Pre-Harvest Chemical Compounds Influence Lily (Lilium × elegans) Leaf and Flower Indigenous Phenols, Flavonoids and Gibberellic Acid Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Plant Material
2.2. Treatments
2.3. Flower Quality Measurements
2.4. GA3, Phenol, Flavonoid, and Antioxidant Activity Measurements
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Britannica. The Editors of Encyclopaedia. “Liliaceae”. Encyclopedia Britannica, 2 June 2014. Available online: https://www.britannica.com/plant/Liliaceae (accessed on 10 May 2024).
- Dole, J.; Wikins, H. Floriculture: Principles and Species; Pearson/Prentice Hall: Hoboken, NJ, USA, 2005; p. 1023. [Google Scholar]
- Hani, M.B.; Othman, Y.A.; Al-Ajlouni, M.G.; Asaf, T.S. Deep planting improved stem root growth, flower yield and quality of Lilium cultivars. Hortic. Bras. 2022, 40, 143–150. [Google Scholar] [CrossRef]
- RFH. Royal FloraHolland Annual-Report-2022. Available online: https://jaarverslag.royalfloraholland.com/wp-content/uploads/2023/03/Royal-FloraHolland-Annual-Report-2022.pdf (accessed on 10 May 2024).
- Al-Ajlouni, M.G.; Othman, Y.A.; Tala, S.; Ayad, J.Y. Lilium morphology, physiology, anatomy and postharvest flower quality in response to plant growth regulators. South Afr. J. Bot. 2023, 156, 43–53. [Google Scholar] [CrossRef]
- Othman, Y.A.; Al-Ajlouni, M.G.; A’saf, T.S.; Sawalha, H.A.; Hani, M.B. Influence of gibberellic acid on the physiology and flower quality of gerbera and lily cut flowers. Int. J. Agric. Nat. Resour. 2021, 48, 21–33. [Google Scholar] [CrossRef]
- Abdolmaleki, M.; Khosh, K.M.; Eshghi, S.; Ramezanian, A. Improvement in vase life of cut rose cv. “Dolce Vita” by preharvest foliar application of calcium chloride and salicylic acid. Int. J. Hortic. Sci. Technol. 2015, 2, 55–66. [Google Scholar] [CrossRef]
- Huang, B.; Yuan, N.; Ma, H. Pre-harvest ethylene control affects vase life of cut rose ‘Carola’ by regulating energy metabolism and antioxidant enzyme activity. Hortic. Environ. Biotechnol. 2018, 59, 835–845. [Google Scholar] [CrossRef]
- Asrar, A. Effects of some preservative solutions on vase life and keeping quality of snapdragon (Antirrhinum majus L.) cut flowers. J. Saudi Soc. Agric. Sci. 2012, 11, 29–35. [Google Scholar] [CrossRef]
- Liao, L.J.; Lin, Y.H.; Huang, K.L.; Chen, W.S.; Cheng, Y.W. Postharvest life of cut rose flowers as affected by silver thiosulfate and sucrose. Bot. Bull. Acad. Sinica 2000, 41, 299–303. [Google Scholar] [CrossRef]
- Othman, Y.A.; A’saf, T.S.; Al-Ajlouni, M.G.; Hani, M.B.; Hilaire, R.S. Holding solution pH and composition consistently improve vase life rose, Lily and gerbera. J. Phytol. 2023, 15, 57–62. [Google Scholar] [CrossRef]
- Hayat, S.; Amin, N.U.; Khan, M.A.; Soliman, T.M.A.; Nan, M.; Hayat, K.; Ahmed, I.; Kabir, M.R.; Zhao, L.J. Impact of silver thiosulphate and sucrose solution on the vase life of silver thiosulphate and sucrose solution on the vase life of rose cut flower cv. ‘cardinal’. Adv. Environ. Biol. 2012, 6, 1643–1649. [Google Scholar]
- Elgimabi, M.N.; Sliai, A.M. Effect of preservative solutions on vase life and postharvest qualities of rose cut flowers (Rosa damascene cv. Trigintipetala). Am. Eurasin J. Agric. Environ. Sci. 2013, 13, 72–80. [Google Scholar]
- Ibrahim, S.; Taha, L.; Eid, R. Extending postharvest life and keeping quality of gerbera cut-flowers using some chemical preservatives. J. Appl. Sci. Res. 2011, 7, 1233–1239. [Google Scholar]
- Huang, S.; Gong, B.; Wei, F.; Ma, H. Pre-harvest 1-methylcyclopropene application affects post-harvest physiology and storage life of the cut rose cv. Carola. Hortic. Environ. Biotechnol. 2017, 58, 144–151. [Google Scholar] [CrossRef]
- Sun, X.; Qin, M.; Yu, Q.; Huang, Z.; Xiao, Y.; Li, Y.; Ma, N.; Gao, J. Molecular understanding of postharvest flower opening and senescence. Mol. Hortic. 2021, 1, 7. [Google Scholar] [CrossRef] [PubMed]
- Alsmairat, N.; Al-Ajlouni, M.; Othman, Y.; St. Hilaire, R. Composition of soilless substrate affect the physiology and fruit quality of two strawberry (Fragaria X ananassa Duch.) cultivars. J. Plant Nutri. 2018, 41, 2356–2364. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar]
- Burchi, G.; Prisa, D.; Ballarin, A.; Menesatti, P. Improvement of flower color by means of leaf treatments in lily. Sci. Hortic. 2010, 125, 456–460. [Google Scholar] [CrossRef]
- Othman, Y.A.; Tahat, M.; Alananbeh, K.M.; Al-Ajlouni, M. Arbuscular mycorrhizal fungi inoculation improves flower yield and postharvest quality component of Gerbera grown under different salinity levels. Agriculture 2022, 12, 978. [Google Scholar] [CrossRef]
- Marini, R.P.; Reid, M.S.; Marin, D.B. A review of SmartFresh™: Postharvest applications of 1-methylcyclopropene (1-MCP). Adv. Postharv. Fruit Veg. Technol. 2016, 20, 69–82. [Google Scholar]
- Karimi, M.; Moazzam, H.A.; Ghorbanali, N.; Hedayat, Z. Effects of anti-ethylene treatments on ethylene production and antioxidant activities in cut spray carnation. J. Fruit Ornam. Plant Res. 2012, 20, 173–182. [Google Scholar] [CrossRef]
- Fanyu, Z.; Xu, S.; Geng, X.; Hu, C.; Zheng, F. Sucrose + 8-HQC improves the postharvest quality of lily and rose cut flowers by regulating ROS-scavenging systems and ethylene release. Sci. Hortic. 2023, 308, 111550. [Google Scholar]
- Sisler, E.C.; Serek, M. Inhibitors of ethylene responses in plants at the receptor level: Recent developments. Physiol. Plantarum 2006, 100, 577–582. [Google Scholar] [CrossRef]
- Serek, M.; Woltering, E.J.; Sisler, E.C.; Frello, S.; Sriskandarajah, S. Controlling ethylene at the receptor level. Biotechnol. Adv. 2006, 24, 368–381. [Google Scholar] [CrossRef]
- Serek, M.; Sisler, E.C.; Reid, M.S. 1-Methylcyclopropene, a novel gaseous inhibitor of ethylene action, improves the vase life of fruits, cut flowers and potted plants. Acta Hort. 1995, 394, 337–346. [Google Scholar] [CrossRef]
- Asil, M.H.; Karimi, M.; Zakizadeh, H. 1-MCP Improves the postharvest quality of cut spray carnation (Dianthus caryophyllus L.) ‘Optima’ Flowers. Hort. Environ. Biotechnol. 2013, 54, 58–62. [Google Scholar] [CrossRef]
- Tyagi, K.; Maoz, I.; Kochanek, B.; Sela, N.; Lerno, L.; Ebeler, S.; Lichter, A. Cytokinin but not gibberellin application had major impact on the phenylpropanoid pathway in grape. Hortic. Res. 2021, 8, 51. [Google Scholar] [CrossRef]
- Iqbal, N.; Nazar, R.; Khan, M.; Masood, A.; Khan, N. Role of gibberellins in regulation of source–sink relations under optimal and limiting environmental conditions. Curr. Sci. 2011, 100, 998–1007. [Google Scholar]
- Olszewski, N.; Sun, T.P.; Gubler, F. Gibberellin signaling: Biosynthesis, catabolism, and response pathways. Plant Cell 2002, 14, S61–S80. [Google Scholar] [CrossRef]
- Yamaguchi, S. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 2008, 59, 225–251. [Google Scholar] [CrossRef]
- Ruan, J.; Li, S.; Li, Y.; Yao, Q.; Zhou, Y. The dynamic changes of secondary metabolites in flowers and their contributions to plant adaptation to environment. Plant Divers. 2021, 43, 169–183. [Google Scholar]
- Lattanzio, V.; Lattanzio, V.; Cardinali, A. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochem. Adv. Res. 2006, 37, 23–67. [Google Scholar]
- Falcone Ferreyra, M.L.; Rius, S.P.; Casati, P. Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci. 2012, 3, 222. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.S.; Tahir, I. Regulatory role of phenols in flower development and senescence in the genus Iris. Ind. J. Plant Physiol. 2017, 22, 135–140. [Google Scholar] [CrossRef]
- Eriksson, S.; Bohlenius, H.; Moritz, T.; Nilsson, O. GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. Plant Cell 2006, 18, 2172–2181. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Xue, J.; Xue, Y.; Yang, R.; Wang, S.; Zhang, X. Effect of exogenous GA3 on flowering quality, endogenous hormones, and hormone- and flowering-associated gene expression in forcing cultured tree peony (Paeonia suffruticosa). J. Integr. Agric. 2019, 18, 1295–1311. [Google Scholar] [CrossRef]
- Iqbal, N.; Khan, N.; Ferrante, A.; Trivellini, A.; Francini, A.; Khan, M. Ethylene role in plant growth, development and senescence: Interaction with other phytohormones. Front. Plant Sci. 2017, 8, 475. [Google Scholar] [CrossRef]
Treatment | Level (mg L−1) | Chlorophyll Content (µmol m−2) | Water Uptake (mL Plant−1) | Vase Life (Day) | Petal Color Coordinate | ||
---|---|---|---|---|---|---|---|
L* | a* | b* | |||||
SmartFresh™ | 1.0 | 176 c | 84.0 a | 13.0 a | 45.5 a | 2.68 a | 42.4 a |
SmartFresh™ | 2.0 | 196 c | 74.0 b | 11.0 bcd | 42.1 a | 2.50 a | 40.5 a |
Gibberellic acid (GA3) | 50 | 185 c | 88.0 a | 12.0 ab | 44.8 a | 3.05 a | 42.9 a |
8-hydroxyquinoline sulfate | 100 | 188 c | 86.0 a | 10.8 cd | 43.6 a | 2.93 a | 40.9 a |
8-hydroxyquinoline sulfate | 200 | 197 c | 82.0 ab | 11.6 bc | 41.9 a | 2.41 a | 39.3 a |
8-hydroxyquinoline sulfate | 400 | 175 c | 94.0 a | 11.6 bc | 44.9 a | 2.77 a | 40.5 a |
Salicylic acid | 100 | 185 c | 91.0 a | 11.2 bcd | 44.1 a | 2.88 a | 40.5 a |
Salicylic acid | 200 | 238 ab | 90.0 a | 11.0 bcd | 43.0 a | 2.32 a | 38.2 a |
Harvist™ | 150 | 204 bc | 95.0 a | 12.0 ab | 42.5 a | 2.36 a | 39.9 a |
Control (water) | 0.0 | 317 a | 76.0 b | 9.6 e | 43.6 a | 2.67 a | 39.6 a |
p-value | 0.02 | 0.04 | <0.0001 | 0.93 | 0.85 | 0.78 |
Treatment | Level (mg L−1) | Chlorophyll Content (µmol m−2) | Water Uptake (mL Plant−1) | Vase Life (Day) | Petal Color Coordinate | ||
---|---|---|---|---|---|---|---|
L* | a* | b* | |||||
SmartFresh™ | 1.0 | 469 abc | 56.0 ab | 10.2 a | 31.1 ab | 1.16 ab | 25.5 ab |
SmartFresh™ | 2.0 | 477 abc | 44.0 cde | 8.60 bcd | 33.5 ab | 1.06 ab | 30.9 a |
Gibberellic acid (GA3) | 50 | 458 bc | 60.0 a | 8.20 cd | 32.5 ab | 1.27 ab | 27.7 ab |
8-hydroxyquinoline sulfate | 100 | 463 bc | 49.0 bcd | 8.40 bcd | 32.0 ab | 1.11 ab | 24.5 b |
8-hydroxyquinoline sulfate | 200 | 452 bc | 56.0 ab | 9.00 bc | 33.5 ab | 1.18 ab | 29.3 ab |
8-hydroxyquinoline sulfate | 400 | 492 a | 52.0 abc | 9.40 ab | 28.3 b | 0.98 ab | 24.6 b |
Salicylic acid | 100 | 474 abc | 52.0 abc | 8.60 bcd | 33.9 ab | 1.09 ab | 30.4 a |
Salicylic acid | 200 | 465 bc | 48.0 bcd | 8.00 cde | 29.0 b | 0.52 b | 22.4 b |
Harvista™ | 150 | 489 ab | 52.0 abc | 8.20 cd | 32.3 ab | 1.04 ab | 27.8 ab |
Control (water) | 0.0 | 484 ab | 42.0 cde | 7.80 def | 35.7 a | 1.40 a | 30.5 a |
p-value | 0.04 | 0.0006 | <0.0001 | 0.04 | 0.05 | 0.03 |
Treatment | Level (mg L−1) | Gibberellic Acid (GA3, mg L−1) | Phenols (mg 100 g−1) | Flavonoids (mg 100 g−1) | Antioxidant Activity (%) |
---|---|---|---|---|---|
Plant part | |||||
Leaf | 0.32 a | 111 b | 0.73 b | 0.38 b | |
Petal | 0.09 b | 143 a | 1.02 a | 0.44 a | |
Treatment | |||||
SmartFresh™ | 1.0 | 0.64 a | 134 a | 1.00 a | 0.63 a |
SmartFresh™ | 2.0 | 0.09 b | 119 b | 0.91 ab | 0.38 bc |
Gibberellic acid (GA3) | 50 | 0.05 b | 115 b | 0.83 ab | 0.41 b |
8-hydroxyquinoline sulfate | 100 | 0.16 b | 137 a | 0.90 ab | 0.37 bc |
8-hydroxyquinoline sulfate | 200 | 0.28 b | 130 ab | 0.85 ab | 0.39 bc |
8-hydroxyquinoline sulfate | 400 | 0.21 b | 125 ab | 0.78 b | 0.35 c |
Salicylic acid | 100 | 0.12 b | 130 ab | 0.89 ab | 0.39 bc |
Salicylic acid | 200 | 0.57 a | 126 ab | 0.90 ab | 0.37 bc |
Harvista™ | 150 | 0.08 b | 135 a | 0.86 ab | 0.39 bc |
Control (water) | 0.0 | 0.01 b | 117 b | 0.83 ab | 0.42 b |
p-value | |||||
Treatment (T) | 0.0002 | 0.0382 | 0.04848 | <0.0001 | |
Part (P) | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
T × P | <0.0001 | 0.5183 | 0.5654 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlFayad, A.; Othman, Y. Pre-Harvest Chemical Compounds Influence Lily (Lilium × elegans) Leaf and Flower Indigenous Phenols, Flavonoids and Gibberellic Acid Levels. Int. J. Plant Biol. 2024, 15, 551-560. https://doi.org/10.3390/ijpb15030042
AlFayad A, Othman Y. Pre-Harvest Chemical Compounds Influence Lily (Lilium × elegans) Leaf and Flower Indigenous Phenols, Flavonoids and Gibberellic Acid Levels. International Journal of Plant Biology. 2024; 15(3):551-560. https://doi.org/10.3390/ijpb15030042
Chicago/Turabian StyleAlFayad, Ahmed, and Yahia Othman. 2024. "Pre-Harvest Chemical Compounds Influence Lily (Lilium × elegans) Leaf and Flower Indigenous Phenols, Flavonoids and Gibberellic Acid Levels" International Journal of Plant Biology 15, no. 3: 551-560. https://doi.org/10.3390/ijpb15030042
APA StyleAlFayad, A., & Othman, Y. (2024). Pre-Harvest Chemical Compounds Influence Lily (Lilium × elegans) Leaf and Flower Indigenous Phenols, Flavonoids and Gibberellic Acid Levels. International Journal of Plant Biology, 15(3), 551-560. https://doi.org/10.3390/ijpb15030042