Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (94)

Search Parameters:
Keywords = asiatic acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1726 KiB  
Review
Selected Pentacyclic Triterpenoids and Their Derivatives as Biologically Active Compounds
by Zdeněk Wimmer
Molecules 2025, 30(15), 3106; https://doi.org/10.3390/molecules30153106 - 24 Jul 2025
Viewed by 208
Abstract
Medicinal plants have been used in traditional medicines all over the world to treat human diseases throughout human history. Many of the medicinal plants have frequently become food and nutrition plants. A more sophisticated investigation resulted in discovering numbers of biologically important secondary [...] Read more.
Medicinal plants have been used in traditional medicines all over the world to treat human diseases throughout human history. Many of the medicinal plants have frequently become food and nutrition plants. A more sophisticated investigation resulted in discovering numbers of biologically important secondary metabolites of plants. Pentacyclic triterpenoids represent an important group of the plant secondary metabolites that have emerged as having top biological importance. While the most widespread plant triterpenoids and a majority of their semisynthetic derivatives have been reviewed quite often, other plant pentacyclic triterpenoids and their derivatives have so far been less frequently studied. Therefore, attention has been focused on selected pentacyclic triterpenoids, namely on arjunolic acid, asiatic acid, α- and β-boswellic acids, corosolic acid, maslinic acid, morolic acid, moronic acid, and the friedelane triterpenoids, and on different derivatives of the selected triterpenoids in this review article. A literature search was made in the Web of Science for the given keywords, covering the required area of secondary plant metabolites and their semisynthetic derivatives starting in 2023 and ending in February 2025. The most recently published findings on the biological activity of the selected triterpenoids, and on the structures and the biological activity of their relevant derivatives have been summarized therein. Even if cytotoxicity of the compounds has mainly been reviewed, other biological effects are mentioned if they appeared in the original articles in connection with the selected triterpenoids and their derivatives, listed above. A comparison of the effects of the parent plant products and their derivatives has also been made. Full article
(This article belongs to the Topic Natural Compounds in Plants, 2nd Volume)
Show Figures

Figure 1

13 pages, 4326 KiB  
Article
Asiatic Acid Alleviates Renal Damage by Upregulating STBD1-Mediated Glycophagy in Diabetic Kidney Disease
by Lei Guo, Peili Wu, Qijian Feng, Xiaochun Lin, Yuan Wang, Minghai Wu, Feifei Cai, Jin Zhang, Chuyi Yang, Xuelin Li, Churan Wen, Yingbei Lin, Nannan Liu, Yuxuan Hu, Huiyun Wang, Xinzhao Fan and Meiping Guan
Biomedicines 2025, 13(7), 1544; https://doi.org/10.3390/biomedicines13071544 - 25 Jun 2025
Viewed by 337
Abstract
Background/Objectives: The role of glycogen metabolism in diabetic kidney disease (DKD) remains unclear. This study investigated the therapeutic potential of asiatic acid (AA) on glycogen metabolism in DKD and its underlying mechanisms. Methods: A DKD mouse model was established using a high-fat diet [...] Read more.
Background/Objectives: The role of glycogen metabolism in diabetic kidney disease (DKD) remains unclear. This study investigated the therapeutic potential of asiatic acid (AA) on glycogen metabolism in DKD and its underlying mechanisms. Methods: A DKD mouse model was established using a high-fat diet and streptozotocin, followed by AA treatment for 8 weeks. Network pharmacology and molecular docking identified STBD1 as a potential target of AA, and its overexpression in mice was performed. Results: AA reduced blood glucose levels and the urinary albumin-to-creatinine ratio (UACR) and downregulated TGFβ-1, KIM-1, and PDK4. Additionally, AA treatment reversed abnormal glycogen accumulation and restored STBD1 expression. Network pharmacology and molecular docking identified STBD1 as a potential target of AA, and its overexpression in mice demonstrated similar beneficial effects. Gene enrichment analysis revealed that STBD1 is involved in key metabolic pathways related to DKD. Conclusions: These findings suggest that AA alleviates renal damage in DKD, possibly through modulation of STBD1, highlighting its therapeutic potential and the critical role of STBD1 in renal glycophagy. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

20 pages, 2168 KiB  
Article
Controlled Application of Far-Red Light to Improve Growth and Bioactive Compound Yield in Centella asiatica
by Yu Kyeong Shin, Jae Woo Song and Jun Gu Lee
Horticulturae 2025, 11(7), 728; https://doi.org/10.3390/horticulturae11070728 - 23 Jun 2025
Viewed by 339
Abstract
This study examined how far-red (FR) light supplementation influences triterpene glycoside accumulation in Centella asiatica grown under different light intensities (50–200 μmol·m−2·s−1) over 5 weeks. Four major compounds—madecassoside, asiaticoside, madecassic acid, and asiatic acid—were quantified. Results from three-way ANOVA [...] Read more.
This study examined how far-red (FR) light supplementation influences triterpene glycoside accumulation in Centella asiatica grown under different light intensities (50–200 μmol·m−2·s−1) over 5 weeks. Four major compounds—madecassoside, asiaticoside, madecassic acid, and asiatic acid—were quantified. Results from three-way ANOVA showed that light intensity and time significantly affected the accumulation of all compounds, with FR light selectively enhancing glycoside levels but not triterpene acids. Although total glycoside content declined over time, plants under 200FR conditions retained the highest levels by week 5. Principal component analysis suggested that FR light modulates resource allocation between growth and secondary metabolism. These findings advance our understanding of light-mediated regulation in phytochemical biosynthesis and offer a basis for optimizing cultivation strategies in controlled environments. Notably, the compound-specific responses to FR suggest differential regulation within the triterpene biosynthetic pathway, opening avenues for targeted enhancement of medicinally important compounds. Full article
Show Figures

Graphical abstract

17 pages, 8350 KiB  
Article
Characterisation and In Vitro Drug Release Profiles of Oleanolic Acid- and Asiatic Acid-Loaded Solid Lipid Nanoparticles (SLNs) for Oral Administration
by Michael Oboh, Eman Elhassan, Neil Anthony Koorbanally, Laurencia Govender, Muthulisi Siwela, Thirumala Govender and Blessing Nkazimulo Mkhwanazi
Pharmaceutics 2025, 17(6), 723; https://doi.org/10.3390/pharmaceutics17060723 - 30 May 2025
Viewed by 1585
Abstract
Objectives: This study characterised and evaluated the stability, solubility, and in vitro drug release of OA- and AA-loaded SLNs. Methods: The OA- and AA-SLNs were formulated using the emulsion solvent evaporation method and characterised based on particle size (PS), polydispersity index (PDI), zeta [...] Read more.
Objectives: This study characterised and evaluated the stability, solubility, and in vitro drug release of OA- and AA-loaded SLNs. Methods: The OA- and AA-SLNs were formulated using the emulsion solvent evaporation method and characterised based on particle size (PS), polydispersity index (PDI), zeta potential (ZP), and transmission electron microscopy (TEM). Solubility studies were conducted in PBS (pH 1.2 and 6.8) and dH2O using HPLC, while in vitro drug release was assessed in simulated intestinal fluid (SIF) (pH 6.8). Results: The optimised OA-SLNs (1:1 drug-to-lipid ratio) showed PS, PDI, ZP, and EE% values of 312.9 ± 3.617 nm, 0.157 ± 0.014, −17.0 ± 0.513 mV, and 86.54 ± 1.818%, respectively. The optimised AA-SLNs (1:2 drug-to-lipid: ratio) had a PS of 115.5 ± 0.458 nm, PDI of 0.255 ± 0.007, ZP of −11.9 ± 0.321 mV, and EE% of 76.22 ± 0.436%. The SLNs remained stable for 60 days at 4 °C and room temperature (p < 0.05). The solubility study revealed that free OA and AA showed no measurable values in the three solvents. However, OA-SLNs showed the highest solubility in H2O (16-fold) followed by PBS at pH 6.8 (10-fold) and pH 1.2 (10-fold). AA-SLNs significantly improved the solubility in PBS at pH 6.8 (88-fold), compared to dH2O (6-fold) and PBS at pH 1.2 (26-fold). In vitro drug release studies showed that OA release from the SLNs was significantly increased within 300 min (p < 0.05) compared to the free drug. Similarly, AA release from the SLNs was significantly increased within 300 min (p < 0.05) compared to free AA. Conclusions: These results demonstrate that SLNs enhance OA and AA solubility and drug release, suggesting a promising strategy for improving oral bioavailability and therapeutic efficacy. Full article
Show Figures

Figure 1

38 pages, 2978 KiB  
Review
Chemopreventive and Anticancer Activity of Selected Triterpenoids in Melanoma
by Natalia Dycha, Magdalena Michalak-Tomczyk, Jacek Jachuła, Estera Okoń, Agata Jarząb, Joanna Tokarczyk, Wojciech Koch, Katarzyna Gaweł-Bęben, Wirginia Kukula-Koch and Anna Wawruszak
Cancers 2025, 17(10), 1625; https://doi.org/10.3390/cancers17101625 - 11 May 2025
Cited by 1 | Viewed by 881
Abstract
Melanoma is one of the most aggressive forms of skin cancer, characterized by high metastatic potential and resistance to conventional therapies. Natural compounds, particularly terpenoids, have gained attention for their chemopreventive potential and anticancer properties. These plant-derived compounds exhibit diverse biological activities, e.g., [...] Read more.
Melanoma is one of the most aggressive forms of skin cancer, characterized by high metastatic potential and resistance to conventional therapies. Natural compounds, particularly terpenoids, have gained attention for their chemopreventive potential and anticancer properties. These plant-derived compounds exhibit diverse biological activities, e.g., cell viability and proliferation inhibition, apoptosis induction, cell cycle regulation, and immune system modulation. The review evaluates the current state of the art on the chemopreventive and anticancer activity of lupane- (betulinic acid), oleanane- (oleanolic acid, β-amyrin, escin, hederagenin, glycyrrhetinic acid), and ursane-type (ursolic acid, asiatic acid, madecassic acid, α-amyrin) triterpenoids in melanoma, highlighting their mechanisms of action, therapeutic potential, and challenges in clinical application. Full article
(This article belongs to the Special Issue Chemoprevention Advances in Cancer (2nd Edition))
Show Figures

Figure 1

23 pages, 1038 KiB  
Review
Neuroprotective Properties of Clove (Syzygium aromaticum): State of the Art and Future Pharmaceutical Applications for Alzheimer’s Disease
by Tatevik Sargsyan, Hayarpi M. Simonyan, Lala Stepanyan, Avetis Tsaturyan, Caterina Vicidomini, Raffaele Pastore, Germano Guerra and Giovanni N. Roviello
Biomolecules 2025, 15(3), 452; https://doi.org/10.3390/biom15030452 - 20 Mar 2025
Viewed by 4138
Abstract
This study explores the neuropharmacological potential of various molecular and amino acid components derived from Syzygium aromaticum (clove), an aromatic spice with a long history of culinary and medicinal use. Key bioactive compounds such as eugenol, α-humulene, β-caryophyllene, gallic acid, quercetin, and luteolin [...] Read more.
This study explores the neuropharmacological potential of various molecular and amino acid components derived from Syzygium aromaticum (clove), an aromatic spice with a long history of culinary and medicinal use. Key bioactive compounds such as eugenol, α-humulene, β-caryophyllene, gallic acid, quercetin, and luteolin demonstrate antioxidant, anti-inflammatory, and neuroprotective properties by scavenging free radicals, modulating calcium channels, and reducing neuroinflammation and oxidative stress. Moreover, gallic acid and asiatic acid may exhibit protective effects, including neuronal apoptosis inhibition, while other useful properties of clove phytocompounds include NF-κB pathway inhibition, membrane stabilization, and suppression of pro-inflammatory pathways, possibly in neurons or other relevant cell types, further contributing to neuroprotection and cognitive enhancement. Amino acid analysis revealed essential and non-essential amino acids such as aspartic acid, serine, glutamic acid, glycine, histidine, and arginine in various clove parts (buds, fruits, branches, and leaves). These amino acids play crucial roles in neurotransmitter synthesis, immune modulation, antioxidant defense, and metabolic regulation. Collectively, these bioactive molecules and amino acids contribute to clove’s antioxidant, anti-inflammatory, neurotrophic, and neurotransmitter-modulating effects, highlighting its potential as a preventive and therapeutic candidate for neurodegenerative disorders. While preliminary preclinical studies support these neuroprotective properties, further research, including clinical trials, is needed to validate the efficacy and safety of clove-based interventions in neuroprotection. Full article
(This article belongs to the Special Issue Biomolecular Approaches and Drugs for Neurodegeneration)
Show Figures

Graphical abstract

20 pages, 3284 KiB  
Article
Oral Asiatic Acid Improves Cognitive Function and Modulates Antioxidant and Mitochondrial Pathways in Female 5xFAD Mice
by Samantha Varada, Stephen R. Chamberlin, Lillie Bui, Mikah S. Brandes, Noah Gladen-Kolarsky, Christopher J. Harris, Wyatt Hack, Cody J. Neff, Barbara H. Brumbach, Amala Soumyanath, Joseph F. Quinn and Nora E. Gray
Nutrients 2025, 17(4), 729; https://doi.org/10.3390/nu17040729 - 19 Feb 2025
Cited by 2 | Viewed by 1351
Abstract
Background/Objectives: Extracts of the plant Centella asiatica can enhance mitochondrial function, promote antioxidant activity and improve cognitive deficits. Asiatic acid (AA) is one of the constituent triterpene compounds present in the plant. In this study, we explore the effects of AA on brain [...] Read more.
Background/Objectives: Extracts of the plant Centella asiatica can enhance mitochondrial function, promote antioxidant activity and improve cognitive deficits. Asiatic acid (AA) is one of the constituent triterpene compounds present in the plant. In this study, we explore the effects of AA on brain mitochondrial function, antioxidant response and cognition in a beta-amyloid (Aβ)-overexpressing 5xFAD mouse line. Methods: Six- to seven-month-old 5xFAD mice were treated with 1% AA for 4 weeks. In the last week of treatment, associative memory was assessed along with mitochondrial bioenergetics and the expression of mitochondrial and antioxidant response genes from isolated cortical synaptosomes. The Aβ plaque burden was also evaluated. Results: AA treatment resulted in improvements in associative memory in female 5xFAD mice without altering the Aβ plaque burden. Cortical mitochondrial function and mitochondrial gene expression were increased in the AA-treated female 5xFAD mice, as was the expression of antioxidant genes. More modest effects of AA on cortical mitochondrial function and mitochondrial and antioxidant gene expression were observed in male 5xFAD mice. Conclusions: Oral AA treatment improved cognitive and mitochondrial function and activated antioxidant in Aβ-overexpressing mice. These changes occurred independent of alterations in Aβ plaque burden, suggesting that AA could have translational therapeutic relevance in later-stage AD when plaques are well established. Full article
Show Figures

Figure 1

21 pages, 3014 KiB  
Review
The Role of Pentacyclic Triterpenoids in Non-Small Cell Lung Cancer: The Mechanisms of Action and Therapeutic Potential
by Young-Shin Lee, Ryuk Jun Kwon, Hye Sun Lee, Jae Heun Chung, Yun Seong Kim, Han-Sol Jeong, Su-Jung Park, Seung Yeon Lee, Taehwa Kim and Seong Hoon Yoon
Pharmaceutics 2025, 17(1), 22; https://doi.org/10.3390/pharmaceutics17010022 - 26 Dec 2024
Cited by 3 | Viewed by 1652
Abstract
Lung cancer remains a major global health problem because of its high cancer-related mortality rate despite advances in therapeutic approaches. Non-small cell lung cancer (NSCLC), a major subtype of lung cancer, is more amenable to surgical intervention in its early stages. However, the [...] Read more.
Lung cancer remains a major global health problem because of its high cancer-related mortality rate despite advances in therapeutic approaches. Non-small cell lung cancer (NSCLC), a major subtype of lung cancer, is more amenable to surgical intervention in its early stages. However, the prognosis for advanced NSCLC remains poor, owing to limited treatment options. This underscores the growing need for novel therapeutic strategies to complement existing treatments and improve patient outcomes. In recent years, pentacyclic triterpenoids, a group of natural compounds, have emerged as promising candidates for cancer therapy due to their anticancer properties. Pentacyclic triterpenoids, such as lupeol, betulinic acid, betulin, oleanolic acid, ursolic acid, glycyrrhetinic acid, glycyrrhizin, and asiatic acid, have demonstrated the ability to inhibit cell proliferation and angiogenesis, induce apoptosis, suppress metastasis, and modulate inflammatory and immune pathways in NSCLC cell line models. These compounds exert their effects by modulating important signaling pathways such as NF-κB, PI3K/Akt, and MAPK. Furthermore, advances in drug delivery technologies such as nanocarriers and targeted delivery systems have improved the bioavailability and therapeutic efficacy of triterpenoids. However, despite promising preclinical data, rigorous clinical trials are needed to verify their safety and efficacy. This review explores the role of triterpenoids in NSCLC and therapeutic potential in preclinical models, focusing on their molecular mechanisms of action. Full article
(This article belongs to the Special Issue Natural Products for Anticancer Application)
Show Figures

Figure 1

16 pages, 1989 KiB  
Article
Evaluation of Five Asian Lily Cultivars in Chongqing Province China and Effects of Exogenous Substances on the Heat Resistance
by Ningyu Bai, Yangjing Song, Yu Li, Lijun Tan, Jing Li, Lan Luo, Shunzhao Sui and Daofeng Liu
Horticulturae 2024, 10(11), 1216; https://doi.org/10.3390/horticulturae10111216 - 17 Nov 2024
Cited by 1 | Viewed by 1242
Abstract
Lily is one of the world’s important ornamental flowers. Potted Asiatic lily is a further selected dwarf cultivar suitable for indoor or garden planting. However, there is a lack of relevant research on the cultivation adaptability of potted Asiatic lilies cultivars in the [...] Read more.
Lily is one of the world’s important ornamental flowers. Potted Asiatic lily is a further selected dwarf cultivar suitable for indoor or garden planting. However, there is a lack of relevant research on the cultivation adaptability of potted Asiatic lilies cultivars in the Chongqing region which in the southwest of China. This study selected five potted Asiatic lily cultivars, and the phenological period, stem and leaf characteristics, and flowering traits were assessed through statistical observation. The Asiatic lily ‘Tiny Ghost’ and ‘Tiny Double You’ are well-suited for both spring and autumn planting in Chongqing, while ‘Sugar Love’ and ‘Curitiba’ are best planted in the spring. The ‘Tiny Diamond’ is more appropriate for autumn planting due to its low tolerance to high temperature. The application of exogenous substances, including calcium chloride (CaCl2), potassium fulvic acid (PFA) and melatonin (MT), can mitigate the detrimental effects of high-temperature stress on ‘Tiny Diamond’ by regulating photosynthesis, antioxidant systems, and osmotic substance content. A comprehensive evaluation using the membership function showed that the effect of exogenous CaCl2 treatment is the best, followed by exogenous PFA treatment. CaCl2 acts as a positive regulator of heat stress tolerance in Asian lilies, with potential applications in Asian lily cultivation. This study provides reference for cultivation and application of Asian lily varieties in Chongqing region, and also laid the foundation for further research on the mechanism of exogenous substances alleviating heat stress in lilies. Full article
(This article belongs to the Special Issue Emerging Insights into Horticultural Crop Ecophysiology)
Show Figures

Figure 1

13 pages, 966 KiB  
Review
Topical Application of Centella asiatica in Wound Healing: Recent Insights into Mechanisms and Clinical Efficacy
by Katarzyna Witkowska, Magdalena Paczkowska-Walendowska, Ewa Garbiec and Judyta Cielecka-Piontek
Pharmaceutics 2024, 16(10), 1252; https://doi.org/10.3390/pharmaceutics16101252 - 26 Sep 2024
Cited by 10 | Viewed by 15630
Abstract
Centella asiatica, widely known as Gotu kola, is a traditional herb celebrated for its benefits in skin health and wound healing. Recent research has provided new insights into its efficacy, particularly through topical applications. This review highlights the plant’s mechanisms, focusing [...] Read more.
Centella asiatica, widely known as Gotu kola, is a traditional herb celebrated for its benefits in skin health and wound healing. Recent research has provided new insights into its efficacy, particularly through topical applications. This review highlights the plant’s mechanisms, focusing on its active compounds such as asiaticoside, madecassoside, asiatic acid, and madecassic acid, which enhance collagen synthesis, modulate inflammation, and offer antioxidant protection. Clinical trials have been collected and summarized that innovative delivery systems, such as hydrogels, nanostructures or microneedles, can accelerate wound healing, reduce wound size, and improve recovery times in various wound types, including diabetic ulcers and burns. Future research will likely refine these technologies and explore new applications, reinforcing the role of C. asiatica in contemporary wound care. Advances in formulation and delivery will continue to enhance the plant’s therapeutic potential, offering promising solutions for effective wound management. Full article
(This article belongs to the Special Issue Therapeutic Approaches for Wound-Associated Skin Diseases)
Show Figures

Figure 1

14 pages, 2174 KiB  
Article
Metabolome Shift in Centella asiatica Leaves Induced by the Novel Plant Growth-Promoting Rhizobacterium, Priestia megaterium HyangYak-01
by Min-Chul Kim, HyungWoo Jo, Kyeongmo Lim, Ikwhan Kim, Hye-Been Kim, Sol Kim, Younhwa Nho, Misun Kim, Hyeyoun Kim, Chaeyun Baek, Young Mok Heo, Haeun Lee, Seunghyun Kang, Dong-Geol Lee, Kyudong Han and Jae-Ho Shin
Plants 2024, 13(18), 2636; https://doi.org/10.3390/plants13182636 - 21 Sep 2024
Viewed by 1771
Abstract
Centella asiatica, a traditional herb, is widely recognized for its pharmacologically active components, such as asiaticoside, madecassoside, asiatic acid, and madecassic acid. These components render it a highly sought-after ingredient in various industries, including cosmetics and pharmaceuticals. This study aimed to enhance [...] Read more.
Centella asiatica, a traditional herb, is widely recognized for its pharmacologically active components, such as asiaticoside, madecassoside, asiatic acid, and madecassic acid. These components render it a highly sought-after ingredient in various industries, including cosmetics and pharmaceuticals. This study aimed to enhance the production and activity of these pharmacological constituents of C. asiatica using the plant growth-promoting rhizobacterium Priestia megaterium HyangYak-01 during its cultivation. To achieve this goal, the researchers conducted field experiments, which revealed an increase in the production of pharmacologically active compounds in C. asiatica cultivated with a P. megaterium HyangYak-01 culture solution. Additionally, quadrupole time-of-flight mass spectrometry (Q-TOF MS) confirmed that the composition ratios of the C. asiatica extract treated with the P. megaterium HyangYak-01 culture solution differed from those of the untreated control and type strain-treated groups. Skin cell experiments indicated that the C. asiatica extract treated with the P. megaterium HyangYak-01 culture solution exhibited greater skin barrier improvement and less pronounced inflammatory responses than those from plants grown without the bacterial culture solution. This study demonstrates that microbial treatment during plant cultivation can beneficially influence the production of pharmacological constituents, suggesting a valuable approach toward enhancing the therapeutic properties of plants. Full article
Show Figures

Figure 1

18 pages, 3515 KiB  
Article
Identification of Bioactive Substances Derived from the Probiotic-Induced Bioconversion of Lagerstroemia speciosa Pers. Leaf Extract That Have Beneficial Effects on Diabetes and Obesity
by Byung Chull An, Sang Hee Kwak, Jun Young Ahn, Hye Yeon Won, Tae Hoon Kim, Yongku Ryu and Myung Jun Chung
Microorganisms 2024, 12(9), 1848; https://doi.org/10.3390/microorganisms12091848 - 6 Sep 2024
Cited by 2 | Viewed by 2188
Abstract
Lagerstroemia speciosa L. (Banaba) has been used as a functional food because of its diuretic, decongestant, antipyretic, anti-hyperglycemic, and anti-adipogenic activities. Triterpene acids, including corosolic acid, oleanolic acid, and asiatic acid, are the principal phytochemicals in Banaba and are potentially anti-diabetic substances, owing [...] Read more.
Lagerstroemia speciosa L. (Banaba) has been used as a functional food because of its diuretic, decongestant, antipyretic, anti-hyperglycemic, and anti-adipogenic activities. Triterpene acids, including corosolic acid, oleanolic acid, and asiatic acid, are the principal phytochemicals in Banaba and are potentially anti-diabetic substances, owing to their effect on blood glucose concentration. Bioconversion of Banaba leaf extract (BLE) by Lactobacillus plantarum CBT-LP3 improved the glucose uptake, insulin secretion, and fat browning of this functional food. Furthermore, we identified asiatic acid, which was found to be increased by 3.8-fold during the L. plantarum CBT-LP3-mediated bioconversion process using metabolite profiling. Most previous studies have focused on corosolic acid, another triterpene acid that is a known anti-diabetic compound and is used to standardize BLE preparations. However, asiatic acid is the second most common of the triterpene acids and is also well known to have anti-diabetic properties. The present study has provided strong evidence that asiatic acid represents an alternative to corosolic acid as the most important active compound. These results suggest that the probiotic-mediated bioconversion of BLE may improve the anti-diabetic effects of this functional food. This implies that the consumption of a probiotic should be encouraged for people undergoing BLE treatment to improve its anti-diabetic effects. Full article
(This article belongs to the Topic Fermented Food: Health and Benefit)
Show Figures

Figure 1

20 pages, 8282 KiB  
Article
Effect of Microcapsules of Chitosan-Coated Toddalia asiatica (L.) Lam Extracts on the Surface Coating Properties of Poplar Wood
by Ye Zhu, Ying Wang and Xiaoxing Yan
Coatings 2024, 14(8), 1013; https://doi.org/10.3390/coatings14081013 - 9 Aug 2024
Cited by 4 | Viewed by 1483
Abstract
Using chitosan as the shell material and Toddalia asiatica (L.) Lam extract as the core material, microcapsules of chitosan-coated Toddalia asiatica (L.) Lam extracts were prepared. The microcapsules were added to waterborne topcoats to investigate the effects of different content and MToddalia [...] Read more.
Using chitosan as the shell material and Toddalia asiatica (L.) Lam extract as the core material, microcapsules of chitosan-coated Toddalia asiatica (L.) Lam extracts were prepared. The microcapsules were added to waterborne topcoats to investigate the effects of different content and MToddalia asiatica(L.) Lam extracts:Mchitosan (MT:MC) on the performance of waterborne coatings on poplar surfaces. Under different MT:MC of microcapsules, the content of microcapsules in the coating was negatively correlated with the glossiness, reflectivity, and adhesion of the coating. The addition of microcapsules reduced the liquid resistance of the coating to citric acid and improved the ethanol and cleaning agent resistance of the coating. The hardness, impact resistance, and roughness of the coatings increased gradually with the increase in microcapsule content. The content of microcapsules was positively correlated with the Escherichia coli and Staphylococcus aureus antibacterial performance of coatings, and the coatings had a slightly higher antibacterial rate against Staphylococcus aureus than Escherichia coli overall. The poplar surface coating with 5.0% microcapsules and MT:MC of 4.0:1 was excellent: the gloss was 5.30 GU, the light loss rate was 62.22%, the color difference ΔE was 22.93, the hardness was HB, the impact resistance was grade 3, the adhesion was grade 2, the roughness was 2.022 µm, the resistance to ethanol and cleaning agent was grade 2, and the resistances to Escherichia coli and Staphylococcus aureus were 74.21% and 82.01%, respectively. The results of the study provide a technical reference for the application of antibacterial waterborne coatings on wood surfaces. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

17 pages, 7242 KiB  
Article
Exploring the Mechanism of Asiatic Acid against Atherosclerosis Based on Molecular Docking, Molecular Dynamics, and Experimental Verification
by Zhihao Wu, Luyin Yang, Rong Wang, Jie Yang, Pan Liang, Wei Ren and Hong Yu
Pharmaceuticals 2024, 17(7), 969; https://doi.org/10.3390/ph17070969 - 22 Jul 2024
Cited by 2 | Viewed by 1916
Abstract
Asiatic acid (AA) is a pentacyclic triterpene derived from the traditional medicine Centella asiatica. It is known for its anti-inflammatory, antioxidant, and lipid-regulating properties. Though previous studies have suggested its potential therapeutic benefits for atherosclerosis, its pharmacological mechanism is unclear. The objective [...] Read more.
Asiatic acid (AA) is a pentacyclic triterpene derived from the traditional medicine Centella asiatica. It is known for its anti-inflammatory, antioxidant, and lipid-regulating properties. Though previous studies have suggested its potential therapeutic benefits for atherosclerosis, its pharmacological mechanism is unclear. The objective of this study was to investigate the molecular mechanism of AA in the treatment of atherosclerosis. Therefore, network pharmacology was employed to uncover the mechanism by which AA acts as an anti-atherosclerotic agent. Furthermore, molecular docking, molecular dynamics (MD) simulation, and in vitro experiments were performed to elucidate the mechanism of AA’s anti-atherosclerotic effects. Molecular docking analysis demonstrated a strong affinity between AA and PPARγ. Further MD simulations demonstrated the favorable stability of AA-PPARγ protein complexes. In vitro experiments demonstrated that AA can dose-dependently inhibit the expression of inflammatory factors induced by lipopolysaccharide (LPS) in RAW264.7 cells. This effect may be mediated through the PPARγ/NF-κB signaling pathway. This research underscores anti-inflammation as a crucial biological process in AA treatments for atherosclerosis, with PPARγ potentially serving as a key target. Full article
(This article belongs to the Special Issue The Mode of Action of Herbal Medicines and Natural Products)
Show Figures

Figure 1

10 pages, 1009 KiB  
Article
Pre-Harvest Chemical Compounds Influence Lily (Lilium × elegans) Leaf and Flower Indigenous Phenols, Flavonoids and Gibberellic Acid Levels
by Ahmed AlFayad and Yahia Othman
Int. J. Plant Biol. 2024, 15(3), 551-560; https://doi.org/10.3390/ijpb15030042 - 26 Jun 2024
Cited by 3 | Viewed by 1618
Abstract
The global cut flower industry, including lilies, represents a highly promising investment. Therefore, improving the quantity and quality of these commercially significant flower species is crucial. The objectives of this study were to (1) evaluate the influence of different pre-harvest chemical compounds on [...] Read more.
The global cut flower industry, including lilies, represents a highly promising investment. Therefore, improving the quantity and quality of these commercially significant flower species is crucial. The objectives of this study were to (1) evaluate the influence of different pre-harvest chemical compounds on endogenous GA3, phenol, flavonoids and total antioxidants levels on the leaf and petals parts of Longiflorum-Asiatic (Lilium × elegans cv. Cevennes, yellow) lily and to (2) assess the effect of these compound on the flower quality component. The study was conducted over two cycles in both greenhouse and laboratory settings. Lily bulbs were transplanted into 10 L pots and grown for 70 days. Treatments were applied by spraying twice with a five-day interval on the flowers still on the plants and not yet fully opened. The treatments included 8-hydroxyquinoline sulfate (8HQS) at 100, 200, and 400 mg L−1; salicylic acid (SA) at 100 and 200 mg L−1; SmartFresh™ at 1 and 2 mg L−1; Harvista™ at 150 mg L−1; GA₃ at 50 mg L−1; and a control (water). The lily stems were harvested when one of the flowering buds began to open but was not fully opened. A post-harvest assessment was conducted in the laboratory at room temperature (20 ± 2 °C). The results showed that the lily leaf had a much higher endogenous concentration of GA3 (256%) and lower concentrations of total phenols (22%), flavonoids (28%), and antioxidant activity (14%) when compared to flower petals. In addition, the foliar application of flower preservative compounds one week before harvesting significantly improved the endogenous levels of GA3, total phenols, flavonoids, and antioxidants activity, especially SmartFresh™ at rate of 1 mg L−1. In terms of flower quality, SmartFresh™, at rate of 1 mg L−1, and 8-HQS, at rate of 200, had consistently higher vase lives compared to the control treatment across the two experimental cycles. Compared to the control, SmartFresh™ (the post-harvest ethylene control) increased the vase life of lily flowers by 35% at cycle 1 and 31% at cycle 2 while 8-HQS, at rate of 200 mg L−1, increased the vase life by 21% and 15% at cycles 1 and 2, respectively. However, no significant effect was found in the petal flower color coordinates (L*, a* and b*) across the treatments. Overall, the foliar application of preservative compounds (such as SmartFresh™) at the pre-harvest stage potentially stimulates the endogenous levels of GA3, total phenols, flavonoids, and antioxidants activity, leading to better improvements in post-harvest flower quality, specifically vase life. Full article
(This article belongs to the Section Plant Biochemistry and Genetics)
Show Figures

Figure 1

Back to TopTop