Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (994)

Search Parameters:
Keywords = atmospheric chemistry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 5250 KB  
Article
Nonlinear Gravity-Wave Effects on the Distribution of Chemical Constituents in a Vertically-Sheared Atmospheric Flow
by Ahmed S. Almohaimeed and Lucy J. Campbell
Mathematics 2026, 14(2), 322; https://doi.org/10.3390/math14020322 - 17 Jan 2026
Viewed by 50
Abstract
The dynamical processes in the atmosphere are coupled with the chemistry of the atmosphere. Internal gravity waves influence the distribution of chemical constituents in the atmosphere through their effects on the background wind or mean flow. We examine a coupled system of equations [...] Read more.
The dynamical processes in the atmosphere are coupled with the chemistry of the atmosphere. Internal gravity waves influence the distribution of chemical constituents in the atmosphere through their effects on the background wind or mean flow. We examine a coupled system of equations comprising a nonlinear transport equation of Fisher type for the distribution of the chemical species, along with nonlinear Boussinesq equations for internal gravity waves in a vertically stratified and vertically sheared fluid flow in a two-dimensional region. In our model, a horizontally localized gravity-wave packet is generated and propagates upward into a localized region where the chemical species is present. Numerical solutions show that the wave-induced mean flow resulting from nonlinear gravity-wave interactions in the vicinity of a critical level leads to modifications in the distribution of the chemical. An asymptotic analysis of a related qualitatively similar problem gives us information on the dominant behaviour of the chemical concentration perturbation. We conclude that nonlinearity and vertical shear play a vital role in the interplay between gravity-wave dynamics and chemical distributions in the atmosphere. Full article
(This article belongs to the Special Issue Nonlinear Waves: Theory and Applications)
14 pages, 1283 KB  
Article
Long-Term Evolution of the Ozone Layer Under CMIP7 Scenarios
by Margarita A. Tkachenko and Eugene V. Rozanov
Atmosphere 2026, 17(1), 92; https://doi.org/10.3390/atmos17010092 (registering DOI) - 16 Jan 2026
Viewed by 152
Abstract
Recovery of the stratospheric ozone layer following the ban on ozone-depleting substances represents one of the most successful examples of international environmental policy. However, the long-term fate of ozone under continuing climate change remains uncertain. We present the first multi-century projections of ozone [...] Read more.
Recovery of the stratospheric ozone layer following the ban on ozone-depleting substances represents one of the most successful examples of international environmental policy. However, the long-term fate of ozone under continuing climate change remains uncertain. We present the first multi-century projections of ozone evolution to 2200 using emission-driven CMIP7 scenarios in the SOCOL-MPIOM chemistry-climate model. Our results show that despite the elimination of halogenated compounds, total column ozone exhibits non-monotonic evolution, with an initial increase of 8–12% by 2080–2100, followed by a decline to 2200, remaining 4.5–7% above the 2020 baseline. Stratospheric ozone at 50 hPa shows a monotonic decline of 2–11% by 2200 across all scenarios, with no recovery despite ongoing Montreal Protocol implementation. Critically, even in the high-overshoot scenario where CO2 concentrations decline from 830 to 350 ppm between 2100 and 2200, stratospheric ozone continues to decrease. Intensification of the Brewer-Dobson circulation in warmer climates reduces ozone residence time in the tropical stratosphere, decreasing photochemical production efficiency. This dynamic effect outweighs the reduction in ozone-depleting substances, leading to persistent stratospheric ozone depletion despite total column ozone enhancements in polar regions. Spatial analysis reveals pronounced regional differentiation: Antarctic regions show sustained total column enhancement of +18–26% by 2190–2200, while tropical regions decline to levels below baseline (−4 to −5%). Our results reveal fundamental asymmetry between climate forcing and ozone response, with characteristic adjustment timescales of 100–200 years, and have critical implications for long-term atmospheric protection policy. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

17 pages, 7424 KB  
Article
Seasonal Characteristics, Sources, and Regional Transport Patterns of Precipitation Components at High-Elevation Mountain in South China
by Wenkai Lei, Xingyu Li, Xingchuan Yang, Lan Zhang, Xingru Li, Wenji Zhao and Yuepeng Pan
Atmosphere 2026, 17(1), 87; https://doi.org/10.3390/atmos17010087 - 15 Jan 2026
Viewed by 152
Abstract
To investigate the seasonal characteristics, sources, and regional transport patterns of precipitation components in the high-elevation mountainous regions, field sampling was conducted at Mt. Heng (Hunan, South China) from June 2021 to May 2022. In total, 114 precipitation samples were collected and subjected [...] Read more.
To investigate the seasonal characteristics, sources, and regional transport patterns of precipitation components in the high-elevation mountainous regions, field sampling was conducted at Mt. Heng (Hunan, South China) from June 2021 to May 2022. In total, 114 precipitation samples were collected and subjected to chemical analysis, including pH, major inorganic ions, and heavy metals. During the study period, the precipitation at Mt. Heng was generally weakly acidic. The concentrations of metals and acidic anions (NO3 and SO42−) were higher in the winter and lower in the summer, whereas the concentration of the primary neutralizing cation, NH4+, peaked during the summer. An association was observed between precipitation pH and metal concentrations, whereby acidic precipitation samples exhibited marginally elevated metal concentrations overall. An additional analysis of winter precipitation chemistry at Mt. Heng revealed an increasing trend of ions from 2015 to 2018, followed by a decrease from 2019 to 2021. This trend coincided with the concentrations of NO2 and SO2 in the surrounding cities, reflecting the results of clean air actions. The results of the source analysis revealed five major sources: secondary sources (41.5%), coal combustion (24.7%), a mixed source of biomass burning and aged sea salt (11.6%), dust (10.8%), and industrial emissions (11.4%). Backward trajectory cluster analysis revealed that air masses originating from the northern regions were generally more polluted than those from the southern regions. This study provides fundamental data and scientific support for regional atmospheric pollution control and ecological protection in South China. Full article
Show Figures

Figure 1

21 pages, 1231 KB  
Article
Undervalued Contribution of OVOCs to Atmospheric Activity: A Case Study in Beijing
by Kaitao Chen, Ziyan Chen, Fang Yang, Xingru Li and Fangkun Wu
Toxics 2026, 14(1), 77; https://doi.org/10.3390/toxics14010077 - 14 Jan 2026
Viewed by 132
Abstract
VOCs are significant precursors for the formation of O3 and SOA, directly impacting human health. This study employs multiple approaches to analyzing atmospheric VOCs by focusing on OVOCs including aldehydes, ketones, and phenols, with a case study in Beijing, China. We analyzed [...] Read more.
VOCs are significant precursors for the formation of O3 and SOA, directly impacting human health. This study employs multiple approaches to analyzing atmospheric VOCs by focusing on OVOCs including aldehydes, ketones, and phenols, with a case study in Beijing, China. We analyzed the concentration levels and compositions of VOCs and their atmospheric activities, offering a new perspective on VOCs. This analysis was conducted through offline measurements of volatile phenols and carbonyl compounds, complemented by online VOC observations during the summer period of high O3 levels. The total atmospheric VOCs concentration was found to be 51.29 ± 10.01 ppbv, with phenols contributing the most (38.87 ± 11.57%), followed by carbonyls (34.91 ± 6.85%), and aromatics (2.70 ± 1.03%, each compound is assigned to only one category based on its primary functional group, with no double counting). Carbonyls were the largest contributors to the OFP at 59.03 ± 14.69%, followed by phenols (19.94 ± 4.27%). The contribution of phenols to the SOAFP (43.37 ± 9.53%) and the LOH (67.74 ± 16.72%) is dominant. Among all quantified VOC species, phenol and formaldehyde exhibited the highest species-level contributions to atmospheric reactivity metrics, including LOH, OFP and SOAFP, owing to their combination of elevated concentrations and large kinetic or MIR coefficients. Using the PMF model for source analysis, six main sources of volatile organic compounds were identified. Solvent use and organic chemicals production were found to be the primary contributors, accounting for 31.76% of the total VOCs emissions, followed by diesel vehicle exhaust (17.80%) and biogenic sources (15.51%). This study introduces important OVOCs such as phenols, re-evaluates the importance of OVOCs and their role in atmospheric chemical processes, and provides new insights into atmospheric VOCs. These findings are crucial for developing effective air pollution control strategies and improving air quality. This study emphasizes the importance of OVOCs, especially aldehydes and phenols, in the mechanism of summer O3 generation. Full article
Show Figures

Graphical abstract

20 pages, 2244 KB  
Perspective
Calculation of the pH Values of Aqueous Systems Containing Carbonic Acid and Significance for Natural Waters, Following (Near-)Exact and Approximated Solutions: The Importance of the Boundary Conditions
by Arianna Rosso and Davide Vione
Molecules 2026, 31(2), 292; https://doi.org/10.3390/molecules31020292 - 14 Jan 2026
Viewed by 116
Abstract
Calculating the pH values of carbonic acid solutions is an important task in studies of chemical equilibria in freshwater systems, with applications to environmental chemistry, geology, and hydrology. These pH values are also highly relevant in the context of climate change, since increasing [...] Read more.
Calculating the pH values of carbonic acid solutions is an important task in studies of chemical equilibria in freshwater systems, with applications to environmental chemistry, geology, and hydrology. These pH values are also highly relevant in the context of climate change, since increasing atmospheric CO2 affects the concentration of dissolved carbon dioxide and carbonic acid, collectively denoted as [H2CO3*] = [H2CO3(aq)] + [CO2(aq)]. Solving equilibrium systems to obtain analytical functions is particularly useful when such functions are required, for example, in data fitting. We show here that, although exact or near-exact solutions typically result in third- to fourth-order equations that must be solved numerically, reasonable approximations can be derived that lead to analytical second-order equations. In this framework, the chosen approximations need to meet the boundary conditions of the systems, particularly for cT → 0 and for high cT values (where cT = [H2CO3*] + [HCO3] + [CO32−]). Finally, we provide exact solutions for a closed system containing both H2CO3* and alkalinity, which enables the description of virtually any aquatic environment without assuming equilibrium with atmospheric CO2. Implications for pH calculations in natural waters are also briefly discussed. Full article
Show Figures

Figure 1

29 pages, 5114 KB  
Article
Model Simulations and Experimental Study of Acetic Acid Adsorption on Ice Surfaces with Coupled Ice-Bulk Diffusion at Temperatures Around 200 K
by Atanas Terziyski, Peter Behr, Nikolay Kochev, Peer Scheiff and Reinhard Zellner
Physchem 2026, 6(1), 3; https://doi.org/10.3390/physchem6010003 - 9 Jan 2026
Viewed by 154
Abstract
A kinetic and thermodynamic multi-phase model has been developed to describe the adsorption of gases on ice surfaces and their subsequent diffusional loss into the bulk ice phase. This model comprises a gas phase, a solid surface, a sub-surface layer, and the ice [...] Read more.
A kinetic and thermodynamic multi-phase model has been developed to describe the adsorption of gases on ice surfaces and their subsequent diffusional loss into the bulk ice phase. This model comprises a gas phase, a solid surface, a sub-surface layer, and the ice bulk. The processes represented include gas adsorption on the surface, solvation into the sub-surface layer, and diffusion in the ice bulk. It is assumed that the gases dissolve according to Henry’s law, while the surface concentration follows the Langmuir adsorption equilibrium. The flux of molecules from the sub-surface layer into the ice bulk is treated according to Fick’s second law. Kinetic and thermodynamic quantities as applicable to the uptake of small carbonyl compounds on ice surfaces at temperatures around 200 K have been used to perform model calculations and corresponding sensitivity tests. The primary application in this study is acetic acid. The model simulations are applied by fitting the experimental data obtained from coated-wall flow-systems (CWFT) measurements, with the best curve-fit solutions providing reliable estimations of kinetic parameters. Over the temperature range from 190 to 220 K, the estimated desorption coefficient, kdes, varies from 0.02 to 1.35 s−1, while adsorption rate coefficient, kads, ranges from 3.92 and 4.17 × 10−13 cm3 s−1, and the estimated diffusion coefficient, D, changes by more than two orders of magnitude, increasing from 0.03 to 13.0 × 10−8 cm2 s−1. Sensitivity analyses confirm that this parameter estimation approach is robust and consistent with underlying physicochemical processes. It is shown that for shorter exposure times the loss of molecules from the gas phase is caused exclusively by adsorption onto the surface and solvation into the sub-surface layer. Diffusional loss into the bulk, on the other hand, is only important at longer exposure times. The model is a useful tool for elucidating surface and bulk process kinetic parameters, such as adsorption and desorption rate constants, solution and segregation rates, and diffusion coefficients, as well as the estimation of thermodynamic quantities, such as Langmuir and Henry constants and the ice film thickness. Full article
(This article belongs to the Section Kinetics and Thermodynamics)
Show Figures

Figure 1

40 pages, 2292 KB  
Review
Air Pollution as a Driver of Forest Dynamics: Patterns, Mechanisms, and Knowledge Gaps
by Eliza Tupu, Lucian Dincă, Gabriel Murariu, Romana Drasovean, Dan Munteanu, Ionica Soare and George Danut Mocanu
Forests 2026, 17(1), 81; https://doi.org/10.3390/f17010081 - 8 Jan 2026
Viewed by 234
Abstract
Air pollution is a major but often under-integrated driver of forest dynamics at the global scale. This review combines a bibliometric analysis of 258 peer-reviewed studies with a synthesis of ecological, physiological, and biogeochemical evidence to clarify how multiple air pollutants influence forest [...] Read more.
Air pollution is a major but often under-integrated driver of forest dynamics at the global scale. This review combines a bibliometric analysis of 258 peer-reviewed studies with a synthesis of ecological, physiological, and biogeochemical evidence to clarify how multiple air pollutants influence forest structure, function, and regeneration. Research output is dominated by Europe, East Asia, and North America, with ozone, nitrogen deposition, particulate matter, and acidic precipitation receiving the greatest attention. Across forest biomes, air pollution affects growth, wood anatomy, nutrient cycling, photosynthesis, species composition, litter decomposition, and soil chemistry through interacting pathways. Regional patterns reveal strong context dependency, with heightened sensitivity in mountain and boreal forests, pronounced ozone exposure in Mediterranean and peri-urban systems, episodic oxidative stress in tropical forests, and long-term heavy-metal accumulation in industrial regions. Beyond being impacted, forests actively modify atmospheric chemistry through pollutant filtration, aerosol interactions, and deposition processes. The novelty of this review lies in explicitly framing air pollution as a dynamic driver of forest change, with direct implications for afforestation and restoration on degraded lands. Key knowledge gaps remain regarding combined pollution–climate effects, understudied forest biomes, and the scaling of physiological responses to ecosystem and regional levels, which must be addressed to support effective forest management under global change. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

26 pages, 378 KB  
Review
Airborne Radioiodine: A Comparative View of Chemical Forms in Medicine, Nuclear Industry, and Fallout Scenarios
by Klaus Schomäcker, Ferdinand Sudbrock, Thomas Fischer, Felix Dietlein, Markus Dietlein, Philipp Krapf and Alexander Drzezga
Int. J. Mol. Sci. 2026, 27(2), 590; https://doi.org/10.3390/ijms27020590 - 6 Jan 2026
Viewed by 353
Abstract
Airborne iodine-131 plays a pivotal role in both nuclear medicine and nuclear safety due to its radiotoxicity, volatility, and affinity for the thyroid gland. Although the total exhaled activity after medical I-131 therapy is minimal, over 95% of this activity appears in volatile [...] Read more.
Airborne iodine-131 plays a pivotal role in both nuclear medicine and nuclear safety due to its radiotoxicity, volatility, and affinity for the thyroid gland. Although the total exhaled activity after medical I-131 therapy is minimal, over 95% of this activity appears in volatile organic forms, which evade standard filtration and reflect metabolic pathways of iodine turnover. Our experimental work in patients and mice confirms the metabolic origin of these species, modulated by thyroidal function. In nuclear reactor environments, both under routine operation and during accidents, organic iodides such as [131I]CH3I have also been identified as major airborne components, often termed “penetrating iodine” due to their low adsorption to conventional filters. This review compares the molecular speciation, environmental persistence, and dosimetric impact of airborne I-131 across clinical, technical, and accidental release scenarios. While routine reactor emissions yield negligible doses (<0.1 µSv/year), severe nuclear incidents like Chernobyl and Fukushima have resulted in significant thyroid exposures. Doses from these events ranged from tens of millisieverts to several Sieverts, particularly in children. We argue that a deeper understanding of chemical forms is essential for effective risk assessment, filtration technology, and emergency preparedness. Iodine-131 exemplifies the dual nature of radioactive substances: in nuclear medicine its radiotoxicity is therapeutically harnessed, whereas in industrial or reactor contexts it represents an unwanted hazard. The same physicochemical properties that enable therapeutic efficacy also determine, in the event of uncontrolled release, the range, persistence, and the potential for unwanted radiotoxic exposure in the general population. In nuclear medicine, exhaled activity after radioiodine therapy is minute but largely organically bound, reflecting enzymatic and metabolic methylation processes. During normal reactor operation, airborne iodine levels are negligible and dominated by inorganic vapors efficiently captured by filtration systems. In contrast, major accidents released large fractions of volatile iodine, primarily as elemental [131I]I2 and organically bound iodine species like [131I]CH3I. The chemical nature of these compounds defined their atmospheric lifetime, transport distance, and deposition pattern, thereby governing the thyroid dose to exposed populations. Chemical speciation is the key determinant across all scenarios. Exhaled iodine in medicine is predominantly organic; routine reactor releases are negligible; severe accidents predominantly release elemental and organic iodine that drive environmental transport and exposure. Integrating these domains shows how chemical speciation governs volatility, mobility, and bioavailability. The novelty of this review lies not in introducing new iodine chemistry, but in the systematic comparative synthesis of airborne radioiodine speciation across medical therapy, routine nuclear operation, and severe accident scenarios, identifying chemical form as the unifying determinant of volatility, environmental transport, and dose. Full article
(This article belongs to the Topic Environmental Toxicology and Human Health—2nd Edition)
24 pages, 2289 KB  
Article
Inhibition by Nitrogen Addition of Moss-Mediated CH4 Uptake and CO2 Emission Under a Well-Drained Temperate Forest, Northeastern China
by Xingkai Xu, Jin Yue, Weiguo Cheng, Yuhua Kong, Shuirong Tang, Dmitriy Khoroshaev and Vladimir Shanin
Plants 2026, 15(1), 166; https://doi.org/10.3390/plants15010166 - 5 Jan 2026
Viewed by 301
Abstract
Nitrogen (N) deposition poses a multi-pronged threat to the carbon (C)-regulating services of moss understories. For forest C-cycle modeling under increasing N deposition, failure to mechanistically incorporate the moss-mediated processes risks severely overestimating the C sink potential of global forests. To explore whether [...] Read more.
Nitrogen (N) deposition poses a multi-pronged threat to the carbon (C)-regulating services of moss understories. For forest C-cycle modeling under increasing N deposition, failure to mechanistically incorporate the moss-mediated processes risks severely overestimating the C sink potential of global forests. To explore whether and how N input affects the moss-mediated CH4 and carbon dioxide (CO2) fluxes, a five-year field measurement was performed in the N manipulation experimental plots treated with 22.5 and 45 kg N ha−1 yr−1 as ammonium chloride for nine years under a well-drained temperate forest in northeastern China. In the presence of mosses, the average annual CH4 uptake and CO2 emission in all N-treated plots ranged from 0.96 to 1.48 kg C-CH4 ha−1 yr−1 and from 4.04 to 4.41 Mg C-CO2 ha−1 yr−1, respectively, with a minimum in the high-N-treated plots, which were smaller than those in the control (1.29–1.83 kg C-CH4 ha−1 yr−1 and 4.82–6.51 Mg C-CO2 ha−1 yr−1). However, no significant differences in annual cumulative CO2 and CH4 fluxes across all treatments occurred without moss cover. Based on the differences in C fluxes with and without mosses, the average annual moss-mediated CH4 uptake and CO2 emission in the control were 0.77 kg C-CH4 ha−1 yr−1 and 2.40 Mg C-CO2 ha−1 yr−1, respectively, which were larger than those in the two N treatments. The N effects on annual moss-mediated C fluxes varied with annual meteorological conditions. Soil pH, available N and C contents, and microbial activity inferred from δ13C shifts in respired CO2 were identified as the main driving factors controlling the moss-mediated CH4 and CO2 fluxes. The results highlighted that this inhibitory effect of increasing N deposition on moss-mediated C fluxes in the context of climate change should be reasonably taken into account in model studies to accurately predict C fluxes under well-drained forest ecosystems. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Graphical abstract

18 pages, 2880 KB  
Article
Ionic Composition and Deposition Loads of Rainwater According to Regional Characteristics of Agricultural Areas
by Byung Wook Oh, Jin Ho Kim, Young Eun Na and Il Hwan Seo
Agriculture 2026, 16(1), 126; https://doi.org/10.3390/agriculture16010126 - 3 Jan 2026
Viewed by 222
Abstract
This study investigated the site-specific ionic composition and wet deposition loads of rainwater collected from eight actively cultivated agricultural regions across South Korea, with the aim of quantifying spatial and seasonal variability and interpreting how regional agricultural characteristics and surrounding site conditions influence [...] Read more.
This study investigated the site-specific ionic composition and wet deposition loads of rainwater collected from eight actively cultivated agricultural regions across South Korea, with the aim of quantifying spatial and seasonal variability and interpreting how regional agricultural characteristics and surrounding site conditions influence major ion concentrations and deposition patterns. Rainfall samples were obtained using automated samplers and analyzed via high-performance ion chromatography for major cations (Na+, NH4+, K+, Ca2+, Mg2+) and anions (Cl, NO3, SO42, NO2). The results revealed significant seasonal fluctuations in ion loads, with NH4+ (peak 1.13 kg/ha) and K+ (peak 0.25 kg/ha) reaching their highest levels during summer due to increased fertilizer use and crop activity. Conversely, Cl peaked in winter (2.11 kg/ha in December), particularly in coastal regions, likely influenced by de-icing salts and sea-salt aerosols. Correlation analysis showed a strong positive association among NH4+, NO3, and SO42 (r = 0.89 and r = 0.84, respectively), indicating shared atmospheric transformation pathways from agricultural emissions. Ternary diagram analysis further revealed regional distinctions: coastal regions such as Gimhae and Muan exhibited Na+ and Cl dominance, while inland areas like Danyang and Hongcheon showed higher proportions of Ca2+ and Mg2+, reflecting differences in aerosol sources, land use, and local meteorological conditions. These findings underscore the complex interactions between agricultural practices, atmospheric processes, and local geography in shaping rainwater chemistry. The study provides quantitative baseline data for evaluating non-point source pollution and developing region-specific nutrient and soil management strategies in agricultural ecosystems. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

19 pages, 2821 KB  
Article
Assessment of Atmospheric Acidifying Pollutant Trends and Their Potential Impact on Aquatic Carbon Stability in a Semi-Arid Basin: The Case of Konya
by Aziz Uğur Tona and Vahdettin Demir
Water 2026, 18(1), 118; https://doi.org/10.3390/w18010118 - 3 Jan 2026
Viewed by 350
Abstract
The behavior of the carbon cycle within the Land-Ocean Aquatic Continuum (LOAC) is shaped not only by aquatic processes but also by chemical interactions occurring at the atmosphere–water interface. In particular, the transport of acid rain precursors such as SO2 and NO [...] Read more.
The behavior of the carbon cycle within the Land-Ocean Aquatic Continuum (LOAC) is shaped not only by aquatic processes but also by chemical interactions occurring at the atmosphere–water interface. In particular, the transport of acid rain precursors such as SO2 and NOx to surface waters via deposition can alter the water’s pH balance, thereby affecting Dissolved Inorganic Carbon (DIC) fractions and CO2 emission potential. In this study, air quality measurements from three monitoring stations (Bosna, Karatay, and Meram) in Konya province of Türkiye, along with precipitation and temperature data from a representative meteorological station for the period 2021–2023, were analyzed using the Mann–Kendall Trend Test. Additionally, seasonal pH values of groundwater were examined, and their trends were compared with those of the other variables. The findings reveal striking differences on a station basis. At the Bosna station, while NO (Z = 10.80), NO2 (Z = 9.47), and NOx (Z = 10.04) showed strong increasing trends, O3 decreased significantly (Z = −15.14). At the Karatay station, significant increasing trends were detected for CO (Z = 10.01), PM10 (Z = 8.59), SO2 (Z = 5.55), and NOx (Z = 2.44), whereas O3 exhibited a negative trend (Z = −6.54). At the Meram station, a significant decrease was observed in CO (Z = −11.63), while NO2 showed an increasing trend (Z = 3.03). Analysis of meteorological series indicated no significant trend in precipitation (Z = −0.04), but a distinct increase in temperature (Z = 2.90, p < 0.01). These findings suggest that the increasing NOx load in the Konya atmosphere accelerates O3 consumption and, combined with rising temperatures, creates a potential for change in the carbon chemistry of aquatic systems. The results demonstrate that atmospheric pollutant trends constitute an indirect but significant pressure factor on the aquatic carbon cycle in semi-arid regions and highlight the necessity of integrating atmospheric processes into carbon budget analyses within the scope of LOAC. Full article
(This article belongs to the Special Issue Research on the Carbon and Water Cycle in Aquatic Ecosystems)
Show Figures

Figure 1

18 pages, 1947 KB  
Review
Effect of Sintering Atmosphere Control on the Surface Engineering of Catamold Steels Produced by MIM: A Review
by Jorge Luis Braz Medeiros, Carlos Otávio Damas Martins and Luciano Volcanoglo Biehl
Surfaces 2026, 9(1), 7; https://doi.org/10.3390/surfaces9010007 - 29 Dec 2025
Viewed by 291
Abstract
Metal Injection Molding (MIM) is an established, high-precision manufacturing route for small, geometrically complex metallic components, integrating polymer injection molding with powder metallurgy. State-of-the-art feedstock systems, such as Catamold (polyacetal-based), enable catalytic debinding performed in furnaces operating under ultra-high-purity nitric acid atmospheres (>99.999%). [...] Read more.
Metal Injection Molding (MIM) is an established, high-precision manufacturing route for small, geometrically complex metallic components, integrating polymer injection molding with powder metallurgy. State-of-the-art feedstock systems, such as Catamold (polyacetal-based), enable catalytic debinding performed in furnaces operating under ultra-high-purity nitric acid atmospheres (>99.999%). The subsequent thermal stages pre-sintering and sintering are carried out in continuous controlled-atmosphere furnaces or vacuum systems, typically employing inert (N2) or reducing (H2) atmospheres to meet the specific thermodynamic requirements of each alloy. However, incomplete decomposition or secondary volatilization of binder residues can lead to progressive hydrocarbon accumulation within the sinering chamber. These contaminants promote undesirable carburizing atmospheres, which, under austenitizing or intercritical conditions, increase carbon diffusion and generate uncontrolled surface carbon gradients. Such effects alter the microstructural evolution, hardness, wear behavior, and mechanical integrity of MIM steels. Conversely, inadequate dew point control may shift the atmosphere toward oxidizing regimes, resulting in surface decarburization and oxide formation effects that are particularly detrimental in stainless steels, tool steels, and martensitic alloys, where surface chemistry is critical for performance. This review synthesizes current knowledge on atmosphere-induced surface deviations in MIM steels, examining the underlying thermodynamic and kinetic mechanisms governing carbon transport, oxidation, and phase evolution. Strategies for atmosphere monitoring, contamination mitigation, and corrective thermal or thermochemical treatments are evaluated. Recommendations are provided to optimize surface substrate interactions and maximize the functional performance and reliability of MIM-processed steel components in demanding engineering applications. Full article
Show Figures

Figure 1

21 pages, 9784 KB  
Article
Low-Level Wind Shear Characteristics in the Qinghai-Tibet Plateau by Long-Term Wind Lidar Observations and the Improved Algorithm
by Huiyu Ding, Dandan Zhao, Lian Duan, Junjie Wu, Wenjun Sang, Guangjing Liu, Tianyi Wang, Shaoqing Zhang and Yaohui Li
Atmosphere 2026, 17(1), 6; https://doi.org/10.3390/atmos17010006 - 22 Dec 2025
Viewed by 327
Abstract
The complex terrain of the Qinghai–Tibetan Plateau (QTP) makes low-level wind shear (LLWS) detection challenging. Using May–September 2023 high-resolution Doppler Wind Lidar (DWL) observations, this study analyzed the spatiotemporal characteristics of LLWS and proposed an optimized detection algorithm. A key novelty of this [...] Read more.
The complex terrain of the Qinghai–Tibetan Plateau (QTP) makes low-level wind shear (LLWS) detection challenging. Using May–September 2023 high-resolution Doppler Wind Lidar (DWL) observations, this study analyzed the spatiotemporal characteristics of LLWS and proposed an optimized detection algorithm. A key novelty of this work lies in the development of a hybrid physical–statistical detection scheme that combines horizontal divergence with logistic regression to dynamically modulate the shear field. This approach effectively reduces noise-induced false alarms in complex plateau terrain. The results show that LLWS occurred mainly near the surface at night in June, while in September it appeared more frequently during daytime throughout the boundary layer. Horizontally, the dominant directions of LLWS shifted seasonally from northwest and west in June to south and east in September. The proposed optimization method effectively suppressed false alarms, reducing moderate and strong LLWS frequencies by 30–40%. In June, optimization significantly reduced spurious detections of LLWS in the northeast and southwest. The frequency of LLWS in the northeast direction was reduced by up to 0.03. In September, scattered shear was removed and strong shear became more organized in the southeast, while southwest shear frequency decreased by up to 0.04, confirming LLWS patterns and method effectiveness. Full article
(This article belongs to the Special Issue Meteorological Issues for Low-Altitude Economy)
Show Figures

Graphical abstract

39 pages, 2987 KB  
Review
Atmospheric Pressure Plasma for Carbon Material Modification and Synthesis: A Comprehensive Review
by Siqi Deng, Nozomi Takeuchi and Toshiro Kaneko
Materials 2025, 18(24), 5662; https://doi.org/10.3390/ma18245662 - 17 Dec 2025
Cited by 1 | Viewed by 600
Abstract
Atmospheric pressure plasma (APP) has emerged as a versatile tool for the functionalization, modification, and synthesis of carbon-based materials. This review summarizes the historical development, underlying principles, and current progress of APP in material science, with a particular focus on carbon nanomaterials. The [...] Read more.
Atmospheric pressure plasma (APP) has emerged as a versatile tool for the functionalization, modification, and synthesis of carbon-based materials. This review summarizes the historical development, underlying principles, and current progress of APP in material science, with a particular focus on carbon nanomaterials. The fundamentals of plasma parameters are introduced to highlight their roles in driving plasma–surface interactions and establish the diagnostics for these parameters. Recent advances in gas-phase and plasma–liquid systems and the influence of different plasma chemistries have led to different material functionalization results, which are discussed. Applications of plasma-treated carbon in energy storage, environment, and biomedicine are critically reviewed, demonstrating significant improvements in electrochemical performance, adsorption efficiency, and biocompatibility. Finally, current challenges are outlined alongside future perspectives on integrating APP. This review aims to provide a comprehensive reference for researchers seeking to exploit APP as a green and scalable platform for next-generation carbon materials. Full article
(This article belongs to the Special Issue Advances in Plasma Treatment of Materials)
Show Figures

Graphical abstract

28 pages, 5421 KB  
Review
Water’s Electric Imprint on Earth
by Fernando Galembeck, Leandra P. Santos, Thiago A. L. Burgo, Carlos E. Q. Dias and André Galembeck
Water 2025, 17(24), 3510; https://doi.org/10.3390/w17243510 - 11 Dec 2025
Viewed by 831
Abstract
This review explores the pervasive role of water in generating, storing, and mediating electric charge across natural and artificial systems. Far from being a passive medium, water actively participates in electrostatic and electrochemical processes through its intrinsic ionization, interfacial polarization, and charge separation [...] Read more.
This review explores the pervasive role of water in generating, storing, and mediating electric charge across natural and artificial systems. Far from being a passive medium, water actively participates in electrostatic and electrochemical processes through its intrinsic ionization, interfacial polarization, and charge separation mechanisms. The Maxwell–Wagner–Sillars (MWS) effect is presented as a unifying framework explaining charge accumulation at air–water, water–ice, and water–solid interfaces, forming dynamic “electric mosaics” across Earth’s environments. The authors integrate diverse phenomena—triboelectricity, hygroelectricity, hydrovoltaic effects, elastoelectricity, and electric-field-driven phase transitions—showing that ambient water continually shapes the planet’s electrical landscape. Electrostatic shielding by humid air and hydrated materials is described, as well as the spontaneous electrification of sliding or dripping water droplets, revealing new pathways for clean energy generation. In addition, the review highlights how electric fields and interfacial charges alter condensation, freezing, and chemical reactivity, underpinning discoveries such as microdroplet chemistry, “on-water” reactions, and spontaneous redox processes producing hydrogen and hydrogen peroxide. Altogether, the paper frames water as a universal electrochemical medium whose interfacial electric imprint influences atmospheric, geological, and biological phenomena while offering novel routes for sustainable technologies based on ambient charge dynamics and water-mediated electrification. Full article
(This article belongs to the Section Water-Energy Nexus)
Show Figures

Graphical abstract

Back to TopTop