Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (366)

Search Parameters:
Keywords = asperities

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1470 KiB  
Article
Coffea arabica Extracts and Metabolites with Potential Inhibitory Activity of the Major Enzymes in Bothrops asper Venom
by Erika Páez, Yeisson Galvis-Pérez, Jaime Andrés Pereañez, Lina María Preciado and Isabel Cristina Henao-Castañeda
Pharmaceuticals 2025, 18(8), 1151; https://doi.org/10.3390/ph18081151 - 1 Aug 2025
Viewed by 96
Abstract
Background/Objectives: Most snakebite incidents in Latin America are caused by species of the Bothrops genus. Their venom induces severe local effects, against which antivenom therapy has limited efficacy. Metabolites derived from Coffea arabica have demonstrated anti-inflammatory and anticoagulant properties, suggesting their potential [...] Read more.
Background/Objectives: Most snakebite incidents in Latin America are caused by species of the Bothrops genus. Their venom induces severe local effects, against which antivenom therapy has limited efficacy. Metabolites derived from Coffea arabica have demonstrated anti-inflammatory and anticoagulant properties, suggesting their potential as therapeutic agents to inhibit the local effects induced by B. asper venom. Methods: Three enzymatic assays were performed: inhibition of the procoagulant and amidolytic activities of snake venom serine proteinases (SVSPs); inhibition of the proteolytic activity of snake venom metalloproteinases (SVMPs); and inhibition of the catalytic activity of snake venom phospholipases A2 (PLA2s). Additionally, molecular docking studies were conducted to propose potential inhibitory mechanisms of the metabolites chlorogenic acid, caffeine, and caffeic acid. Results: Green and roasted coffee extracts partially inhibited the enzymatic activity of SVSPs and SVMPs. Notably, the green coffee extract, at a 1:20 ratio, effectively inhibited PLA2 activity. Among the individual metabolites tested, partial inhibition of SVSP and PLA2 activities was observed, whereas no significant inhibition of SVMP proteolytic activity was detected. Chlorogenic acid was the most effective metabolite, significantly prolonging plasma coagulation time and achieving up to 82% inhibition at a concentration of 62.5 μM. Molecular docking analysis revealed interactions between chlorogenic acid and key active site residues of SVSP and PLA2 enzymes from B. asper venom. Conclusions: The roasted coffee extract demonstrated the highest inhibitory effect on venom toxins, potentially due to the formation of bioactive compounds during the Maillard reaction. Molecular modeling suggests that the tested inhibitors may bind to and occupy the substrate-binding clefts of the target enzymes. These findings support further in vivo research to explore the use of plant-derived polyphenols as adjuvant therapies in the treatment of snakebite envenoming. Full article
Show Figures

Graphical abstract

55 pages, 4017 KiB  
Review
Sonchus Species of the Mediterranean Region: From Wild Food to Horticultural Innovation—Exploring Taxonomy, Cultivation, and Health Benefits
by Adrián Ruiz-Rocamora, Concepción Obón, Segundo Ríos, Francisco Alcaraz and Diego Rivera
Horticulturae 2025, 11(8), 893; https://doi.org/10.3390/horticulturae11080893 (registering DOI) - 1 Aug 2025
Viewed by 257
Abstract
The genus Sonchus (Asteraceae) comprises 98 species, including 17 predominantly herbaceous taxa native to the Mediterranean region. These plants have long been utilized as traditional wild food sources due to their high nutritional value, as they are rich in vitamins A, C, and [...] Read more.
The genus Sonchus (Asteraceae) comprises 98 species, including 17 predominantly herbaceous taxa native to the Mediterranean region. These plants have long been utilized as traditional wild food sources due to their high nutritional value, as they are rich in vitamins A, C, and K, essential minerals, and bioactive compounds with antioxidant and anti-inflammatory properties. This review aims to provide a comprehensive synthesis of the taxonomy, geographic distribution, phytochemical composition, traditional uses, historical significance, and pharmacological properties of Sonchus species. A systematic literature search was conducted using PubMed, Scopus, Web of Science, and Google Scholar, focusing on studies from 1980 to 2024. Inclusion and exclusion criteria were applied, and methodological quality was assessed using standardized tools. A bibliometric analysis of 440 publications (from 1856 to 2025) reveals evolving research trends, with S. oleraceus, S. arvensis, and S. asper being the most extensively studied species. The review provides detailed taxonomic insights into 17 species and 14 subspecies, emphasizing their ecological adaptations and biogeographical patterns. Additionally, it highlights the cultural and medicinal relevance of Sonchus since antiquity while underscoring the threats posed by environmental degradation and changing dietary habits. Sonchus oleraceus and S. tenerrimus dominate the culinary applications of the genus, likely due to favorable taste, wide accessibility, and longstanding cultural importance. The comprehensive nutritional profile of Sonchus species positions these plants as valuable contributors to dietary diversity and food security. Finally, the study identifies current knowledge gaps and proposes future research directions to support the conservation and sustainable utilization of Sonchus species. Full article
Show Figures

Figure 1

36 pages, 2981 KiB  
Article
Research on the Characteristics and Influencing Factors of Virtual Water Trade Networks in Chinese Provinces
by Guangyao Deng, Siqian Hou and Keyu Di
Sustainability 2025, 17(15), 6972; https://doi.org/10.3390/su17156972 (registering DOI) - 31 Jul 2025
Viewed by 129
Abstract
Promoting the sustainable development of virtual water trade is of great significance to safeguarding China’s water resource security and balanced regional economic growth. This study analyzes the virtual water trade network among 31 Chinese provinces based on multi-regional input–output tables from 2012, 2015, [...] Read more.
Promoting the sustainable development of virtual water trade is of great significance to safeguarding China’s water resource security and balanced regional economic growth. This study analyzes the virtual water trade network among 31 Chinese provinces based on multi-regional input–output tables from 2012, 2015, and 2017, using total trade decomposition, social network analysis, and exponential random graph models. The key findings are as follows: (1) The total virtual water trade volume remains stable, with Xinjiang, Jiangsu, and Guangdong as the core regions, while remote areas such as Shaanxi and Gansu have lower trade volumes. The primary industry dominates, and it is driven by simple value chains. (2) Provinces such as Xinjiang, Heilongjiang, and Jiangsu form the network’s core. Network density and symmetry increased from 2012 to 2015 but declined slightly in 2017, with efficiency peaking and then dropping, and the clustering coefficient decreased annually. Four economic sectors exhibit distinct interactions: frequent two-way flows in Sector 1, significant inflows in Sector 2, prominent net spillovers in Sector 3, and key brokers in Sector 4. (3) The network evolved from a core-periphery structure with weak ties to a stable, heterogeneous, and resilient system. (4) Influencing factors, such asper capita water resources, economic development, and population, significantly impact trade. Similarities in economic levels, population, and water endowments promote trade, while spatial distance has a limited effect, with geographic proximity showing a significant negative impact on long-distance trade. Full article
Show Figures

Figure 1

15 pages, 3096 KiB  
Article
An Experimental Study on the Impact of Roughness Orientation on the Friction Coefficient in EHL Contact
by Matthieu Cordier, Yasser Diab, Jérôme Cavoret, Fida Majdoub, Christophe Changenet and Fabrice Ville
Lubricants 2025, 13(8), 340; https://doi.org/10.3390/lubricants13080340 - 31 Jul 2025
Viewed by 153
Abstract
Optimising the friction coefficient helps reduce friction losses and improve the efficiency of mechanical systems. The purpose of this study is to experimentally investigate the impact of roughness orientation on the friction coefficient in elastohydrodynamic (EHD) contact. Tests were carried out on a [...] Read more.
Optimising the friction coefficient helps reduce friction losses and improve the efficiency of mechanical systems. The purpose of this study is to experimentally investigate the impact of roughness orientation on the friction coefficient in elastohydrodynamic (EHD) contact. Tests were carried out on a twin-disc machine. Three pairs of discs of identical material (nitrided steel) and geometry were tested: a smooth pair (the root mean square surface roughness Sq = 0.07 µm), a pair with transverse roughness and another with longitudinal roughness. The two rough pairs have similar roughness amplitudes (Sq = 0.5 µm). A comparison of the friction generated by these different pairs was carried out to highlight the effect of the roughness orientation under different operating conditions (oil injection temperature from 60 to 80 °C, Hertzian pressure from 1.2 to 1.5 GPa and mean rolling speed from 5 to 30 m/s). Throughout all the tests conducted in this study, longitudinal roughness resulted in higher friction than transverse, with an increase of up to 30%. Moreover, longitudinal roughness is more sensitive to variations in operating conditions. Finally, in all tests, the asperities of longitudinal roughness were found to influence the friction behaviour, unlike transverse roughness. Full article
(This article belongs to the Special Issue Experimental Modelling of Tribosystems)
Show Figures

Figure 1

14 pages, 966 KiB  
Article
Investigation of the Thermal Conductance of MEMS Contact Switches
by Zhiqiang Chen and Zhongbin Xie
Micromachines 2025, 16(8), 872; https://doi.org/10.3390/mi16080872 - 28 Jul 2025
Viewed by 241
Abstract
Microelectromechanical system (MEMS) devices are specialized electronic devices that integrate the benefits of both mechanical and electrical structures. However, the contact behavior between the interfaces of these structures can significantly impact the performance of MEMS devices, particularly when the surface roughness approaches the [...] Read more.
Microelectromechanical system (MEMS) devices are specialized electronic devices that integrate the benefits of both mechanical and electrical structures. However, the contact behavior between the interfaces of these structures can significantly impact the performance of MEMS devices, particularly when the surface roughness approaches the characteristic size of the devices. In such cases, the contact between the interfaces is not a perfect face-to-face interaction but occurs through point-to-point contact. As a result, the contact area changes with varying contact pressures and surface roughness, influencing the thermal and electrical performance. By integrating the CMY model with finite element simulations, we systematically explored the thermal conductance regulation mechanism of MEMS contact switches. We analyzed the effects of the contact pressure, micro-hardness, surface roughness, and other parameters on thermal conductance, providing essential theoretical support for enhancing reliability and optimizing thermal management in MEMS contact switches. We examined the thermal contact, gap, and joint conductance of an MEMS switch under different contact pressures, micro-hardness values, and surface roughness levels using the CMY model. Our findings show that both the thermal contact and gap conductance increase with higher contact pressure. For a fixed contact pressure, the thermal contact conductance decreases with rising micro-hardness and root mean square (RMS) surface roughness but increases with a higher mean asperity slope. Notably, the thermal gap conductance is considerably lower than the thermal contact conductance. Full article
Show Figures

Figure 1

22 pages, 4555 KiB  
Article
Elastic–Plastic Analysis of Asperity Based on Wave Function
by Zijian Xu, Min Zhu, Wenjuan Wang, Ming Guo, Shengao Wang, Xiaohan Lu and Ziwei Li
Materials 2025, 18(15), 3507; https://doi.org/10.3390/ma18153507 - 26 Jul 2025
Viewed by 219
Abstract
This paper proposes an improved wave function asperity elastic–plastic model. A cosine function that could better fit the geometric morphology was selected to construct the asperity, the elastic phase was controlled by the Hertz contact theory, the elastoplastic transition phase was corrected by [...] Read more.
This paper proposes an improved wave function asperity elastic–plastic model. A cosine function that could better fit the geometric morphology was selected to construct the asperity, the elastic phase was controlled by the Hertz contact theory, the elastoplastic transition phase was corrected by the hyperbolic tangent function, and the fully plastic phase was improved by the projected area theory. The model broke through the limitations of the spherical assumption and was able to capture the stress concentration and plastic flow phenomena. The results show that the contact pressure in the elastic phase was 22% higher than that of the spherical shape, the plastic strain in the elastoplastic phase was 52% lower than that of the spherical shape, and the fully plastic phase reduced the contact area error by 20%. The improved hyperbolic tangent function eliminated the unphysical oscillation phenomenon in the elastoplastic phase and ensured the continuity and monotonicity of the contact variables, with an error of <5% from the finite element analysis. Meanwhile, extending the proposed model, we developed a rough surface contact model, and it was verified that the wavy asperity could better match the mechanical properties of the real rough surface and exhibited progressive stiffness reduction during the plastic flow process. The model in this paper can provide a theoretical basis for predicting stress distribution, plastic evolution, and multi-scale mechanical behavior in the connection interface. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

27 pages, 5714 KiB  
Article
Machine Learning Prediction of Mechanical Properties for Marine Coral Sand–Clay Mixtures Based on Triaxial Shear Testing
by Bowen Yang, Kaiwei Xu, Zejin Wang, Haodong Sun, Peng Cui and Zhiming Chao
Buildings 2025, 15(14), 2481; https://doi.org/10.3390/buildings15142481 - 15 Jul 2025
Viewed by 399
Abstract
Marine coral sand–clay mixtures (MCCM) are promising green fill materials in civil engineering projects, where their strength characteristics play a vital role in ensuring structural safety and stability. To investigate these properties, a series of triaxial shear tests were performed under diverse conditions, [...] Read more.
Marine coral sand–clay mixtures (MCCM) are promising green fill materials in civil engineering projects, where their strength characteristics play a vital role in ensuring structural safety and stability. To investigate these properties, a series of triaxial shear tests were performed under diverse conditions, including variations in asperity spacing, asperity height, the number of reinforcement layers, confining pressure, and axial strain. This experimental campaign yielded a robust strength dataset for MCCM. Utilizing this dataset, several predictive models were developed, including a standard Support Vector Machine (SVM), an SVM optimized via Genetic Algorithm (GA-SVM), an SVM enhanced by Particle Swarm Optimization (PSO-SVM), and a hybrid model incorporating Logical Development Algorithm preprocessing a SVM model (LDA-SVM). Among these models, the LDA-SVM model exhibited the best performance, achieving a test RMSE of 1.67245 and a correlation coefficient (R) of 0.996, demonstrating superior prediction accuracy and strong generalization ability. Sensitivity analyses revealed that asperity spacing, asperity height, and confining pressure are the most influential factors affecting MCCM strength. Moreover, an explicit empirical equation was derived from the LDA-SVM model, allowing practitioners to estimate strength without relying on complex machine learning tools. The results of this study offer practical guidance for the optimized design and safety evaluation of MCCM in civil engineering applications. Full article
Show Figures

Figure 1

20 pages, 11400 KiB  
Article
Influence Mechanism of Confining Pressure on Morphology of Concrete Crack Surfaces
by Yuqiang He, Chenyang Zhao, Zhiming Xiao, Mingfeng Lei and Chaojun Jia
Materials 2025, 18(13), 3158; https://doi.org/10.3390/ma18133158 - 3 Jul 2025
Viewed by 303
Abstract
Characterizing the morphological characteristics of concrete crack surfaces is fundamental for accurately analyzing the evolution mechanism of leakage in concrete linings. In this research, concrete crack surfaces are obtained using triaxial compression tests and three-dimensional (3D) laser scanning. The mechanism by which confining [...] Read more.
Characterizing the morphological characteristics of concrete crack surfaces is fundamental for accurately analyzing the evolution mechanism of leakage in concrete linings. In this research, concrete crack surfaces are obtained using triaxial compression tests and three-dimensional (3D) laser scanning. The mechanism by which confining pressure influences crack morphology is further revealed, and the impact of crack morphology on tunnel lining leakage is illustrated from the perspective of fractal dimensions. The results indicate that the concrete crack surface flattens as the confining pressure increases. The distribution of asperity on concrete crack surfaces exhibits strong randomness. A negative exponential function can effectively depict the relationship between the fractal dimension of a concrete crack surface and the confining pressure. As the fractal dimension decreases with increasing confining pressure, concrete cracks developing under higher confining pressure exhibit a higher permeability coefficient, and tunnel linings become more susceptible to water leakage. Full article
(This article belongs to the Special Issue Modeling and Numerical Simulations in Materials Mechanics)
Show Figures

Figure 1

18 pages, 3602 KiB  
Article
Modeling and Analysis of Torsional Stiffness in Rehabilitation Robot Joints Using Fractal Theory
by Shuaidong Zou, Wenjie Yan, Guanghui Xie, Renqiang Yang, Huachao Xu and Fanwei Sun
Materials 2025, 18(12), 2866; https://doi.org/10.3390/ma18122866 - 17 Jun 2025
Viewed by 298
Abstract
The torsional stiffness of rehabilitation robot joints is a critical performance determinant, significantly affecting motion accuracy, stability, and user comfort. This paper introduces an innovative traction drive mechanism that transmits torque through friction forces, overcoming mechanical impact issues of traditional gear transmissions, though [...] Read more.
The torsional stiffness of rehabilitation robot joints is a critical performance determinant, significantly affecting motion accuracy, stability, and user comfort. This paper introduces an innovative traction drive mechanism that transmits torque through friction forces, overcoming mechanical impact issues of traditional gear transmissions, though accurately modeling surface roughness effects remains challenging. Based on fractal theory, this study presents a comprehensive torsional stiffness analysis for advanced traction drive joints. Surface topography is characterized using the Weierstrass–Mandelbrot function, and a contact mechanics model accounting for elastic–plastic deformation of micro-asperities is developed to derive the tangential stiffness of individual contact pairs. Static force analysis determines load distribution, and overall joint torsional stiffness is calculated through the integration of individual contact contributions. Parametric analyses reveal that contact stiffness increases with normal load, contact length, and radius, while decreasing with the tangential load and roughness parameter. Stiffness exhibits a non-monotonic relationship with fractal dimension, reaching a maximum at intermediate values. Overall system stiffness demonstrates similar parameter dependencies, with a slight decrease under increasing output load when sufficient preload is applied. This fractal-based model enables more accurate stiffness prediction and offers valuable theoretical guidance for design optimization and performance improvement in rehabilitation robot joints. Full article
Show Figures

Figure 1

18 pages, 4018 KiB  
Article
Assessing the Efficiency of Open-System Densification on Chemically Treated Dendrocalamus asper Bamboo
by André Luiz Pereira de Godoy Junior, Marzieh Kadivar, Leo Maia do Amaral, Adriano Galvão de Souza Azevedo, Juan Camilo Adrada Molano, Esmaeil Biazar and Holmer Savastano Junior
Materials 2025, 18(12), 2719; https://doi.org/10.3390/ma18122719 - 10 Jun 2025
Viewed by 453
Abstract
The natural variability and moisture sensitivity of bamboo limit its widespread use in construction applications. To address these challenges, densification and delignification processes have emerged as promising modification techniques. Densification and delignification processes can lead to significant improvements in the physical, mechanical, and [...] Read more.
The natural variability and moisture sensitivity of bamboo limit its widespread use in construction applications. To address these challenges, densification and delignification processes have emerged as promising modification techniques. Densification and delignification processes can lead to significant improvements in the physical, mechanical, and chemical properties of solid wood. In this study, a two-step process of delignification and densification was carried out on Dendrocalamus asper bamboo specimens. The objective was to assess whether the optimized parameters of densification for natural bamboo on an open pressing system can be transferred for delignified bamboo. Delignification was achieved using an alkali solution (NaOH and Na2SO3) with two different temperature settings (25 °C or 100 °C). The pre-treated samples were dried in one of the two different conditions, either at 100 °C for 24 h or 25 °C for 30 days, resulting in four different groups with an average moisture content ranging from 7 to 10%. The samples were densified to 50% of their original thickness through an open thermo-mechanical press system at 160 °C with a compression rate of 6.7 mm/min and compared to densified bamboo without delignification (reference). The compression stress required to achieve a 50% degree of densification was evaluated, with untreated samples exhibiting an average value close to 17 MPa. Following treatment, the compression stress ranged from 7 to 13.4 MPa, indicating that the exposure to a high pH solution facilitates the densification process. However, a reduction in flexural properties (MOR, LOP, and MOE) was observed on the alkali-treated samples after a three-point bending test. Physical properties (water absorption and thickness swelling) were not altered after delignification. These findings demonstrate that the direct application of a densification process optimized for natural bamboo is not fully effective for chemically modified bamboo, highlighting the need for adjustments. Delignified bamboo showed an increase in free space after chemical treatment, which should be further densified under higher degrees. Full article
Show Figures

Figure 1

16 pages, 6353 KiB  
Article
Tortuosity—A Novel Approach to Quantifying Variability of Rockfall Paths
by Lucas Arsenith, Grant Goertzen and Nick Hudyma
Geotechnics 2025, 5(2), 36; https://doi.org/10.3390/geotechnics5020036 - 4 Jun 2025
Viewed by 923
Abstract
Rockfall poses a significant hazard in steep terrain, where complex ground interactions cause falling boulders to deviate from straight-line paths. While lateral dispersion is commonly used to describe the distribution of deposited boulders from rockfall events, it does not provide any insight into [...] Read more.
Rockfall poses a significant hazard in steep terrain, where complex ground interactions cause falling boulders to deviate from straight-line paths. While lateral dispersion is commonly used to describe the distribution of deposited boulders from rockfall events, it does not provide any insight into the complexity of boulder trajectories while in motion. This study introduces tortuosity, a metric typically applied in porous media hydraulic analysis, as a novel approach for quantifying the deviation of rockfall paths from linearity. Using high-resolution UAV-based LiDAR data and RocFall3 (Version 1.017) simulation software, this research investigates the effects of terrain model resolution, boulder shape, and boulder mass on tortuosity values for 20,000 simulated rockfalls on a columnar jointed basalt slope in Boise, ID, USA. Results show that increasing terrain resolution leads to higher tortuosity values due to the increased presence of terrain asperities. Spherical boulders exhibited higher tortuosity than hexagonal ones, and tortuosity decreased with increasing mass for spheres, likely due to their momentum overcoming minor terrain features. Hexagonal boulders, constrained by their angular shape, showed less variability in tortuosity across resolutions and sizes. These findings emphasize the limitations of low-resolution publicly available LiDAR data and highlight the critical influence of accurate boulder representation in simulation models. Full article
(This article belongs to the Special Issue Recent Advances in Geotechnical Engineering (2nd Edition))
Show Figures

Figure 1

14 pages, 3948 KiB  
Article
Effect of Deposits on Micron Particle Collision and Deposition in Cooling Duct of Turbine Blades
by Shihong Xin, Chuqi Peng, Junchao Qi, Baiwan Su and Yan Xiao
Crystals 2025, 15(6), 510; https://doi.org/10.3390/cryst15060510 - 26 May 2025
Viewed by 345
Abstract
Aerospace engines ingest small particles when operating in a particulate-rich environment, such as sandstorms, atmospheric pollution, and volcanic ash clouds. These micron particles enter their cooling channels, leading to film-cooling hole blockage and thus thermal damage to turbine blades made of nickel-based single-crystal [...] Read more.
Aerospace engines ingest small particles when operating in a particulate-rich environment, such as sandstorms, atmospheric pollution, and volcanic ash clouds. These micron particles enter their cooling channels, leading to film-cooling hole blockage and thus thermal damage to turbine blades made of nickel-based single-crystal superalloy materials. This work studied the collision and deposition mechanisms between the micron particles and structure surface. A combined theoretical and numerical study was conducted to investigate the effect of deposits on particle collision and deposition. Finite element models of deposits with flat and rough surfaces were generated and analyzed for comparison. The results show that the normal restitution coefficient is much lower when a micron particle impacts a deposit compared to that of particle collisions with DD3 nickel-based single-crystal wall surfaces. The critical deposition velocity of a micron particle is much higher for particle–deposit collisions than for particle–wall collision. The critical deposition velocity decreases with the increase in particle size. When micron particles deposit on the wall surface of the structure, early-stage particle–wall collision becomes particle–deposit collision when the height of the deposits is greater than twice the particle diameter. For contact between particles and rough surface deposits, surfaces with a shorter correlation length, representing a higher density of asperities and a steeper surface, have a much longer contact time but a lower contact area. The coefficient of restitution of the particle reduces as the surface roughness of the deposits increase. The characteristic length of the roughness has little effect on the rebounding rotation velocity of the particle. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

27 pages, 5400 KiB  
Article
Computational Modeling of Low-Abundance Proteins in Venom Gland Transcriptomes: Bothrops asper and Bothrops jararaca
by Joseph Espín-Angulo and Doris Vela
Toxins 2025, 17(6), 262; https://doi.org/10.3390/toxins17060262 - 22 May 2025
Viewed by 666
Abstract
Snake venoms contain numerous toxic proteins, but low-abundance proteins often remain uncharacterized due to identification challenges. This study employs a bioinformatics approach to identify and structurally model low-abundance proteins from the venom gland transcriptomes of Bothrops asper and Bothrops jararaca. Using tools [...] Read more.
Snake venoms contain numerous toxic proteins, but low-abundance proteins often remain uncharacterized due to identification challenges. This study employs a bioinformatics approach to identify and structurally model low-abundance proteins from the venom gland transcriptomes of Bothrops asper and Bothrops jararaca. Using tools such as tblastn, Jalview, and CHIMERA, we analyzed sequences and structural features of proteins including arylsulfatase, CRISP (Cysteine-Rich Secretory Protein), von Willebrand factor type D (vWFD), and dihydroorotate dehydrogenase (DHODH), and identified potential new isoforms of SVMP-PIIIb (Ba_1) and botrocetin in B. asper. Protein models were generated with AlphaFold2, compared with crystallized structures from the Protein Data Bank (PDB), and validated using Procheck, ERRAT, and Verify3D. Conserved motifs and domains were annotated through Pfam and InterPro, revealing structural elements that suggest possible roles in venom physiology and toxicity. These findings emphasize the potential of computational biology to characterize structurally relevant but experimentally inaccessible venom proteins, and to lay the groundwork for future functional validation. Full article
(This article belongs to the Special Issue Transcriptomic and Proteomic Study on Animal Venom: Looking Forward)
Show Figures

Figure 1

18 pages, 14439 KiB  
Article
Preparation, Physicochemical Properties, Biological Activity of a Multifunctional Composite Film Based on Zein/Citric Acid Loaded with Grape Seed Extract and Its Application in Solid Lipid Packaging
by Ning Wang, Jiaxin Wei, Cuntang Wang and Jian Ren
Foods 2025, 14(10), 1698; https://doi.org/10.3390/foods14101698 - 11 May 2025
Viewed by 588
Abstract
Development of bio-based active packaging systems for lipid stabilization presents critical importance in preserving lipid integrity and ensuring food safety. Zein/citric acid (Z/CA) composite films containing grape seed ethanol extract (GSEE) (0–8% w/w) were prepared by the solvent casting method. The structural, [...] Read more.
Development of bio-based active packaging systems for lipid stabilization presents critical importance in preserving lipid integrity and ensuring food safety. Zein/citric acid (Z/CA) composite films containing grape seed ethanol extract (GSEE) (0–8% w/w) were prepared by the solvent casting method. The structural, functional, and environmental properties of the films, including physical and chemical properties, mechanical properties, antioxidant capacity, antibacterial activity, oxidation inhibition effect, and biodegradability, were comprehensively characterized and evaluated. Progressive GSEE enrichment significantly enhanced film thickness (p < 0.05), hydrophobicity, and total phenolic content, while increasing water vapor permeability by 61.29%. Antioxidant capacity demonstrated radical scavenging enhancements of 83.75% (DPPH) and 89.33% (ABTS) at maximal GSEE loading compared to control films. Mechanical parameters exhibited inverse proportionality to GSEE concentration, with tensile strength and elongation at break decreasing by 28.13% and 59.43%, respectively. SEM microstructural analysis revealed concentration-dependent increases in surface asperity and cross-sectional phase heterogeneity. Antimicrobial assays demonstrated selective bacteriostatic effects against Gram-negative pathogens. Notably, the composite film containing 6 wt% GSEE had a remarkable restraining effect on the oxidation of lard. The soil degradation experiment has confirmed that the Z/CA/GSEE composite film can achieve obvious degradation within 28 days. The above results indicate that the Z/CA/GSEE composite material emerges as a promising candidate for sustainable active food packaging applications. Full article
Show Figures

Figure 1

14 pages, 3667 KiB  
Article
Rough Surfaces Simulation and Its Contact Characteristic Parameters Based on Ubiquitiform Theory
by Yan Feng, Peng Yang, Yixiong Feng, Zhouming Hang, Laihua Tao and Peifeng Sun
Processes 2025, 13(5), 1330; https://doi.org/10.3390/pr13051330 - 26 Apr 2025
Viewed by 384
Abstract
Ubiquitiform is a new theory of finite-order self-similar physical structure and it is more reasonable to describe real engineering surfaces by ubiquitiform rather than fractal. In this paper, by introducing the frequency truncation criterion, a new analytical expression of the two-dimensional W–M function [...] Read more.
Ubiquitiform is a new theory of finite-order self-similar physical structure and it is more reasonable to describe real engineering surfaces by ubiquitiform rather than fractal. In this paper, by introducing the frequency truncation criterion, a new analytical expression of the two-dimensional W–M function based on the ubiquitiform theory is firstly derived and constructed and the two-dimensional ubiquitiformal curve characterization under different contact characteristic parameters is achieved. On this basis, the anisotropic three-dimensional surface W–M function with ubiquitiformal features is constructed, and the evolution law of the anisotropic three-dimensional surface morphology under the regulation of the ubiquitiformal complexity is investigated. Then, an improved adaptive box counting algorithm is proposed, and the lower limit of the metric scale in the self-similarity region of the asperities on the rough surface is determined and then the computation method of the ubiquitiformal complexity is established. At last, the validity and accuracy of the method are confirmed by the Koch curves. Key findings include: (1) higher ubiquitiformal complexity D corresponds to increased surface irregularity and complexity; (2) the characteristic scale factor G affects surface height only; (3) reducing the lower limit of metric scale δmin increases surface undulation frequency, revealing finer details. This research provides a rationale and quantitative guidance for the matching design of critical joint interfaces in modern precision machinery. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

Back to TopTop