production of valuable chemicals from biogas, offering a sustainable pathway for energy and chemical manufacturing. Full article
(This article belongs to the Special Issue Production, Treatment, Utilization and Future Opportunities of Biogas)
Show Figures

Figure 1

20 pages, 838 KiB  
Review
A Review of Decontamination of Aspergillus spp. and Aflatoxin Control for Grains and Nuts with Atmospheric Cold Plasma
by Miral Javed, Wei Cao, Linyi Tang and Kevin M. Keener
Toxins 2025, 17(3), 129; https://doi.org/10.3390/toxins17030129 - 10 Mar 2025
Cited by 1 | Viewed by 1569
Abstract
Aspergillus spp. and their produced aflatoxins are responsible for contaminating 25–30% of the global food supply, including many grains, and nuts which when consumed are detrimental to human and animal health. Despite regulatory frameworks, Aspergillus spp. and aflatoxin contamination is still a global [...] Read more.
Aspergillus spp. and their produced aflatoxins are responsible for contaminating 25–30% of the global food supply, including many grains, and nuts which when consumed are detrimental to human and animal health. Despite regulatory frameworks, Aspergillus spp. and aflatoxin contamination is still a global challenge, especially in cereal-based matrices and their derived by-products. The methods for reducing Aspergillus spp. and aflatoxin contamination involve various approaches, including physical, chemical, and biological control strategies. Recently, a novel technology, atmospheric cold plasma (ACP), has emerged which can reduce mold populations and also degrade these toxins. ACP is a non-thermal technology that operates at room temperature and atmospheric pressure. It can reduce mold and toxins from grains and seeds without affecting food quality or leaving any chemical residue. ACP is the conversion of a gas, such as air, into a reactive gas. Specifically, an electrical charge is applied to the “working” gas (air) leading to the breakdown of diatomic oxygen, diatomic nitrogen, and water vapor into a mixture of radicals (e.g., atomic oxygen, atomic nitrogen, atomic hydrogen, hydroxyls), metastable species, and ions (e.g., nitrate, nitrite, peroxynitrate). In a cold plasma process, approximately 5% or less of the working gas is ionized. However, cold plasma treatment can generate over 1000 ppm of reactive gas species (RGS). The final result is a range of bactericidal and fungicidal molecules such as ozone, peroxides, nitrates, and many others. This review provides an overview of the mechanisms and chemistry of ACP and its application in inactivating Aspergillus spp. and degrading aflatoxins, serving as a novel treatment to enhance the safety and quality of grains and nuts. The final section of the review discusses the commercialization status of ACP treatment. Full article
(This article belongs to the Special Issue Aspergillus flavus and Aflatoxins (3rd Edition))
Show Figures

Figure 1

17 pages, 3543 KiB  
Article
Improvement of Esterifying Power of Isolated Bacillus velezensis from Daqu by Atmospheric Pressure and Room Temperature Plasma Mutagenesis
by Chuan Song, Tongwei Guan, Zhuang Xiong, Xiaodie Chen, Wenying Tu, Yanping Xu, Xiyue Yan and Qiang Li
Foods 2025, 14(5), 800; https://doi.org/10.3390/foods14050800 - 26 Feb 2025
Viewed by 903
Abstract
Strong-flavor Baijiu, a widely popular distilled spirit in China, derives its characteristic aroma and quality largely from ethyl hexanoate, a key flavor compound. The concentration of ethyl hexanoate, influenced by its precursor hexanoic acid, is critical in defining the style and quality of [...] Read more.
Strong-flavor Baijiu, a widely popular distilled spirit in China, derives its characteristic aroma and quality largely from ethyl hexanoate, a key flavor compound. The concentration of ethyl hexanoate, influenced by its precursor hexanoic acid, is critical in defining the style and quality of this Baijiu variety. In this study, atmospheric and room temperature plasma (ARTP) mutagenesis technology was applied to strains isolated from Strong-flavor Daqu to enhance their acid and ester production capabilities. A hexanoic acid-producing strain, identified as Bacillus velezensis WY4 through morphological, physiological, biochemical, and molecular analyses, was used as the starting strain. Following 90 s of ARTP exposure, a mutant strain, WY4-3, was successfully developed, achieving a balance between high mutation diversity and moderate lethality. WY4-3 exhibited robust growth across a pH range of 4.2 to 5.0 and demonstrated high ethanol tolerance. After five days of fermentation, WY4-3 produced 0.36 g/L of total acid and 0.528 g/L of total ester, surpassing the wild-type strain. Enzymatic activity assays revealed significant enhancements in amylase (9.13%), saccharifying enzyme (101.72%), and esterification (573.71%) activities in WY4-3. Validation in multiple artificial esterification systems further confirmed the superior ester production capacity of this mutant strain. These findings enrich the microbial germplasm resources for Baijiu brewing and provide a solid foundation for strain selection and genetic improvement in Baijiu production processes. This study highlights the potential of ARTP mutagenesis in optimizing brewing microorganisms and improving the quality and consistency of Strong-flavor Baijiu. Full article
Show Figures

Figure 1

13 pages, 2805 KiB  
Article
A New Mutagenesis Tool for Songpu Mirror Carp (Cyprinus carpio L.) for Selective Breeding: Atmospheric-Pressure Room-Temperature Plasma Mutagenesis Technology
by Xiaona Jiang, Chitao Li, Mei Shang, Xuesong Hu, Yanlong Ge and Zhiying Jia
Fishes 2024, 9(11), 448; https://doi.org/10.3390/fishes9110448 - 1 Nov 2024
Cited by 1 | Viewed by 1008
Abstract
As a new, safe, and efficient method, Atmospheric-Pressure Room-Temperature Plasma (ARTP) mutagenesis has been widely applied in the field of microbial breeding and industrial applications, but it is rarely used in fish. In this study, ARTP mutagenesis technology was applied for the first [...] Read more.
As a new, safe, and efficient method, Atmospheric-Pressure Room-Temperature Plasma (ARTP) mutagenesis has been widely applied in the field of microbial breeding and industrial applications, but it is rarely used in fish. In this study, ARTP mutagenesis technology was applied for the first time to a common carp strain, Songpu mirror carp (Cyprinus carpio L.), to increase genetic variation in this species. The appropriate experimental conditions were determined to include a radio frequency output power of 160 W and the processing of fertilized eggs for 360 s. The ARTP treatment group had a lower survival rate than the control group. The CV of morphological characters in the ARTP treatment group was significantly higher than that in the control group, and the CV of body weight was the highest (p < 0.05). In addition, the deformity rate in the ARTP treatment group was significantly higher than in the control group (p < 0.05). Individuals with high weight and no deformities were screened within the selection pressure of 1:15 of ARTP treatment group and fed in the same pool with the control group of the same age. The measurement of serum indices showed that, in the ARTP treatment group, TP, ALP, ALB, T-CHO, LDL levels were significantly higher than those in the control group (p < 0.05). Furthermore, the relative expressions of SOD, growth-related genes GH, IGF-I, protein synthesis-related genes TOR and 4EBP1 were significantly higher in the ARTP treatment group than in the control group (p < 0.05). In summary, Songpu mirror carp subjected to ARTP treatment showed a higher growth potential and antioxidant capacity. Full article
(This article belongs to the Special Issue Genetics and Breeding in Aquaculture)
Show Figures

Figure 1

12 pages, 10284 KiB  
Article
Research on Solid-State Linear Transformer Driver Power Source Driving Atmospheric Pressure Plasma Jet Treatment of Epoxy Resin
by Xiangnan Cao, Guiying Song, Yikai Chen and Haowei Chen
Energies 2024, 17(18), 4749; https://doi.org/10.3390/en17184749 - 23 Sep 2024
Cited by 2 | Viewed by 1009
Abstract
The Solid-State Linear Transformer Driver (SSLTD) is a nanosecond pulse power source characterized by its fast rise time and adjustable output waveform. It can generate uniform and stable atmospheric plasma jets, which is suitable for material surface modification. In this study, a 15-stage [...] Read more.
The Solid-State Linear Transformer Driver (SSLTD) is a nanosecond pulse power source characterized by its fast rise time and adjustable output waveform. It can generate uniform and stable atmospheric plasma jets, which is suitable for material surface modification. In this study, a 15-stage SSLTD was designed and assembled, which can produce a stable nanosecond pulse voltage up to 15 times the amplitude of the charging voltage at high frequencies, with a rise time of approximately 10 ns. This device can be used to generate stable atmospheric pressure Ar plasma jets with an electron density in the range of 1015~1016 cm−3 and gas temperatures close to room temperature. After the modification treatment by the plasma jets, the content of the C=O groups on the surface of the epoxy resin significantly increased in the wavelength range of 1720~1740 cm−1, and its flashover resistance was noticeably enhanced. The optimal comprehensive modification effect was achieved at a charging voltage of 600 V, pulse width of 50 ns, and pulse frequency in the range of 800~1000 Hz. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

15 pages, 3120 KiB  
Article
Structure Optimization of Gliding Arc Electrodes for Seed Treatment Based on the Study of Plasma Distribution Characteristics
by Linjie Hao, Yong You, Yunting Hui, Decheng Wang and Changyong Shao
Agriculture 2024, 14(8), 1379; https://doi.org/10.3390/agriculture14081379 - 16 Aug 2024
Cited by 2 | Viewed by 1203
Abstract
Plasma seed pretreatment is an important means to rapidly improve seed quality. The studies on plasma-generating devices suitable for continuous seed pretreatment at atmospheric pressure have been relatively limited. Gliding arc discharge can generate atmospheric pressure plasma at room temperature, which provides a [...] Read more.
Plasma seed pretreatment is an important means to rapidly improve seed quality. The studies on plasma-generating devices suitable for continuous seed pretreatment at atmospheric pressure have been relatively limited. Gliding arc discharge can generate atmospheric pressure plasma at room temperature, which provides a new way to use plasma to treat seeds at ambient temperature and pressure. By analyzing the influence of structural characteristics, such as gliding arc electrode shape, discharge distance, and electrode opening angle on plasma distribution, a plasma seed treatment method based on negative pressure guidance was proposed, and the electrode structure was optimized. The results show that the reasonable matching of electrode structure parameters can improve the gliding arc guiding ability of the discharge electrode. Comparing the three electrode shapes, it was found that the triangular electrode had the best gliding arc guiding ability, and it had the potential to further increase the plasma size with the increase in the electrode size. The discharge distance and electrode opening angle had a significant impact on the gliding arc guiding ability of the discharge electrode. When the discharge distance was 15 mm and the electrode opening angle was 76°, the structure parameters of the plasma seed treatment electrode were matched with each other, and the best processing capacity was achieved. After 10 s of gliding arc plasma treatment with the optimized triangular electrode structure, the seed germination rate and germination index of Leymus chinensis ((Trin.) Tzvel) increased by 33.3% and 13.8%. This study provides a theoretical basis for the design and optimization of gliding arc electrode structures and serves as a reference for the research and development of plasma generators for continuous seed treatment at atmospheric pressure. Full article
(This article belongs to the Special Issue Sensor-Based Precision Agriculture)
Show Figures

Figure 1

12 pages, 1153 KiB  
Article
Performance of a High-Speed Pyroelectric Receiver as Cryogen-Free Detector for Terahertz Absorption Spectroscopy Measurements
by Jente R. Wubs, Uwe Macherius, Xiang Lü, Lutz Schrottke, Matthias Budden, Johannes Kunsch, Klaus-Dieter Weltmann and Jean-Pierre H. van Helden
Appl. Sci. 2024, 14(10), 3967; https://doi.org/10.3390/app14103967 - 7 May 2024
Cited by 6 | Viewed by 2261
Abstract
The application of terahertz (THz) radiation in scientific research as well as in applied and commercial technology has expanded rapidly in recent years. One example is the progress in high-resolution THz spectroscopy based on quantum cascade lasers, which has enabled new observations in [...] Read more.
The application of terahertz (THz) radiation in scientific research as well as in applied and commercial technology has expanded rapidly in recent years. One example is the progress in high-resolution THz spectroscopy based on quantum cascade lasers, which has enabled new observations in astronomy, atmospheric research, and plasma diagnostics. However, the lack of easy-to-use and miniaturised detectors has hampered the development of compact THz spectroscopy systems out of the laboratory environment. In this paper, we introduce a new high-speed pyroelectric receiver as a cryogen-free detector for THz absorption spectroscopy. Its performance is characterised by absorption spectroscopy measurements on a reference gas cell (RGC) with ammonia using a tunable THz quantum cascade laser at approximately 4.75 THz as the light source. It is shown that the receiver can record spectra up to 281 Hz without any artefacts to the observed spectral absorption profile, and the results reproduce the known pressure of ammonia in the RGC. This demonstrates that the pyroelectric receiver can be reliably used as an alternative to helium-cooled bolometers for absorption spectroscopy measurements in the THz range, with its main advantages being the high bandwidth, compactness, relatively low cost, and room-temperature operation. Its simplicity and high sensitivity make this receiver a key component for compact THz spectroscopy systems. Full article
(This article belongs to the Special Issue Terahertz Technologies and Applications)
Show Figures

Figure 1

15 pages, 1166 KiB  
Review
Nonthermal Atmospheric Pressure Plasma Treatment of Endosteal Implants for Osseointegration and Antimicrobial Efficacy: A Comprehensive Review
by Sogand Schafer, Tina Swain, Marcelo Parra, Blaire V. Slavin, Nicholas A. Mirsky, Vasudev Vivekanand Nayak, Lukasz Witek and Paulo G. Coelho
Bioengineering 2024, 11(4), 320; https://doi.org/10.3390/bioengineering11040320 - 27 Mar 2024
Cited by 4 | Viewed by 2196
Abstract
The energy state of endosteal implants is dependent on the material, manufacturing technique, cleaning procedure, sterilization method, and surgical manipulation. An implant surface carrying a positive charge renders hydrophilic properties, thereby facilitating the absorption of vital plasma proteins crucial for osteogenic interactions. Techniques [...] Read more.
The energy state of endosteal implants is dependent on the material, manufacturing technique, cleaning procedure, sterilization method, and surgical manipulation. An implant surface carrying a positive charge renders hydrophilic properties, thereby facilitating the absorption of vital plasma proteins crucial for osteogenic interactions. Techniques to control the surface charge involve processes like oxidation, chemical and topographical adjustments as well as the application of nonthermal plasma (NTP) treatment. NTP at atmospheric pressure and at room temperature can induce chemical and/or physical reactions that enhance wettability through surface energy changes. NTP has thus been used to modify the oxide layer of endosteal implants that interface with adjacent tissue cells and proteins. Results have indicated that if applied prior to implantation, NTP strengthens the interaction with surrounding hard tissue structures during the critical phases of early healing, thereby promoting rapid bone formation. Also, during this time period, NTP has been found to result in enhanced biomechanical fixation. As such, the application of NTP may serve as a practical and reliable method to improve healing outcomes. This review aims to provide an in-depth exploration of the parameters to be considered in the application of NTP on endosteal implants. In addition, the short- and long-term effects of NTP on osseointegration are addressed, as well as recent advances in the utilization of NTP in the treatment of periodontal disease. Full article
(This article belongs to the Special Issue Titanium Implant and Its Cleaning/Decontamination Techniques)
Show Figures

Figure 1

18 pages, 3294 KiB  
Review
Plasma-Driven Sciences: Exploring Complex Interactions at Plasma Boundaries
by Kenji Ishikawa, Kazunori Koga and Noriyasu Ohno
Plasma 2024, 7(1), 160-177; https://doi.org/10.3390/plasma7010011 - 27 Feb 2024
Cited by 10 | Viewed by 4185
Abstract
Plasma-driven science is defined as the artificial control of physical plasma-driven phenomena based on complex interactions between nonequilibrium open systems. Recently, peculiar phenomena related to physical plasma have been discovered in plasma boundary regions, either naturally or artificially. Because laboratory plasma can be [...] Read more.
Plasma-driven science is defined as the artificial control of physical plasma-driven phenomena based on complex interactions between nonequilibrium open systems. Recently, peculiar phenomena related to physical plasma have been discovered in plasma boundary regions, either naturally or artificially. Because laboratory plasma can be produced under nominal conditions around atmospheric pressure and room temperature, phenomena related to the interaction of plasma with liquid solutions and living organisms at the plasma boundaries are emerging. Currently, the relationships between these complex interactions should be solved using science-based data-driven approaches; these approaches require a reliable and comprehensive database of dynamic changes in the chemical networks of elementary reactions. Consequently, the elucidation of the mechanisms governing plasma-driven phenomena and the discovery of the latent actions behind these plasma-driven phenomena will be realized through plasma-driven science. Full article
(This article belongs to the Special Issue Latest Review Papers in Plasma Science 2023)
Show Figures

Figure 1

23 pages, 2450 KiB  
Review
Low-Temperature Plasma Techniques in Biomedical Applications and Therapeutics: An Overview
by Chandrima Karthik, Sarath Chand Sarngadharan and Vinoy Thomas
Int. J. Mol. Sci. 2024, 25(1), 524; https://doi.org/10.3390/ijms25010524 - 30 Dec 2023
Cited by 28 | Viewed by 5123
Abstract
Plasma, the fourth fundamental state of matter, comprises charged species and electrons, and it is a fascinating medium that is spread over the entire visible universe. In addition to that, plasma can be generated artificially under appropriate laboratory techniques. Artificially generated thermal or [...] Read more.
Plasma, the fourth fundamental state of matter, comprises charged species and electrons, and it is a fascinating medium that is spread over the entire visible universe. In addition to that, plasma can be generated artificially under appropriate laboratory techniques. Artificially generated thermal or hot plasma has applications in heavy and electronic industries; however, the non-thermal (cold atmospheric or low temperature) plasma finds its applications mainly in biomedicals and therapeutics. One of the important characteristics of LTP is that the constituent particles in the plasma stream can often maintain an overall temperature of nearly room temperature, even though the thermal parameters of the free electrons go up to 1 to 10 keV. The presence of reactive chemical species at ambient temperature and atmospheric pressure makes LTP a bio-tolerant tool in biomedical applications with many advantages over conventional techniques. This review presents some of the important biomedical applications of cold-atmospheric plasma (CAP) or low-temperature plasma (LTP) in modern medicine, showcasing its effect in antimicrobial therapy, cancer treatment, drug/gene delivery, tissue engineering, implant modifications, interaction with biomolecules, etc., and overviews some present challenges in the field of plasma medicine. Full article
(This article belongs to the Collection Feature Papers in Materials Science)
Show Figures

Figure 1

19 pages, 6625 KiB  
Article
On the Effect of Non-Thermal Atmospheric Pressure Plasma Treatment on the Properties of PET Film
by Irena Maliszewska, Małgorzata Gazińska, Maciej Łojkowski, Emilia Choińska, Daria Nowinski, Tomasz Czapka and Wojciech Święszkowski
Polymers 2023, 15(21), 4289; https://doi.org/10.3390/polym15214289 - 31 Oct 2023
Cited by 9 | Viewed by 3285
Abstract
The aim of the work was to investigate the effect of non-thermal plasma treatment of an ultra-thin polyethylene terephthalate (PET) film on changes in its physicochemical properties and biodegradability. Plasma treatment using a dielectric barrier discharge plasma reactor was carried out in air [...] Read more.
The aim of the work was to investigate the effect of non-thermal plasma treatment of an ultra-thin polyethylene terephthalate (PET) film on changes in its physicochemical properties and biodegradability. Plasma treatment using a dielectric barrier discharge plasma reactor was carried out in air at room temperature and atmospheric pressure twice for 5 and 15 min, respectively. It has been shown that pre-treatment of the PET surface with non-thermal atmospheric plasma leads to changes in the physicochemical properties of this polymer. After plasma modification, the films showed a more developed surface compared to the control samples, which may be related to the surface etching and oxidation processes. After a 5-min plasma exposure, PET films were characterized by the highest wettability, i.e., the contact angle decreased by more than twice compared to the untreated samples. The differential scanning calorimetry analysis revealed the influence of plasma pretreatment on crystallinity content and the melt crystallization behavior of PET after soil degradation. The main novelty of the work is the fact that the combined action of two factors (i.e., physical and biological) led to a reduction in the content of the crystalline phase in the tested polymeric material. Full article
(This article belongs to the Collection Polymers and Polymer Composites: Structure-Property Relationship)
Show Figures

Figure 1

12 pages, 2516 KiB  
Article
Structure and Dielectric Properties of Poly(vinylidenefluoride-co-trifluoroethylene) Copolymer Thin Films Using Atmospheric Pressure Plasma Deposition for Piezoelectric Nanogenerator
by Eunyoung Jung, Choon-Sang Park, Taeeun Hong and Heung-Sik Tae
Nanomaterials 2023, 13(10), 1698; https://doi.org/10.3390/nano13101698 - 22 May 2023
Cited by 2 | Viewed by 2146
Abstract
This study investigates the structural phase and dielectric properties of poly(vinylidenefluoride-co-trifluoroethylene) (P[VDF–TrFE]) thin films grown via atmospheric pressure (AP) plasma deposition using a mixed polymer solution comprising P[VDF–TrFE] polymer nano powder and dimethylformamide (DMF) liquid solvent. The length of the glass guide tube [...] Read more.
This study investigates the structural phase and dielectric properties of poly(vinylidenefluoride-co-trifluoroethylene) (P[VDF–TrFE]) thin films grown via atmospheric pressure (AP) plasma deposition using a mixed polymer solution comprising P[VDF–TrFE] polymer nano powder and dimethylformamide (DMF) liquid solvent. The length of the glass guide tube of the AP plasma deposition system is an important parameter in producing intense cloud-like plasma from the vaporization of DMF liquid solvent containing polymer nano powder. This intense cloud-like plasma for polymer deposition is observed in a glass guide tube of length 80 mm greater than the conventional case, thus uniformly depositing the P[VDF–TrFE] thin film with a thickness of 3 μm. The P[VDF–TrFE] thin films with excellent β-phase structural properties were coated under the optimum conditions at room temperature for 1 h. However, the P[VDF–TrFE] thin film had a very high DMF solvent component. The post-heating treatment was then performed on a hotplate in air for 3 h at post-heating temperatures of 140 °C, 160 °C, and 180 °C to remove DMF solvent and obtain pure piezoelectric P[VDF–TrFE] thin films. The optimal conditions for removing the DMF solvent while maintaining the β phases were also examined. The post-heated P[VDF–TrFE] thin films at 160 °C had a smooth surface with nanoparticles and crystalline peaks of β phases, as confirmed by the Fourier transform infrared spectroscopy and XRD analysis. The dielectric constant of the post-heated P[VDF–TrFE] thin film was measured to be 30 using an impedance analyzer at 10 kHz and is expected to be applied to electronic devices such as low-frequency piezoelectric nanogenerators. Full article
(This article belongs to the Special Issue Synthesis of Nanostructures in Gas-Discharge Plasma)
Show Figures

Figure 1

17 pages, 4159 KiB  
Article
Insights into the Role of Nanorod-Shaped MnO2 and CeO2 in a Plasma Catalysis System for Methanol Oxidation
by Guangyi Zhang, Gui Chen, Haomin Huang, Yexia Qin, Mingli Fu, Xin Tu, Daiqi Ye and Junliang Wu
Nanomaterials 2023, 13(6), 1026; https://doi.org/10.3390/nano13061026 - 13 Mar 2023
Cited by 3 | Viewed by 2413
Abstract
Published papers highlight the roles of the catalysts in plasma catalysis systems, and it is essential to provide deep insight into the mechanism of the reaction. In this work, a coaxial dielectric barrier discharge (DBD) reactor packed with γ-MnO2 and CeO2 [...] Read more.
Published papers highlight the roles of the catalysts in plasma catalysis systems, and it is essential to provide deep insight into the mechanism of the reaction. In this work, a coaxial dielectric barrier discharge (DBD) reactor packed with γ-MnO2 and CeO2 with similar nanorod morphologies and particle sizes was used for methanol oxidation at atmospheric pressure and room temperature. The experimental results showed that both γ-MnO2 and CeO2 exhibited good performance in methanol conversion (up to 100%), but the CO2 selectivity of CeO2 (up to 59.3%) was much higher than that of γ-MnO2 (up to 28.6%). Catalyst characterization results indicated that CeO2 contained more surface-active oxygen species, adsorbed more methanol and utilized more plasma-induced active species than γ-MnO2. In addition, in situ Raman spectroscopy and Fourier transform infrared spectroscopy (FT-IR) were applied with a novel in situ cell to reveal the major factors affecting the catalytic performance in methanol oxidation. More reactive oxygen species (O22−, O2−) from ozone decomposition were produced on CeO2 compared with γ-MnO2, and less of the intermediate product formate accumulated on the CeO2. The combined results showed that CeO2 was a more effective catalyst than γ-MnO2 for methanol oxidation in the plasma catalysis system. Full article
Show Figures

Figure 1

Back to TopTop