Investigation of the Thermal Conductance of MEMS Contact Switches
Abstract
1. Introduction
2. Theoretical Model
3. Finite Element Simulation
4. Results and Discussion
4.1. Switch Temperature
4.2. Thermal Conductance
4.2.1. Thermal Contact Conductance
4.2.2. Thermal Gap Conductance
4.2.3. Thermal Joint Conductance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Aguayo, E.; Brekosky, R.; Burns, D.; Carter, A.; Chang, M.; Costen, N.; Fettig, R.; Franz, D.; Greenhouse, M.; et al. Successful demonstration of an electrostatically actuated microshutter system for space telescope flight missions. J. Microelectromech. Syst. 2020, 29, 1079–1082. [Google Scholar] [CrossRef]
- Chen, Z.; Cao, Y.; He, Y. A comprehensive review of surface roughness effects on microwave performance of transmission lines. IEEE Trans. Microw. Theory Tech. 2025; in press. [Google Scholar] [CrossRef]
- Rebeiz, G.M.; Muldavin, J.B.; Schoenlinner, B.; Tan, G. RF MEMS: Theory, Design, and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Bannuru, T.; Brown, W.L.; Narksitipan, S.; Vinci, R.P. The electrical and mechanical properties of Au–V and Au–V2O5 thin films for wear-resistant RF MEMS switches. J. Appl. Phys. 2008, 103, 083522. [Google Scholar] [CrossRef]
- Owais, T.; Khater, M.; Al-Qahtani, H. Graphene-based MEMS devices for gas sensing applications: A review. Micro Nanostructures 2024, 195, 207954. [Google Scholar] [CrossRef]
- Hossain, N.; Al Mahmud, M.Z.; Hossain, A.; Rahman, M.K.; Islam, M.S.; Tasnim, R.; Mobarak, M.H. Advances of materials science in MEMS applications: A review. Results Eng. 2024, 22, 102115. [Google Scholar] [CrossRef]
- Ramirez Serrano, F.; Steinhardt, E.; Wood, R.J. Considerations for the design and rapid manufacturing of pop-up MEMS devices. Adv. Mater. Technol. 2024, 9, 2301940. [Google Scholar] [CrossRef]
- Chen, Z.; Tian, W.; Zhang, X. Effect of surface asperities on the capacitances of capacitive RF MEMS switches. J. Micromech. Microeng. 2017, 27, 034002. [Google Scholar] [CrossRef]
- Quack, N.; Takabayashi, A.Y.; Sattari, H.; Edinger, P.; Jo, G.; Bleiker, S.J.; Errando-Herranz, C.; Gylfason, K.B.; Niklaus, F.; Khan, U.; et al. Integrated silicon photonic MEMS. Microsyst.Nanoeng. 2023, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Rezvanian, O.; Zikry, M.; Brown, C.; Krim, J. Surface roughness, asperity contact and gold RF MEMS switch behavior. J. Micromech. Microeng. 2007, 17, 2006. [Google Scholar] [CrossRef]
- Chen, Z.; Tian, W. Effect of surface roughness on the electrical performances of CPW transmission lines used in future ultra-high frequency applications. Micromachines 2023, 14, 104. [Google Scholar] [CrossRef]
- Patel, C.D.; Rebeiz, G.M. A high-reliability high-linearity high-power RF MEMS metal-contact switch for DC–40-GHz applications. IEEE Trans. Microw. Theory Tech. 2012, 60, 3096–3112. [Google Scholar] [CrossRef]
- Cho, J.; Richards, C.; Bahr, D.; Jiao, J.; Richards, R. Evaluation of contacts for a MEMS thermal switch. J. Micromech. Microeng. 2008, 18, 105012. [Google Scholar] [CrossRef]
- Chen, Z.; Tian, W.; Zhang, X.; Wang, Y. Effect of deposition parameters on surface roughness and consequent electromagnetic performance of capacitive RF MEMS switches: A review. J. Micromech. Microeng. 2017, 27, 113003. [Google Scholar] [CrossRef]
- Rahbar, M.; Wang, Y.; Xu, S.; Cheng, W.; Wang, X. Structural effects on thermal conductivity of micro-thick Li4Ti5O12-based anode. J. Appl. Phys. 2024, 135, 235102. [Google Scholar] [CrossRef]
- Xian, Y.; Zhang, P.; Zhai, S.; Yuan, P.; Yang, D. Experimental characterization methods for thermal contact resistance: A review. Appl. Therm. Eng. 2018, 130, 1530–1548. [Google Scholar] [CrossRef]
- Zhou, F.; Arunasalam, P.; Murray, B.T.; Sammakia, B. Modeling heat transport in thermal interface materials enhanced with MEMS-based microinterconnects. IEEE Trans. Components Packag. Technol. 2009, 33, 16–24. [Google Scholar] [CrossRef]
- Cooper, M.G.; Mikic, B.B.; Yovanovich, M.M. Thermal contact conductance. Int. J. Heat Mass Transf. 1969, 12, 279–300. [Google Scholar] [CrossRef]
- Zhao, J.W.; Zhao, R.; Huo, Y.K.; Cheng, W.L. Effects of surface roughness, temperature and pressure on interface thermal resistance of thermal interface materials. Int. J. Heat Mass Transf. 2019, 140, 705–716. [Google Scholar] [CrossRef]
- Toler, B.F.; Coutu, R.A.; McBride, J.W. A review of micro-contact physics for microelectromechanical systems (MEMS) metal contact switches. J. Micromech. Microeng. 2013, 23, 103001. [Google Scholar] [CrossRef]
- Zhou, T.; Zhao, Y.; Rao, Z. Fundamental and estimation of thermal contact resistance between polymer matrix composites: A review. Int. J. Heat Mass Transf. 2022, 189, 122701. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, T.; Zeng, A.; Tang, J.; Guo, R.; Jiang, P. Simultaneous measurement of thermal conductivity, heat capacity, and interfacial thermal conductance by leveraging negative delay-time data in time-domain thermoreflectance. Prog. Nat. Sci. Mater. Int. 2025, 35, 375–384. [Google Scholar] [CrossRef]
- Wu, D.; Ding, H.; Fan, Z.Q.; Jia, P.Z.; Xie, H.Q.; Chen, X.K. High interfacial thermal conductance across heterogeneous GaN/graphene interface. Appl. Surf. Sci. 2022, 581, 152344. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Li, N.; Che, Z.; Liu, X.; Chang, G.; Hao, J.; Dai, J.; Wang, X.; Sun, F.; et al. Interfacial thermal conductance between Cu and diamond with interconnected W- W2C interlayer. ACS Appl. Mater. Interfaces 2022, 14, 35215–35228. [Google Scholar] [CrossRef] [PubMed]
- Mikić, B. Thermal contact conductance; theoretical considerations. Int. J. Heat Mass Transf. 1974, 17, 205–214. [Google Scholar] [CrossRef]
- Sridhar, M.R.; Yovanovich, M.M. Elastoplastic contact contact conductance model for isotropic conforming rough surfaces and comparison with experiments. ASME J. Heat Transf. 1996, 118, 3–9. [Google Scholar] [CrossRef]
- Yang, Z.; Hoffmann, S.; Lichtenwalner, D.; Krim, J.; Kingon, A. Resolution of the transfer direction of field-evaporated gold atoms for nanofabrication and microelectromechanical system applications. Appl. Phys. Lett. 2011, 98, 044102. [Google Scholar] [CrossRef]
- Ishida, T.; Kakushima, K.; Fujita, H. Degradation mechanisms of contact point during switching operation of MEMS switch. J. Microelectromech. Syst. 2013, 22, 828–834. [Google Scholar] [CrossRef]
- Liu, Y.; Bey, Y.; Liu, X. High-power high-isolation RF-MEMS switches with enhanced hot-switching reliability using a shunt protection technique. IEEE Trans. Microw. Theory Tech. 2017, 65, 3188–3199. [Google Scholar] [CrossRef]
- Yovanovich, M.M.; Fenech, H. Thermal contact conductance of nominally flat, rough surfaces in a vacuum environment. Thermophys. Temp. Control Spacecr. Entry Veh. 1966, 5, 773–794. [Google Scholar]
- Yovanovich, M.M. Thermal contact resistance across elastically deformed spheres. J. Spacecr. Rocket. 1966, 4, 119–122. [Google Scholar] [CrossRef]
- Yovanovich, M.M. Overall constriction resistance between contacting rough, wavy surfaces. Int. J. Heat Mass Transf. 1969, 12, 1517–1520. [Google Scholar] [CrossRef]
- Bahrami, M.; Yovanovich, M.M.; Marotta, E.E. Thermal joint resistance of polymer-metal rough interfaces. J. Electron. Packag. 2006, 128, 211–220. [Google Scholar] [CrossRef]
- Yovanovich, M.M. Four decades of research on thermal contact, gap, and joint resistance in microelectronics. IEEE Trans. Components Packag. Technol. 2005, 28, 182–206. [Google Scholar] [CrossRef]
- Grujicic, M.; Zhao, C.; Dusel, E. The effect of thermal contact resistance on heat management in the electronic packaging. Appl. Surf. Sci. 2005, 246, 290–302. [Google Scholar] [CrossRef]
- Dou, R.; Ge, T.; Liu, X.; Wen, Z. Effects of contact pressure, interface temperature, and surface roughness on thermal contact conductance between stainless steel surfaces under atmosphere condition. Int. J. Heat Mass Transf. 2016, 94, 156–163. [Google Scholar] [CrossRef]
- An, T.; Li, Z.; Zhang, Y.; Qin, F.; Wang, L.; Lin, Z.; Tang, X.; Dai, Y.; Gong, Y.; Chen, P. The effect of the surface roughness characteristics of the contact interface on the thermal contact resistance of the PP-IGBT module. IEEE Trans. Power Electron. 2022, 37, 7286–7298. [Google Scholar] [CrossRef]
- Zhang, P.; Cui, T.; Li, Q. Effect of surface roughness on thermal contact resistance of aluminium alloy. Appl. Therm. Eng. 2017, 121, 992–998. [Google Scholar] [CrossRef]
- Bahrami, M.; Culham, J.; Yovanovich, M.; Schneider, G. Review of thermal joint resistance models for non-conforming rough surfaces in a vacuum. In Proceedings of the Heat Transfer Summer Conference, Las Vegas, NV, USA, 21–23 July 2003; Volume 36959, pp. 411–431. [Google Scholar]
- Bahrami, M.; Culham, J.; Yovanovich, M.; Schneider, G. Review of thermal joint resistance models for non-conforming rough surfaces. Appl. Mech. Rev. 2006, 59, 1–12. [Google Scholar] [CrossRef]
- Esmeryan, K.D.; Grakov, T.; Vergov, L.G.; Lazarov, Y.; Fedchenko, Y.; Staykov, S. Studying the thermal resistance of superhydrophobic carbon soot coatings for heat transfer management in cryogenic facilities. Appl. Therm. Eng. 2023, 219, 119590. [Google Scholar] [CrossRef]
- Maddren, J.; Marschall, E. Predicting thermal contact resistance at cryogenic temperatures for spacecraft applications. J. Spacecr. Rocket. 1995, 32, 469–474. [Google Scholar] [CrossRef]
- Yang, C.; Yin, X.H.; Li, X.P.; Zhang, Z.H.; Kan, J.W.; Cheng, G.M. Simulation study on flow dependent thermal conductivity of PC/MWCNTs nanocomposites considering interface topography. Appl. Therm. Eng. 2016, 100, 1207–1218. [Google Scholar] [CrossRef]
- Yovanovich, M.; Bahrami, M.; Culham, J. Gaussian roughness in thermal contact conductance, microtubes and microfins. In Proceedings of the Heat Transfer Summer Conference, San Francisco, CA, USA, 17–22 July 2005; Volume 47349, pp. 1031–1034. [Google Scholar]
- Bejan, A.; Kraus, A.D. Heat Transfer Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Bahrami, M.; Culham, R.; Yovanovich, M. Thermal resistances of gaseous gap for conforming rough contacts. In Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 5–8 January 2004; p. 821. [Google Scholar]
- Lambert, M.; Fletcher, L. Review of models for thermal contact conductance of metals. J. Thermophys. Heat Transf. 1997, 11, 129–140. [Google Scholar] [CrossRef]
- Jianhai, S.; Dafu, C.; Jiang, X. Fabrication and numerical simulation of a micromachined contact cantilever RF-MEMS switch. J. Semicond. 2006, 27, 309–312. [Google Scholar]
- Patel, C.D.; Rebeiz, G.M. An RF-MEMS switch for high-power applications. In Proceedings of the Microwave Symposium Digest, IEEE, Montreal, QC, Canada, 17–22 June 2012. [Google Scholar]
- Nishijima; Noriyo; Hung; JuoJung; Rebeiz; Gabriel, M. Parallel-contact metal-contact RF-MEMS switches for high power applications. In Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems, Maastricht, The Netherlands, 25–29 January 2004. [Google Scholar]
- Samsonov, G.V. Mechanical Properties of the Elements; Springer: Berlin/Heidelberg, Germany, 1968. [Google Scholar]
- Zwol, P.J.V.; Palasantzas, G.; Hosson, J.T.M.D. Influence of random roughness on the Casimir force at small separations. Phys. Rev. B 2007, 77, 075412. [Google Scholar] [CrossRef]
- Hariri, A.; Zu, J.W.; Mrad, R.B. Modeling of dry stiction in micro electro-mechanical systems (MEMS). J. Micromech. Microeng. 2006, 16, 1195. [Google Scholar] [CrossRef]
- Zheng, J.; Li, Y.; Chen, P.; Yin, G.; Luo, H. Measurements of interfacial thermal contact conductance between pressed alloys at low temperatures. Cryogenics 2016, 80, 33–43. [Google Scholar] [CrossRef]
- Kumar, S.S.; Ramamurthi, K. Thermal contact conductance of pressed contacts at low temperatures. Cryogenics 2004, 44, 727–734. [Google Scholar] [CrossRef]
- Song, S.; Yovanovich, M.; Nho, K. Thermal gap conductance: Effects of gas pressure and mechanical load. J. Thermophys. Heat Transf. 1992, 6, 62–68. [Google Scholar] [CrossRef]
- Yovanovich, M.; DeVaal, J.; Hegazy, A. Astatistical model to predict thermal gap conductance between conforming rough surfaces. In Proceedings of the 3rd Joint Thermophysics, Fluids, Plasma and Heat Transfer Conference, St. Louis, MO, USA, 7–11 June 1982; p. 888. [Google Scholar]
- Misra, P.; Nagaraju, J. Thermal gap conductance at low contact pressures (<1 MPa): Effect of gold plating and plating thickness. Int. J. Heat Mass Transf. 2010, 53, 5373–5379. [Google Scholar]
- Wahid, S.M.; Madhusudana, C. Gap conductance in contact heat transfer. Int. J. Heat Mass Transf. 2000, 43, 4483–4487. [Google Scholar] [CrossRef]
- Madhusudana, C. Thermal contact conductance and rectification at low joint pressures. Int. Commun. Heat Mass Transf. 1993, 20, 123–132. [Google Scholar] [CrossRef]
- Marotta, E.E.; Mazzuca, S.J.; Norley, J. Thermal joint conductance for flexible graphite materials: Analytical and experimental study. IEEE Trans. Components Packag. Technol. 2005, 28, 102–110. [Google Scholar] [CrossRef]
- Wilson, R.; Apgar, B.A.; Hsieh, W.P.; Martin, L.W.; Cahill, D.G. Thermal conductance of strongly bonded metal-oxide interfaces. Phys. Rev. B 2015, 91, 115414. [Google Scholar] [CrossRef]
- Hopkins, P.E.; Phinney, L.M.; Serrano, J.R.; Beechem, T.E. Effects of surface roughness and oxide layer on the thermal boundary conductance at aluminum/silicon interfaces. Phys. Rev. B—Condensed Matter Mater. Phys. 2010, 82, 085307. [Google Scholar] [CrossRef]
- Toptan, A.; Kropaczek, D.J.; Avramova, M.N. Gap conductance modeling I: Theoretical considerations for single-and multi-component gases in curvilinear coordinates. Nucl. Eng. Des. 2019, 353, 110283. [Google Scholar] [CrossRef]
- Song, S.; Yovanovich, M.; Goodman, F. Thermal gap conductance of conforming surfaces in contact. ASME J. Heat Transf. 1993, 115, 533–540. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Xie, Z. Investigation of the Thermal Conductance of MEMS Contact Switches. Micromachines 2025, 16, 872. https://doi.org/10.3390/mi16080872
Chen Z, Xie Z. Investigation of the Thermal Conductance of MEMS Contact Switches. Micromachines. 2025; 16(8):872. https://doi.org/10.3390/mi16080872
Chicago/Turabian StyleChen, Zhiqiang, and Zhongbin Xie. 2025. "Investigation of the Thermal Conductance of MEMS Contact Switches" Micromachines 16, no. 8: 872. https://doi.org/10.3390/mi16080872
APA StyleChen, Z., & Xie, Z. (2025). Investigation of the Thermal Conductance of MEMS Contact Switches. Micromachines, 16(8), 872. https://doi.org/10.3390/mi16080872