Assessment of Atmospheric Acidifying Pollutant Trends and Their Potential Impact on Aquatic Carbon Stability in a Semi-Arid Basin: The Case of Konya
Abstract
1. Introduction
2. Materials and Method
- ❖
- Meram Station (Semi-Urban/Residential): Located in a region with higher vegetation density and residential heating activity.
- ❖
- Karatay Station (Urban Center): Represents the dense city center with mixed traffic and residential emissions.
- ❖
- Selçuklu (Bosna) Station (University/Traffic): Located in the northern expansion zone, characterized by student population density and proximity to main transportation arteries.
Mann-Kendall
3. Results
4. Discussion
- Acidification Pressure: The increase in NOx and SO2 concentrations, as demonstrated by the MK analysis, elevates the potential for atmospheric acid deposition. When these acidic precursors reach the water surface via wet (precipitation) or dry (dust) deposition, they tend to reduce pH levels by depleting the natural alkalinity of the water, particularly its bicarbonate buffering capacity [45].
- Evaporative Concentration: Simultaneously, the significant increasing trend in temperature (Z = 2.90) accelerates evaporation, leading to higher concentrations of dissolved salts in the water and promoting a more basic (alkaline) chemical character.
5. Conclusions
- ❖
- Transformation of Atmospheric Chemistry: Mann–Kendall analysis results confirmed statistically significant and strong increasing trends in primary pollutants (NOx, CO, PM10, and SO2), particularly at the Bosna and Karatay stations, where urban density is highest. In contrast, the pronounced decline in ozone (O3) concentrations indicates that the region’s photochemical regime is NOx-saturated, meaning that elevated nitrogen oxide emissions are chemically depleting ozone through titration.
- ❖
- Meteorological Forcing and Climate Signal: No statistically significant trend was observed in the precipitation regime during the study period; however, the irregular and episodic nature of rainfall continues to pose a risk for the pulsed wet deposition of accumulated atmospheric pollutants into aquatic environments. More critically, the significant upward trend detected in temperature series represents a clear signal of regional climate change. This warming intensifies evaporation rates within aquatic systems (evaporative concentration) and reduces gas solubility, thereby exerting physical stress on water chemistry.
- ❖
- Air–Water Interaction and the Carbon Cycle: The most original contribution of this study lies in revealing the “invisible” pressure of atmospheric pollution on the aquatic carbon cycle. The increasing load of acidic gases (NOx and SO2), when deposited onto surface waters via atmospheric pathways, has the potential to alter pH dynamics and disrupt the Dissolved Inorganic Carbon (DIC) balance. The spatial heterogeneity and acidification hotspots observed in the pH maps—particularly during end-of-season periods—indicate that atmospheric inputs are beginning to challenge the natural buffering capacity of the water. This process poses a significant risk of shifting aquatic ecosystems from functioning as carbon sinks to becoming net sources of CO2 emissions to the atmosphere.
- ❖
- Management within the LOAC Framework: In conclusion, the accumulation of pollutants in the Konya atmosphere is not merely an air quality issue but represents an external pressure mechanism that threatens carbon stability along the Land–Ocean–Aquatic Continuum (LOAC). Future water management strategies should adopt integrated Air–Water Basin Management models that account not only for the hydrological budget but also for the impacts of atmospheric nitrogen and sulfur deposition on aquatic biogeochemistry.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CH4 | Methane |
| CO2 | Carbon dioxide |
| DIC | Dissolved Inorganic Carbon |
| DOC | Dissolved Organic Carbon |
| DSİ | General Directorate of State Hydraulic Works |
| ES | End of Season |
| H0 | H0—Null hypothesis |
| H1 | H1—Alternative hypothesis |
| KBB | Konya Metropolitan Municipality |
| KCB | Konya Closed Basin |
| LOAC | Land–Ocean Aquatic Continuum |
| MGM | Turkish State Meteorological Service |
| MK | Mann–Kendall test |
| NO | Nitric oxide |
| NO2 | Nitrogen dioxide |
| NOx | Nitrogen oxides |
| O3 | Ozone |
| POC | Particulate Organic Carbon |
| PM10 | Particulate matter (≤10 µm) |
| S | S—Mann–Kendall test statistic |
| SO2 | Sulfur dioxide |
| SS | Start of Season |
| TÜİK | Turkish Statistical Institute |
| WMO | World Meteorological Organization |
References
- Jia, J.; Dungait, J.A.J.; Lu, Y.; Cui, T.; Yu, G.; Gao, Y. Inland Water Metabolic Carbon Processes and Associated Biological Mechanisms That Drive Carbon Source-Sink Instability. Innov. Geosci. 2023, 1, 100035. [Google Scholar] [CrossRef]
- Chaiwino, W.; Chaisee, K.; Oonariya, C.; Wongsaijai, B. Analysis of Long-Term Rainfall Trend and Extreme in Upper Northern Thailand. Sci. Rep. 2025, 15, 33380. [Google Scholar] [CrossRef]
- Xiao, J.; Lin, Y.; He, X.; He, Z.; Kong, X. Drought Exerted a Stronger Controlling Effect on Soil Carbon Release than Moisturizing in a Global Meta-Analysis. Forests 2023, 14, 1957. [Google Scholar] [CrossRef]
- Chai, H.; Ma, J.; Zhang, J.; Li, J.; Meng, B.; Wang, C.; Pan, D.; Li, J.; Sun, W.; Zhou, X. Nonlinear Responses of Ecosystem Carbon Fluxes to Precipitation Change in a Semiarid Grassland. Front. Plant Sci. 2025, 16, 1519879. [Google Scholar] [CrossRef]
- Han, C.; Dai, T.; Tian, Z.; Tang, Y.; Wu, H.; Wang, Y.; Wang, Z. Source Identification and Release Potential of Soil Phosphorus in the Water-Level Fluctuation Zone of Large Reservoirs: A Case Study of the Three Gorges Reservoir, China. Water 2025, 17, 611. [Google Scholar] [CrossRef]
- Dai, L.; Yang, Y.; Wang, X.; Yang, G.; Liang, M.; Hu, Z. Positive Asymmetric Responses Indicate Larger Carbon Sink with Increase in Precipitation Variability in Global Terrestrial Ecosystems. Innov. Geosci. 2024, 2, 100060. [Google Scholar] [CrossRef]
- Emmerton, C.A.; Orwin, J.F.; Buendia, C.; Christensen, M.R.; Graydon, J.A.; Jackson, B.; Murray, E.; Neufeld, S.; Newton, B.W.; Ozipko, R.; et al. Hydrometeorology and Landscapes Control Sediment and Dissolved Organic Carbon Mobility across a Diverse and Changing Glacier-Sourced River Basin. Hydrol. Earth Syst. Sci. 2025, 29, 5515–5533. [Google Scholar] [CrossRef]
- Croghan, D.; Ala-Aho, P.; Welker, J.; Mustonen, K.; Khamis, K.; Hannah, D.M.; Vuorenmaa, J.; Kløve, B.; Marttila, H. Seasonal and Interannual Dissolved Organic Carbon Transport Process Dynamics in a Subarctic Headwater Catchment Revealed by High-Resolution Measurements. Hydrol. Earth Syst. Sci. 2024, 28, 1055–1070. [Google Scholar] [CrossRef]
- Alfadhel, I.; Peralta-Maraver, I.; Reche, I.; Sánchez-Cañete, E.P.; Aranda-Barranco, S.; Rodríguez-Velasco, E.; Kowalski, A.S.; Serrano-Ortiz, P. Drought Conditions Disrupt Atmospheric Carbon Uptake in a Mediterranean Saline Lake. Biogeosciences 2024, 21, 5117–5129. [Google Scholar] [CrossRef]
- Rewrie, L.C.V.; Baschek, B.; van Beusekom, J.E.E.; Körtzinger, A.; Ollesch, G.; Voynova, Y.G. Recent Inorganic Carbon Increase in a Temperate Estuary Driven by Water Quality Improvement and Enhanced by Droughts. Biogeosciences 2023, 20, 4931–4947. [Google Scholar] [CrossRef]
- Hein, C.J.; Usman, M.; Eglinton, T.I.; Haghipour, N.; Galy, V.V. Millennial-Scale Hydroclimate Control of Tropical Soil Carbon Storage. Nature 2020, 581, 63–66. [Google Scholar] [CrossRef]
- Du, L.; Luo, Y.; Zhang, J.; Shen, Y.; Zhang, J.; Tian, R.; Shao, W.; Xu, Z. Reduction in Precipitation Amount, Precipitation Events, and Nitrogen Addition Change Ecosystem Carbon Fluxes Differently in a Semi-Arid Grassland. Sci. Total Environ. 2024, 927, 172276. [Google Scholar] [CrossRef]
- Wahab, L.M.; Kim, S.L.; Berhe, A.A. Carbon and Nitrogen Dynamics in Subsoils after 20 Years of Added Precipitation in a Mediterranean Grassland. Biogeosciences 2025, 22, 3915–3930. [Google Scholar] [CrossRef]
- Göl, C.; Mevruk, S. Assessing Amount of Soil Organic Carbon and Some Soil Properties under Different Land Uses in a Semi-Arid Region of Northern Türkiye. Turk. J. For. 2022, 23, 268–277. [Google Scholar] [CrossRef]
- Semercioğlu, T.Ş.; Bayram, C.A.; Buyuk, G.; Akca, E.; Kalkanci, N. The Effect of Altitude on Soil Organic Carbon Content in Semi- Arid Mediterranean Climate. Int. J. Agric. Environ. Food Sci. 2023, 7, 192–196. [Google Scholar] [CrossRef]
- Delgado-Balbuena, J.; Loescher, H.W.; Aguirre-Gutiérrez, C.A.; Alfaro-Reyna, T.; Pineda-Martínez, L.F.; Vargas, R.; Arredondo, T. Dynamics of Short-Term Ecosystem Carbon Fluxes Induced by Precipitation Events in a Semiarid Grassland. Biogeosciences 2023, 20, 2369–2385. [Google Scholar] [CrossRef]
- Demir, V.; Keskin, A.Ü. Water Level Change of Lakes and Sinkholes in Central Turkey under Anthropogenic Effects. Theor. Appl. Clim. 2020, 142, 929–943. [Google Scholar] [CrossRef]
- Kartal, V.; Nones, M. Assessment of Meteorological, Hydrological and Groundwater Drought in the Konya Closed Basin, Türkiye. Environ. Earth Sci. 2024, 83, 285. [Google Scholar] [CrossRef]
- Orhan, O.; Haghshenas Haghighi, M.; Demir, V.; Gökkaya, E.; Gutiérrez, F.; Al-Halbouni, D. Spatial and Temporal Patterns of Land Subsidence and Sinkhole Occurrence in the Konya Endorheic Basin, Turkey. Geosciences 2024, 14, 5. [Google Scholar] [CrossRef]
- Küçük, K. Investigation of Some Chemical Properties of Groundwater Using Geostatistical Methods: A Case Study of the Konya Closed Basin. Master’s Thesis, KTO Karatay University, Konya, Türkiye, 2025. [Google Scholar]
- Orhan, O.; Yakar, M.; Ekercin, S. An Application on Sinkhole Susceptibility Mapping by Integrating Remote Sensing and Geographic Information Systems. Arab. J. Geosci. 2020, 13, 886. [Google Scholar] [CrossRef]
- Göktaş, H.E.; Dağlı, Z. A View to Drought with NDVI and Machine Learning: Konya Closed Basin. Turkish J. Remote Sens. 2022, 4, 75–86. [Google Scholar] [CrossRef]
- Demir, V. Deep Learning-Based Multi-Source Precipitation Forecasting in Arid Regions Using Different Optimizations: A Case Study from Konya, Turkey. Forecasting 2025, 7, 60. [Google Scholar] [CrossRef]
- Zengin, M.; Gökmen, F.; Yazıcı, M.A.; Gezgin, S. Effects of Potassium, Magnesium, and Sulphur Containing Fertilizers on Yield and Quality of Sugar Beets (Beta Vulgaris L.). Turkish J. Agric. For. Vol. 2009, 33, 495–502. [Google Scholar] [CrossRef]
- Ministry Türkiye’s Climate According to Köppen Climate Classification. Available online: https://www.mgm.gov.tr/FILES/iklim/iklim_siniflandirmalari/koppen.pdf (accessed on 4 August 2025).
- Li, X.; Wang, J.; Yin, W.; Xu, J.; Xiao, H.; Zhao, H.; Shi, Y.; Wang, L.; Hao, R.; Li, H.; et al. Hydrologic Regime Determines Catchment-Scale Dissolved Carbon Export Patterns. Water Resour. Res. 2025, 61, e2024WR038221. [Google Scholar] [CrossRef]
- Konya Konya Nufusu 1990. Available online: http://www.konya.gov.tr/kurumlar/konya.gov.tr/dosyalar/listeler/NUFUS_VERILERI.pdf (accessed on 9 April 2025).
- KBB Açık Veri Portalı. Available online: https://acikveri.konya.bel.tr (accessed on 25 May 2025).
- Wang, S.; Wan, Z.H. Water Quality Trends Based on Mann-Kendall Test and Rescaled Extreme Difference Analysis: A Case Study of Shanxi Reservoir, China. Appl. Ecol. Environ. Res. 2023, 21, 2793–2803. [Google Scholar] [CrossRef]
- Tona, A.U.; Demir, V.; Maraş, E.E.; Keskin, A.Ü. Samsun Air Quality Parameters Analysis and Trend Analysis. In Proceedings of the 6th International GAP Engineering Conference—GAP2018, Şanlıurfa, Türkiye, 24–25 November 2018; pp. 131–139. [Google Scholar]
- Yagbasan, O.; Demir, V.; Yazicigil, H. Trend Analyses of Meteorological Variables and Lake Levels for Two Shallow Lakes in Central Turkey. Water 2020, 12, 414. [Google Scholar] [CrossRef]
- Shah, S.A.; Kiran, M. Mann-Kendall Test: Trend Analysis of Temperature, Rainfall, and Discharge of Ghotki Feeder Canal in District Ghotki, Sindh, Pakistan. Environ. Eco. Sci. 2021, 5, 137–142. [Google Scholar] [CrossRef]
- Nguyen, H.M.; Ouillon, S.; Vu, V.D. Sea Level Variation and Trend Analysis by Comparing Mann–Kendall Test and Innovative Trend Analysis in Front of the Red River Delta, Vietnam (1961–2020). Water 2022, 14, 1709. [Google Scholar] [CrossRef]
- Hu, M.; Sayama, T.; Try, S.; Takara, K.; Tanaka, K. Trend Analysis of Hydroclimatic Variables in the Kamo River Basin, Japan. Water 2019, 11, 1782. [Google Scholar] [CrossRef]
- Demir, V. Trend Analysis of Lakes and Sinkholes in the Konya Closed Basin, in Turkey. Nat. Hazards 2022, 112, 2873–2912. [Google Scholar] [CrossRef]
- Zeynel, M. Time Series Analyses of Climatic Parameters of Ardahan. Turkish Geogr. Rev. 2018, 37–43. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Oxford University Press: New York, NY, USA, 1975. [Google Scholar]
- Mann, H.B. Non-Parametric Test Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; John Wiley & Sons: Hoboken, NJ, USA, 1987; ISBN 0471288780. [Google Scholar]
- URL Konya Nüfusu. Available online: https://www.nufusu.com/il/konya-nufusu (accessed on 9 May 2025).
- Dündar, A.O.; Kolay, A. Evaluation of Road Transportation in Terms of Environmental Sustainability and Calculation of Konya Province Greenhouse Gas Emission. Acad. Rev. Econ. Adm. Sci. 2021, 14, 317–334. [Google Scholar] [CrossRef]
- Gurjar, B.R.; Jain, A.; Sharma, A.; Agarwal, A.; Gupta, P.; Nagpure, A.S.; Lelieveld, J. Human Health Risks in Megacities Due to Air Pollution. Atmos. Environ. 2010, 44, 4606–4613. [Google Scholar] [CrossRef]
- Sillman, S. Chapter 12 The Relation between Ozone, NOx and Hydrocarbons in Urban and Polluted Rural Environments. Dev. Environ. Sci. 2002, 1, 339–385. [Google Scholar]
- Barten, J.G.M.; Ganzeveld, L.N.; Visser, A.J.; Jiménez, R.; Krol, M.C. Evaluation of Nitrogen Oxides (NOx) Sources and Sinks and Ozone Production in Colombia and Surrounding Areas. Atmos. Chem. Phys. 2020, 20, 9441–9458. [Google Scholar] [CrossRef]
- Driscoll, C.T.; Driscoll, K.M.; Mitchell, M.J.; Raynal, D.J. Effects of Acidic Deposition on Forest and Aquatic Ecosystems in New York State. Environ. Pollut. 2003, 123, 327–336. [Google Scholar] [CrossRef]











| Station Name | Latitude (°N) | Longitude (°E) | Site Characteristic |
|---|---|---|---|
| Meram | 37.863 | 32.486 | Residential, Green Areas, Solid Fuel Heating |
| Karatay | 37.868 | 32.513 | Urban Core, High Population Density |
| Bosna | 38.016 | 32.529 | Heavy Traffic, Institutional (University) |
| Konya Met. | 37.868 | 32.470 | Meteorological station number 17,245 in the Meram region |
| Station | Parameter | Mean ± SD | Min | Max |
|---|---|---|---|---|
| Karatay | PM10 (mg/m3) | 72.01 ± 69.16 | 9.16 | 603.14 |
| SO2 (mg/m3) | 19.69 ± 25.39 | 0 | 134.54 | |
| CO (µg/m3) | 400.65 ± 151.39 | 10.85 | 990.05 | |
| O3 (mg/m3) | 68.52 ± 68.55 | 9.13 | 420.67 | |
| NO (mg/m3) | 24.48 ± 37.89 | 0.5 | 232.59 | |
| O3 (mg/m3) | 32.97 ± 26.97 | 2.67 | 155.17 | |
| Bosna | PM10 (mg/m3) | 40.18 ± 29.87 | 2.61 | 209.55 |
| SO2 (mg/m3) | 9.14 ± 5.27 | 0.96 | 65.4 | |
| NO2 (µg/m3) | 28.79 ± 22.29 | 6.32 | 149.7 | |
| NOx (µg/m3) | 38.89 ± 37.78 | 7.16 | 241.55 | |
| NO (mg/m3) | 9.89 ± 15.46 | 0.74 | 103.58 | |
| O3 (mg/m3) | 42.13 ± 25.73 | 3.68 | 115.86 | |
| Meram | SO2 (mg/m3) | 14.41 ± 15.90 | 0.34 | 164.14 |
| CO (µg/m3) | 531.05 ± 166.75 | 10.09 | 993.36 | |
| NO2 (µg/m3) | 41.40 ± 19.76 | 11.9 | 137.79 | |
| NOx (µg/m3) | 64.75 ± 48.94 | 13.85 | 355.4 | |
| NO (mg/m3) | 23.41 ± 33.76 | 0.17 | 256.02 | |
| Konya Met. | Temperature (°C) | 13.99 ± 9.02 | −13 | 32.3 |
| Precipitation (mm) | 0.90 ± 2.99 | 0 | 29 |
| Station | Parameter | Ndays | S | Z | Trend (α = 5%) |
|---|---|---|---|---|---|
| Bosna | NO (mg/m3) | 264 | 15,485 | 10.80 | Increasing |
| NO2 (mg/m3) | 265 | 13,653 | 9.47 | Increasing | |
| NOx (mg/m3) | 264 | 14,403 | 10.04 | Increasing | |
| O3 (mg/m3) | 629 | −79,716 | −15.14 | Decreasing | |
| PM10 (mg/m3) | 621 | 34,012 | 6.59 | Increasing | |
| SO2 (mg/m3) | 615 | 7547 | 1.48 | No significant trend | |
| Karatay | CO (µg/m3) | 620 | 51,598 | 10.01 | Increasing |
| NO (µg/m3) | 914 | 28,984 | 3.14 | Increasing | |
| NOx (µg/m3) | 901 | 22,053 | 2.44 | Increasing | |
| O3 (µg/m3) | 919 | −60,745 | −6.54 | Decreasing | |
| PM10 (µg/m3) | 935 | 81,963 | 8.59 | Increasing | |
| SO2 (µg/m3) | 941 | 53,487 | 5.55 | Increasing | |
| Meram | CO (µg/m3) | 778 | −84,205 | −11.63 | Decreasing |
| NO (µg/m3) | 668 | 4967 | 0.86 | No significant trend | |
| NO2 (µg/m3) | 668 | 17,445 | 3.03 | Increasing | |
| NOx (µg/m3) | 668 | 10,945 | 1.90 | No significant trend | |
| SO2 (µg/m3) | 749 | 7584 | 1.11 | No significant trend | |
| Konya Met. | Rain (mm) | 1094 | −0.037 | −0.04 | No significant trend |
| Temp (°C) | 1094 | 2.898 | 2.90 | Increasing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Tona, A.U.; Demir, V. Assessment of Atmospheric Acidifying Pollutant Trends and Their Potential Impact on Aquatic Carbon Stability in a Semi-Arid Basin: The Case of Konya. Water 2026, 18, 118. https://doi.org/10.3390/w18010118
Tona AU, Demir V. Assessment of Atmospheric Acidifying Pollutant Trends and Their Potential Impact on Aquatic Carbon Stability in a Semi-Arid Basin: The Case of Konya. Water. 2026; 18(1):118. https://doi.org/10.3390/w18010118
Chicago/Turabian StyleTona, Aziz Uğur, and Vahdettin Demir. 2026. "Assessment of Atmospheric Acidifying Pollutant Trends and Their Potential Impact on Aquatic Carbon Stability in a Semi-Arid Basin: The Case of Konya" Water 18, no. 1: 118. https://doi.org/10.3390/w18010118
APA StyleTona, A. U., & Demir, V. (2026). Assessment of Atmospheric Acidifying Pollutant Trends and Their Potential Impact on Aquatic Carbon Stability in a Semi-Arid Basin: The Case of Konya. Water, 18(1), 118. https://doi.org/10.3390/w18010118

