Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (205)

Search Parameters:
Keywords = asymmetric convolutions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 5777 KiB  
Article
ACNet: An Attention–Convolution Collaborative Semantic Segmentation Network on Sensor-Derived Datasets for Autonomous Driving
by Qiliang Zhang, Kaiwen Hua, Zi Zhang, Yiwei Zhao and Pengpeng Chen
Sensors 2025, 25(15), 4776; https://doi.org/10.3390/s25154776 (registering DOI) - 3 Aug 2025
Abstract
In intelligent vehicular networks, the accuracy of semantic segmentation in road scenes is crucial for vehicle-mounted artificial intelligence to achieve environmental perception, decision support, and safety control. Although deep learning methods have made significant progress, two main challenges remain: first, the difficulty in [...] Read more.
In intelligent vehicular networks, the accuracy of semantic segmentation in road scenes is crucial for vehicle-mounted artificial intelligence to achieve environmental perception, decision support, and safety control. Although deep learning methods have made significant progress, two main challenges remain: first, the difficulty in balancing global and local features leads to blurred object boundaries and misclassification; second, conventional convolutions have limited ability to perceive irregular objects, causing information loss and affecting segmentation accuracy. To address these issues, this paper proposes a global–local collaborative attention module and a spider web convolution module. The former enhances feature representation through bidirectional feature interaction and dynamic weight allocation, reducing false positives and missed detections. The latter introduces an asymmetric sampling topology and six-directional receptive field paths to effectively improve the recognition of irregular objects. Experiments on the Cityscapes, CamVid, and BDD100K datasets, collected using vehicle-mounted cameras, demonstrate that the proposed method performs excellently across multiple evaluation metrics, including mIoU, mRecall, mPrecision, and mAccuracy. Comparative experiments with classical segmentation networks, attention mechanisms, and convolution modules validate the effectiveness of the proposed approach. The proposed method demonstrates outstanding performance in sensor-based semantic segmentation tasks and is well-suited for environmental perception systems in autonomous driving. Full article
(This article belongs to the Special Issue AI-Driving for Autonomous Vehicles)
Show Figures

Figure 1

18 pages, 5013 KiB  
Article
Enhancing Document Forgery Detection with Edge-Focused Deep Learning
by Yong-Yeol Bae, Dae-Jea Cho and Ki-Hyun Jung
Symmetry 2025, 17(8), 1208; https://doi.org/10.3390/sym17081208 - 30 Jul 2025
Viewed by 170
Abstract
Detecting manipulated document images is essential for verifying the authenticity of official records and preventing document forgery. However, forgery artifacts are often subtle and localized in fine-grained regions, such as text boundaries or character outlines, where visual symmetry and structural regularity are typically [...] Read more.
Detecting manipulated document images is essential for verifying the authenticity of official records and preventing document forgery. However, forgery artifacts are often subtle and localized in fine-grained regions, such as text boundaries or character outlines, where visual symmetry and structural regularity are typically expected. These manipulations can disrupt the inherent symmetry of document layouts, making the detection of such inconsistencies crucial for forgery identification. Conventional CNN-based models face limitations in capturing such edge-level asymmetric features, as edge-related information tends to weaken through repeated convolution and pooling operations. To address this issue, this study proposes an edge-focused method composed of two components: the Edge Attention (EA) layer and the Edge Concatenation (EC) layer. The EA layer dynamically identifies channels that are highly responsive to edge features in the input feature map and applies learnable weights to emphasize them, enhancing the representation of boundary-related information, thereby emphasizing structurally significant boundaries. Subsequently, the EC layer extracts edge maps from the input image using the Sobel filter and concatenates them with the original feature maps along the channel dimension, allowing the model to explicitly incorporate edge information. To evaluate the effectiveness and compatibility of the proposed method, it was initially applied to a simple CNN architecture to isolate its impact. Subsequently, it was integrated into various widely used models, including DenseNet121, ResNet50, Vision Transformer (ViT), and a CAE-SVM-based document forgery detection model. Experiments were conducted on the DocTamper, Receipt, and MIDV-2020 datasets to assess classification accuracy and F1-score using both original and forged text images. Across all model architectures and datasets, the proposed EA–EC method consistently improved model performance, particularly by increasing sensitivity to asymmetric manipulations around text boundaries. These results demonstrate that the proposed edge-focused approach is not only effective but also highly adaptable, serving as a lightweight and modular extension that can be easily incorporated into existing deep learning-based document forgery detection frameworks. By reinforcing attention to structural inconsistencies often missed by standard convolutional networks, the proposed method provides a practical solution for enhancing the robustness and generalizability of forgery detection systems. Full article
Show Figures

Figure 1

24 pages, 3714 KiB  
Article
DTCMMA: Efficient Wind-Power Forecasting Based on Dimensional Transformation Combined with Multidimensional and Multiscale Convolutional Attention Mechanism
by Wenhan Song, Enguang Zuo, Junyu Zhu, Chen Chen, Cheng Chen, Ziwei Yan and Xiaoyi Lv
Sensors 2025, 25(15), 4530; https://doi.org/10.3390/s25154530 - 22 Jul 2025
Viewed by 259
Abstract
With the growing global demand for clean energy, the accuracy of wind-power forecasting plays a vital role in ensuring the stable operation of power systems. However, wind-power generation is significantly influenced by meteorological conditions and is characterized by high uncertainty and multiscale fluctuations. [...] Read more.
With the growing global demand for clean energy, the accuracy of wind-power forecasting plays a vital role in ensuring the stable operation of power systems. However, wind-power generation is significantly influenced by meteorological conditions and is characterized by high uncertainty and multiscale fluctuations. Traditional recurrent neural network (RNN) and long short-term memory (LSTM) models, although capable of handling sequential data, struggle with modeling long-term temporal dependencies due to the vanishing gradient problem; thus, they are now rarely used. Recently, Transformer models have made notable progress in sequence modeling compared to RNNs and LSTM models. Nevertheless, when dealing with long wind-power sequences, their quadratic computational complexity (O(L2)) leads to low efficiency, and their global attention mechanism often fails to capture local periodic features accurately, tending to overemphasize redundant information while overlooking key temporal patterns. To address these challenges, this paper proposes a wind-power forecasting method based on dimension-transformed collaborative multidimensional multiscale attention (DTCMMA). This method first employs fast Fourier transform (FFT) to automatically identify the main periodic components in wind-power data, reconstructing the one-dimensional time series as a two-dimensional spatiotemporal representation, thereby explicitly encoding periodic features. Based on this, a collaborative multidimensional multiscale attention (CMMA) mechanism is designed, which hierarchically integrates channel, spatial, and pixel attention to adaptively capture complex spatiotemporal dependencies. Considering the geometric characteristics of the reconstructed data, asymmetric convolution kernels are adopted to enhance feature extraction efficiency. Experiments on multiple wind-farm datasets and energy-related datasets demonstrate that DTCMMA outperforms mainstream methods such as Transformer, iTransformer, and TimeMixer in long-sequence forecasting tasks, achieving improvements in MSE performance by 34.22%, 2.57%, and 0.51%, respectively. The model’s training speed also surpasses that of the fastest baseline by 300%, significantly improving both prediction accuracy and computational efficiency. This provides an efficient and accurate solution for wind-power forecasting and contributes to the further development and application of wind energy in the global energy mix. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

23 pages, 5304 KiB  
Article
Improvement and Optimization of Underwater Image Target Detection Accuracy Based on YOLOv8
by Yisong Sun, Wei Chen, Qixin Wang, Tianzhong Fang and Xinyi Liu
Symmetry 2025, 17(7), 1102; https://doi.org/10.3390/sym17071102 - 9 Jul 2025
Viewed by 389
Abstract
The ocean encompasses the majority of the Earth’s surface and harbors substantial energy resources. Nevertheless, the intricate and asymmetrically distributed underwater environment renders existing target detection performance inadequate. This paper presents an enhanced YOLOv8s approach for underwater robot object detection to address issues [...] Read more.
The ocean encompasses the majority of the Earth’s surface and harbors substantial energy resources. Nevertheless, the intricate and asymmetrically distributed underwater environment renders existing target detection performance inadequate. This paper presents an enhanced YOLOv8s approach for underwater robot object detection to address issues of subpar image quality and low recognition accuracy. The precise measures are enumerated as follows: initially, to address the issue of model parameters, we optimized the ninth convolutional layer by substituting certain conventional convolutions with adaptive deformable convolution DCN v4. This modification aims to more effectively capture the deformation and intricate features of underwater targets, while simultaneously decreasing the parameter count and enhancing the model’s ability to manage the deformation challenges presented by underwater images. Furthermore, the Triplet Attention module is implemented to augment the model’s capacity for detecting multi-scale targets. The integration of low-level superficial features with high-level semantic features enhances the feature expression capability. The original CIoU loss function was ultimately substituted with Shape IoU, enhancing the model’s performance. In the underwater robot grasping experiment, the system shows particular robustness in handling radial symmetry in marine organisms and reflection symmetry in artificial structures. The enhanced algorithm attained a mean Average Precision (mAP) of 87.6%, surpassing the original YOLOv8s model by 3.4%, resulting in a marked enhancement of the object detection model’s performance and fulfilling the real-time detection criteria for underwater robots. Full article
Show Figures

Figure 1

20 pages, 2968 KiB  
Article
Real-Time Lightweight Morphological Detection for Chinese Mitten Crab Origin Tracing
by Xiaofei Ma, Nannan Shen, Yanhui He, Zhuo Fang, Hongyan Zhang, Yun Wang and Jinrong Duan
Appl. Sci. 2025, 15(13), 7468; https://doi.org/10.3390/app15137468 - 3 Jul 2025
Viewed by 256
Abstract
During the cultivation and circulation of Chinese mitten crab (Eriocheir sinensis), the difficulty in tracing geographic origin leads to quality uncertainty and market disorder. To address this challenge, this study proposes a two-stage origin traceability framework that integrates a lightweight object detector and [...] Read more.
During the cultivation and circulation of Chinese mitten crab (Eriocheir sinensis), the difficulty in tracing geographic origin leads to quality uncertainty and market disorder. To address this challenge, this study proposes a two-stage origin traceability framework that integrates a lightweight object detector and a high-precision classifier. In the first stage, an improved YOLOv10n-based model is designed by incorporating omni-dimensional dynamic convolution, a SlimNeck structure, and a Lightweight Shared Convolutional Detection head, which effectively enhances the detection accuracy of crab targets under complex multi-scale environments while reducing computational cost. In the second stage, an Improved GoogleNet’s Inception Net for Crab is developed based on the Inception module, with further integration of Asymmetric Convolution Blocks and Squeeze and Excitation modules to improve the feature extraction and classification ability for regional origin. A comprehensive crab dataset is constructed, containing images from diverse farming sites, including variations in species, color, size, angle, and background conditions. Experimental results show that the proposed detector achieves an mAP50 of 99.5% and an mAP50-95 of 88.5%, while maintaining 309 FPS and reducing GFLOPs by 35.3%. Meanwhile, the classification model achieves high accuracy with only 17.4% and 40% of the parameters of VGG16 and AlexNet, respectively. In conclusion, the proposed method achieves an optimal accuracy-speed-complexity trade-off, enabling robust real-time traceability for aquaculture systems. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

11 pages, 3678 KiB  
Article
Plug-and-Play Self-Supervised Denoising for Pulmonary Perfusion MRI
by Changyu Sun, Yu Wang, Cody Thornburgh, Ai-Ling Lin, Kun Qing, John P. Mugler and Talissa A. Altes
Bioengineering 2025, 12(7), 724; https://doi.org/10.3390/bioengineering12070724 - 1 Jul 2025
Viewed by 461
Abstract
Pulmonary dynamic contrast-enhanced (DCE) MRI is clinically useful for assessing pulmonary perfusion, but its signal-to-noise ratio (SNR) is limited. A self-supervised learning network-based plug-and-play (PnP) denoising model was developed to improve the image quality of pulmonary perfusion MRI. A dataset of patients with [...] Read more.
Pulmonary dynamic contrast-enhanced (DCE) MRI is clinically useful for assessing pulmonary perfusion, but its signal-to-noise ratio (SNR) is limited. A self-supervised learning network-based plug-and-play (PnP) denoising model was developed to improve the image quality of pulmonary perfusion MRI. A dataset of patients with suspected pulmonary diseases was used. Asymmetric pixel-shuffle downsampling blind-spot network (AP-BSN) training inputs were two-dimensional background-subtracted perfusion images without clean ground truth. The AP-BSN is incorporated into a PnP model (PnP-BSN) for balancing noise control and image fidelity. Model performance was evaluated by SNR, sharpness, and overall image quality from two radiologists. The fractal dimension and k-means segmentation of the pulmonary perfusion images were calculated for comparing denoising performance. The model was trained on 29 patients and tested on 8 patients. The performance of PnP-BSN was compared to denoising convolutional neural network (DnCNN) and a Gaussian filter. PnP-BSN showed the highest reader scores in terms of SNR, sharpness, and overall image quality as scored by two radiologists. The expert scoring results for DnCNN, Gaussian, and PnP-BSN were 2.25 ± 0.65, 2.44 ± 0.73, and 3.56 ± 0.73 for SNR; 2.62 ± 0.52, 2.62 ± 0.52, and 3.38 ± 0.64 for sharpness; and 2.16 ± 0.33, 2.34 ± 0.42, and 3.53 ± 0.51 for overall image quality (p < 0.05 for all). PnP-BSN outperformed DnCNN and a Gaussian filter for denoising pulmonary perfusion MRI, which led to improved quantitative fractal analysis. Full article
Show Figures

Figure 1

26 pages, 5237 KiB  
Article
A Bridge Defect Detection Algorithm Based on UGMB Multi-Scale Feature Extraction and Fusion
by Haiyan Zhang, Chao Tian, Ao Zhang, Yilin Liu, Guxue Gao, Zhiwen Zhuang, Tongtong Yin and Nuo Zhang
Symmetry 2025, 17(7), 1025; https://doi.org/10.3390/sym17071025 - 30 Jun 2025
Viewed by 285
Abstract
Aiming at the problems of leakage and misdetection caused by insufficient multi-scale feature extraction and an excessive amount of model parameters in bridge defect detection, this paper proposes the AMSF-Pyramid-YOLOv11n model. First, a Cooperative Optimization Module (COPO) is introduced, which consists of the [...] Read more.
Aiming at the problems of leakage and misdetection caused by insufficient multi-scale feature extraction and an excessive amount of model parameters in bridge defect detection, this paper proposes the AMSF-Pyramid-YOLOv11n model. First, a Cooperative Optimization Module (COPO) is introduced, which consists of the designed multi-level dilated shared convolution (FPSharedConv) and a dual-domain attention block. Through the joint optimization of FPSharedConv and a CGLU gating mechanism, the module significantly improves feature extraction efficiency and learning capability. Second, the Unified Global-Multiscale Bottleneck (UGMB) multi-scale feature pyramid designed in this study efficiently integrates the FCGL_MANet, WFU, and HAFB modules. By leveraging the symmetry of Haar wavelet decomposition combined with local-global attention, this module effectively addresses the challenge of multi-scale feature fusion, enhancing the model’s ability to capture both symmetrical and asymmetrical bridge defect patterns. Finally, an optimized lightweight detection head (LCB_Detect) is employed, which reduces the parameter count by 6.35% through shared convolution layers and separate batch normalization. Experimental results show that the proposed model achieves a mean average precision (mAP@0.5) of 60.3% on a self-constructed bridge defect dataset, representing an improvement of 11.3% over the baseline YOLOv11n. The model effectively reduces the false positive rate while improving the detection accuracy of bridge defects. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

27 pages, 6828 KiB  
Article
A Lightweight Remote-Sensing Image-Change Detection Algorithm Based on Asymmetric Convolution and Attention Coupling
by Enze Zhang, Yan Li, Haifeng Lin and Min Xia
Remote Sens. 2025, 17(13), 2226; https://doi.org/10.3390/rs17132226 - 29 Jun 2025
Viewed by 384
Abstract
Remote-sensing image-change detection is indispensable for land management, environmental monitoring and related applications. In recent years, breakthroughs in satellite sensor technology have generated vast volumes of data and complex scenes, presenting significant challenges for change-detection algorithms. Traditional methods rely on handcrafted features, which [...] Read more.
Remote-sensing image-change detection is indispensable for land management, environmental monitoring and related applications. In recent years, breakthroughs in satellite sensor technology have generated vast volumes of data and complex scenes, presenting significant challenges for change-detection algorithms. Traditional methods rely on handcrafted features, which struggle to address the impacts of multi-source data heterogeneity and imaging condition differences. In this context, technology based on deep learning has made substantial breakthroughs in change-detection performance by automatically extracting high-level feature representations of the data. However, although the existing deep-learning models improve the detection accuracy through end-to-end learning, their high parameter count and computational inefficiency hinder suitability for real-time monitoring and edge device deployment. Therefore, to address the need for lightweight solutions in scenarios with limited computing resources, this paper proposes an attention-based lightweight remote sensing change detection network (ABLRCNet), which achieves a balance between computational efficiency and detection accuracy by using lightweight residual convolution blocks (LRCBs), multi-scale spatial-attention modules (MSAMs) and feature-difference enhancement modules (FDEMs). The experimental results demonstrate that the ABLRCNet achieves excellent performance on three datasets, significantly enhancing both the accuracy and robustness of change detection, while exhibiting efficient detection capabilities in resource-limited scenarios. Full article
Show Figures

Figure 1

24 pages, 1307 KiB  
Article
A Self-Supervised Specific Emitter Identification Method Based on Contrastive Asymmetric Masked Learning
by Dong Wang, Yonghui Huang, Tianshu Cui and Yan Zhu
Sensors 2025, 25(13), 4023; https://doi.org/10.3390/s25134023 - 27 Jun 2025
Viewed by 298
Abstract
Specific emitter identification (SEI) is a core technology for wireless device security that plays a crucial role in protecting wireless communication systems from various security threats. However, current deep learning-based SEI methods heavily rely on large amounts of labeled data for supervised training, [...] Read more.
Specific emitter identification (SEI) is a core technology for wireless device security that plays a crucial role in protecting wireless communication systems from various security threats. However, current deep learning-based SEI methods heavily rely on large amounts of labeled data for supervised training, facing challenges in non-cooperative communication scenarios. To address these issues, this paper proposes a novel contrastive asymmetric masked learning-based SEI (CAML-SEI) method, effectively solving the problem of SEI under scarce labeled samples. The proposed method constructs an asymmetric auto-encoder architecture, comprising an encoder network based on channel squeeze-and-excitation residual blocks to capture radio frequency fingerprint (RFF) features embedded in signals, while employing a lightweight single-layer convolutional decoder for masked signal reconstruction. This design promotes the learning of fine-grained local feature representations. To further enhance feature discriminability, a learnable non-linear mapping is introduced to compress high-dimensional encoded features into a compact low-dimensional space, accompanied by a contrastive loss function that simultaneously achieves feature aggregation of positive samples and feature separation of negative samples. Finally, the network is jointly optimized by combining signal reconstruction and feature contrast tasks. Experiments conducted on real-world ADS-B and Wi-Fi datasets demonstrate that the proposed method effectively learns generalized RFF features, and the results show superior performance compared with other SEI methods. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

17 pages, 1214 KiB  
Article
EECNet: An Efficient Edge Computing Network for Transmission Line Ice Thickness Recognition
by Yu Zhang, Yangyang Jiao, Yinke Dou, Liangliang Zhao, Qiang Liu and Yang Liu
Processes 2025, 13(7), 2033; https://doi.org/10.3390/pr13072033 - 26 Jun 2025
Viewed by 319
Abstract
The recognition of ice thickness on transmission lines serves as a prerequisite for controlling de-icing robots to carry out precise de-icing operations. To address the issue that existing edge computing terminals fail to meet the demands of ice thickness recognition algorithms, this paper [...] Read more.
The recognition of ice thickness on transmission lines serves as a prerequisite for controlling de-icing robots to carry out precise de-icing operations. To address the issue that existing edge computing terminals fail to meet the demands of ice thickness recognition algorithms, this paper introduces an Efficient Edge Computing Network (EECNet) specifically designed for identifying ice thickness on transmission lines. Firstly, pruning is applied to the Efficient Neural Network (ENet), removing redundant components within the encoder to decrease both the computational complexity and the number of parameters in the model. Secondly, a Dilated Asymmetric Bottleneck Module (DABM) is proposed. By integrating different types of convolutions, this module effectively strengthens the model’s capability to extract features from ice-covered transmission lines. Then, an Efficient Partial Conv Module (EPCM) is designed, introducing an adaptive partial convolution selection mechanism that innovatively combines attention mechanisms with partial convolutions. This design enhances the model’s ability to select important feature channels. The method involves segmenting ice-covered images to obtain iced regions and then calculating the ice thickness using the iced area and known cable parameters. Experimental validation on an ice-covered transmission line dataset shows that EECNet achieves a segmentation accuracy of 92.7% in terms of the Mean Intersection over Union (mIoU) and an F1-Score of 96.2%, with an ice thickness recognition error below 3.4%. Compared to ENet, the model’s parameter count is reduced by 41.7%, and the detection speed on OrangePi 5 Pro is improved by 27.3%. After INT8 quantization, the detection speed is increased by 26.3%. These results demonstrate that EECNet not only enhances the recognition speed on edge equipment but also maintains high-precision ice thickness recognition. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

15 pages, 4995 KiB  
Article
Automatic Potato Crop Beetle Recognition Method Based on Multiscale Asymmetric Convolution Blocks
by Jingjun Cao, Xiaoqing Xian, Minghui Qiu, Xin Li, Yajie Wei, Wanxue Liu, Guifen Zhang and Lihua Jiang
Agronomy 2025, 15(7), 1557; https://doi.org/10.3390/agronomy15071557 - 26 Jun 2025
Viewed by 300
Abstract
Five beetle species can occur in potato fields simultaneously, including one quarantine pest (the Colorado potato beetle (CPB)), one phytophagous pest (the 28-spotted potato ladybird beetle), and three predatory ladybird beetles (the 7-spotted lady beetle, the tortoise beetle, and the harlequin ladybird beetle). [...] Read more.
Five beetle species can occur in potato fields simultaneously, including one quarantine pest (the Colorado potato beetle (CPB)), one phytophagous pest (the 28-spotted potato ladybird beetle), and three predatory ladybird beetles (the 7-spotted lady beetle, the tortoise beetle, and the harlequin ladybird beetle). The timely detection and accurate identification of CPB and other phytophagous or predatory beetles are critical for the effective implementation of monitoring and control strategies. However, morphological identification requires specialized expertise, is time-consuming, and is particularly challenging due to the dark brown body color of these beetles when in the young larval stages. This study provides an effective solution to distinguish between phytophagous and/or quarantine and predatory beetles. This solution is in the form of a new convolutional neural network architecture, known as MSAC-ResNet. Specifically, it comprises several multiscale asymmetric convolution blocks, which are designed to extract features at multiple scales, mainly by integrating different-sized asymmetric convolution kernels in parallel. We evaluated the MSAC-ResNet through comprehensive model training and testing on a beetle image dataset of 11,325 images across 20 beetle categories. The proposed recognition model achieved accuracy, precision, and recall rates of 99.11%, 99.18%, and 99.11%, respectively, outperforming another five existing models, namely, AlexNet, MobileNet-v3, EfficientNet-b0, DenseNet, and ResNet-101. Notably, the developed field investigation mini-program can identify all the developmental stages of these five beetle species, from young larvae to adults, and provide timely management (or protection) suggestions to farmers. Our findings could be significant for future research related to precise pest control and the conservation of natural enemies. Full article
(This article belongs to the Special Issue Sustainable Management of Arthropod Pests in Agriculture)
Show Figures

Figure 1

19 pages, 912 KiB  
Article
A Traffic Flow Prediction Model Based on Dynamic Graph Convolution and Adaptive Spatial Feature Extraction
by Weijun Li, Guoliang Yang, Zhangyou Xiong, Xiaojuan Zhu and Xinyu Ma
Symmetry 2025, 17(7), 1007; https://doi.org/10.3390/sym17071007 - 26 Jun 2025
Cited by 1 | Viewed by 515
Abstract
The inherent symmetry in traffic flow patterns plays a fundamental role in urban transportation systems. This study proposes a Dynamic Graph Convolutional Recurrent Adaptive Network (DGCRAN) for traffic flow prediction, leveraging symmetry principles in spatial–temporal dependencies. Unlike conventional models relying on static graph [...] Read more.
The inherent symmetry in traffic flow patterns plays a fundamental role in urban transportation systems. This study proposes a Dynamic Graph Convolutional Recurrent Adaptive Network (DGCRAN) for traffic flow prediction, leveraging symmetry principles in spatial–temporal dependencies. Unlike conventional models relying on static graph structures that often break real-world symmetry relationships, our approach introduces two key innovations respecting the dynamic symmetry of traffic networks: First, a Dynamic Graph Convolutional Recurrent Network (DGCRN) is proposed that preserves and adapts to the time-varying symmetry in node associations, and an Adaptive Graph Convolutional Network (AGCN) that captures the symmetric and asymmetric patterns between nodes. The experimental results on PEMS03, PEMS04, and PEMS08 datasets demonstrate that DGCRAN maintains superior performance symmetry across metrics: reducing MAE, RMSE, and MAPE by average margins of 12.7%, 10.3%, and 14.2%, respectively, compared to 15 benchmarks. Notably, the model achieves maximum MAE reduction of 21.33% on PEMS08, verifying its ability to model the symmetric and asymmetric characteristics in traffic flow dependencies while significantly improving prediction accuracy and generalization capability. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

16 pages, 1058 KiB  
Article
Multi-Scale Context Enhancement Network with Local–Global Synergy Modeling Strategy for Semantic Segmentation on Remote Sensing Images
by Qibing Ma, Hongning Liu, Yifan Jin and Xinyue Liu
Electronics 2025, 14(13), 2526; https://doi.org/10.3390/electronics14132526 - 21 Jun 2025
Cited by 1 | Viewed by 316
Abstract
Semantic segmentation of remote sensing images is a fundamental task in geospatial analysis and Earth observation research, and has a wide range of applications in urban planning, land cover classification, and ecological monitoring. In complex geographic scenes, low target-background discriminability in overhead views [...] Read more.
Semantic segmentation of remote sensing images is a fundamental task in geospatial analysis and Earth observation research, and has a wide range of applications in urban planning, land cover classification, and ecological monitoring. In complex geographic scenes, low target-background discriminability in overhead views (e.g., indistinct boundaries, ambiguous textures, and low contrast) significantly complicates local–global information modeling and results in blurred boundaries and classification errors in model predictions. To address this issue, in this paper, we proposed a novel Multi-Scale Local–Global Mamba Feature Pyramid Network (MLMFPN) through designing a local–global information synergy modeling strategy, and guided and enhanced the cross-scale contextual information interaction in the feature fusion process to obtain quality semantic features to be used as cues for precise semantic reasoning. The proposed MLMFPN comprises two core components: Local–Global Align Mamba Fusion (LGAMF) and Context-Aware Cross-attention Interaction Module (CCIM). Specifically, LGAMF designs a local-enhanced global information modeling through asymmetric convolution for synergistic modeling of the receptive fields in vertical and horizontal directions, and further introduces the Vision Mamba structure to facilitate local–global information fusion. CCIM introduces positional encoding and cross-attention mechanisms to enrich the global-spatial semantics representation during multi-scale context information interaction, thereby achieving refined segmentation. The proposed methods are evaluated on the ISPRS Potsdam and Vaihingen datasets and the outperformance in the results verifies the effectiveness of the proposed method. Full article
Show Figures

Figure 1

24 pages, 5085 KiB  
Article
Stellar-YOLO: A Graphite Ore Grade Detection Method Based on Improved YOLO11
by Zeyang Qiu, Xueyu Huang, Sifan Li and Jionghui Wang
Symmetry 2025, 17(6), 966; https://doi.org/10.3390/sym17060966 - 18 Jun 2025
Viewed by 938
Abstract
Mineral recognition technology is crucial for improving mining efficiency and advancing smart mining development. To enable the efficient deployment of graphite ore grade detection on edge computing devices, we propose Stellar-YOLO, a YOLO11-based detection framework with asymmetrical architecture optimizations tailored for real-world conditions. [...] Read more.
Mineral recognition technology is crucial for improving mining efficiency and advancing smart mining development. To enable the efficient deployment of graphite ore grade detection on edge computing devices, we propose Stellar-YOLO, a YOLO11-based detection framework with asymmetrical architecture optimizations tailored for real-world conditions. The backbone is replaced by the lightweight StarNet to enhance computational efficiency, while the C3k2-CAS module, integrating convolution and additive attention, is embedded in the neck to improve feature expressiveness. The head incorporates the SEAM module, forming the Detect-SEAM, to boost the recognition of complex mineral details. Moreover, to robustly adapt to real mining environments, we apply simulated data augmentation techniques involving motion blur, dust noise, and low brightness conditions. Stellar-YOLO achieves 93.6% mAP based on a custom-built graphite ore dataset, outperforming the baseline by 4.5% and reducing the FLOPs, parameters, and model size by 27%, 26%, and 23%, respectively. This work explores how asymmetrical architectural innovations and robustness-oriented evaluation contribute to a lightweight and effective approach for computer vision-based mineral quality assessment, demonstrating strong potential for practical applications in real-world industrial environments. Full article
Show Figures

Figure 1

27 pages, 5450 KiB  
Article
A Deep Learning Method for Improving Community Multiscale Air Quality Forecast: Bias Correction, Event Detection, and Temporal Pattern Alignment
by Ioannis Stergiou, Nektaria Traka, Dimitrios Melas, Efthimios Tagaris and Rafaella-Eleni P. Sotiropoulou
Atmosphere 2025, 16(6), 739; https://doi.org/10.3390/atmos16060739 - 17 Jun 2025
Viewed by 1165
Abstract
Accurate air quality forecasting is essential for environmental management and health protection. However, conventional air quality models often exhibit systematic biases and underpredict pollution events due to uncertainties in emissions, meteorology, and atmospheric processes. Addressing these limitations, this study introduces a hybrid deep [...] Read more.
Accurate air quality forecasting is essential for environmental management and health protection. However, conventional air quality models often exhibit systematic biases and underpredict pollution events due to uncertainties in emissions, meteorology, and atmospheric processes. Addressing these limitations, this study introduces a hybrid deep learning model that integrates convolutional neural networks (CNNs) and Long Short-Term Memory (LSTM) for ozone forecast bias correction. The model is trained here, using data from ten stations in Texas, enabling it to capture both spatial and temporal patterns in atmospheric behavior. Performance evaluation shows notable improvements, with a Root Mean Square Error (RMSE) reduction ranging from 34.11% to 71.63%. F1 scores for peak detection improved by up to 37.38%, Dynamic Time Warping (DTW) distance decreased by 72.77%, the Index of Agreement rose up to 90.09%, and the R2 improved by up to 188.80%. A comparison of four loss functions—Mean Square Error (MSE), Huber, Asymmetric Mean Squared Error (AMSE), and Quantile Loss—revealed that MSE offered balanced performance, Huber Loss achieved the highest reduction in systematic RMSE, and AMSE performed best in peak detection. Additionally, four deep learning architectures were evaluated: baseline CNN-LSTM, a hybrid model with attention mechanisms, a transformer-based model, and an End-to-End framework. The hybrid attention-based model consistently outperformed others across metrics while maintaining lower computational demands. Full article
(This article belongs to the Special Issue Applications of Artificial Intelligence in Atmospheric Sciences)
Show Figures

Figure 1

Back to TopTop