Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = aryl hydrocarbon receptor nuclear translocator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7444 KiB  
Article
Monocyte/Macrophage-Specific Loss of ARNTL Suppresses Chronic Kidney Disease-Associated Cardiac Impairment
by Yuya Yoshida, Naoki Nishikawa, Kohei Fukuoka, Akito Tsuruta, Kaita Otsuki, Taiki Fukuda, Yuma Terada, Tomohito Tanihara, Taisei Kumamoto, Ryotaro Tsukamoto, Takumi Nishi, Kosuke Oyama, Kengo Hamamura, Kouta Mayanagi, Satoru Koyanagi, Shigehiro Ohdo and Naoya Matsunaga
Int. J. Mol. Sci. 2024, 25(23), 13009; https://doi.org/10.3390/ijms252313009 - 3 Dec 2024
Cited by 2 | Viewed by 1792
Abstract
Defects in Aryl hydrocarbon receptor nuclear translocator-like 1 (ARNTL), a central component of the circadian clock mechanism, may promote or inhibit the induction of inflammation by monocytes/macrophages, with varying effects on different diseases. However, ARNTL’s role in monocytes/macrophages under chronic kidney disease (CKD), [...] Read more.
Defects in Aryl hydrocarbon receptor nuclear translocator-like 1 (ARNTL), a central component of the circadian clock mechanism, may promote or inhibit the induction of inflammation by monocytes/macrophages, with varying effects on different diseases. However, ARNTL’s role in monocytes/macrophages under chronic kidney disease (CKD), which presents with systemic inflammation, is unclear. Here, we report that the expression of Arntl in monocytes promoted CKD-induced cardiac damage. The expression of G-protein-coupled receptor 68 (GPR68), which exacerbates CKD-induced cardiac disease, was regulated by ARNTL. Under CKD conditions, GPR68 expression was elevated via ARNTL, particularly in the presence of PU.1, a transcription factor specific to monocytes and macrophages. In CKD mouse models lacking monocyte-specific ARNTL, GPR68 expression in monocytes was reduced, leading to decreased cardiac damage and fibrosis despite no improvement in renal excretory capacity or renal fibrosis and increased angiotensin II production. The loss of ARNTL did not affect the expression of marker molecules, indicating the origin or differentiation of cardiac macrophages, but affected GPR68 expression only in cardiac macrophages derived from mature monocytes, highlighting the significance of the interplay between GPR68 and ARNTL in monocytes/macrophages and its influence on cardiac pathology. Understanding this complex relationship between circadian clock mechanisms and disease could help uncover novel therapeutic strategies. Full article
(This article belongs to the Topic Molecular and Cellular Mechanisms of Heart Disease)
Show Figures

Figure 1

19 pages, 3153 KiB  
Article
The Antioxidant Drug Edaravone Binds to the Aryl Hydrocarbon Receptor (AHR) and Promotes the Downstream Signaling Pathway Activation
by Caterina Veroni, Stefania Olla, Maria Stefania Brignone, Chiara Siguri, Alessia Formato, Manuela Marra, Rosa Manzoli, Maria Carla Macario, Elena Ambrosini, Enrico Moro and Cristina Agresti
Biomolecules 2024, 14(4), 443; https://doi.org/10.3390/biom14040443 - 4 Apr 2024
Cited by 3 | Viewed by 2559
Abstract
A considerable effort has been spent in the past decades to develop targeted therapies for the treatment of demyelinating diseases, such as multiple sclerosis (MS). Among drugs with free radical scavenging activity and oligodendrocyte protecting effects, Edaravone (Radicava) has recently received increasing attention [...] Read more.
A considerable effort has been spent in the past decades to develop targeted therapies for the treatment of demyelinating diseases, such as multiple sclerosis (MS). Among drugs with free radical scavenging activity and oligodendrocyte protecting effects, Edaravone (Radicava) has recently received increasing attention because of being able to enhance remyelination in experimental in vitro and in vivo disease models. While its beneficial effects are greatly supported by experimental evidence, there is a current paucity of information regarding its mechanism of action and main molecular targets. By using high-throughput RNA-seq and biochemical experiments in murine oligodendrocyte progenitors and SH-SY5Y neuroblastoma cells combined with molecular docking and molecular dynamics simulation, we here provide evidence that Edaravone triggers the activation of aryl hydrocarbon receptor (AHR) signaling by eliciting AHR nuclear translocation and the transcriptional-mediated induction of key cytoprotective gene expression. We also show that an Edaravone-dependent AHR signaling transduction occurs in the zebrafish experimental model, associated with a downstream upregulation of the NRF2 signaling pathway. We finally demonstrate that its rapid cytoprotective and antioxidant actions boost increased expression of the promyelinating Olig2 protein as well as of an Olig2:GFP transgene in vivo. We therefore shed light on a still undescribed potential mechanism of action for this drug, providing further support to its therapeutic potential in the context of debilitating demyelinating conditions. Full article
(This article belongs to the Collection Feature Papers in Section 'Molecular Medicine')
Show Figures

Figure 1

14 pages, 3230 KiB  
Article
Jasmone Is a Ligand-Selective Allosteric Antagonist of Aryl Hydrocarbon Receptor (AhR)
by Radim Vrzal, Adéla Marcalíková, Kristýna Krasulová, Lenka Zemánková and Zdeněk Dvořák
Int. J. Mol. Sci. 2023, 24(21), 15655; https://doi.org/10.3390/ijms242115655 - 27 Oct 2023
Cited by 2 | Viewed by 2008
Abstract
Herbal extracts represent a wide spectrum of biologically active ingredients with potential medical applications. By screening minor constituents of jasmine essential oil towards aryl hydrocarbon receptor (AhR) activity using a gene reporter assay (GRA), we found the antagonist effects of jasmone (3-methyl-2-[(2Z)-pent-2-en-1-yl]cyclopent-2-en-1-one). It [...] Read more.
Herbal extracts represent a wide spectrum of biologically active ingredients with potential medical applications. By screening minor constituents of jasmine essential oil towards aryl hydrocarbon receptor (AhR) activity using a gene reporter assay (GRA), we found the antagonist effects of jasmone (3-methyl-2-[(2Z)-pent-2-en-1-yl]cyclopent-2-en-1-one). It inhibited 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-, benzo[a]pyrene (BaP)-, and 6-formylindolo[3,2-b]carbazole (FICZ)-triggered AhR-dependent luciferase activity in a concentration-dependent manner. However, the inhibition differed markedly between TCDD, BaP, and FICZ, with the latter being significantly less inhibited. The dose-response analysis confirmed an allosteric type of AhR antagonism. Furthermore, jasmone efficiently inhibited AhR activation by AhR agonists and microbial catabolites of tryptophan (MICTs). TCDD- and FICZ-inducible CYP1A1 expression in primary human hepatocytes was inhibited by jasmone, whereas in the human HepG2 and LS180 cells, jasmone antagonized only TCDD-activated AhR. Jasmone only partially displaced radiolabeled TCDD from its binding to mouse Ahr, suggesting it is not a typical orthosteric ligand of AhR. TCDD-elicited AhR nuclear translocation was not affected by jasmone, whereas downstream signaling events, including the formation of the AhR:ARNT complex and enrichment of the CYP1A1 promoter, were inhibited by jasmone. In conclusion, we show that jasmone is a potent allosteric antagonist of AhR. Such discovery may help to find and/or clarify the use of jasmone in pharmaco- and phytotherapy for conditions where AhR plays a key role. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Graphical abstract

19 pages, 6161 KiB  
Article
Melatonin and Its Metabolites Can Serve as Agonists on the Aryl Hydrocarbon Receptor and Peroxisome Proliferator-Activated Receptor Gamma
by Andrzej T. Slominski, Tae-Kang Kim, Radomir M. Slominski, Yuwei Song, Shariq Qayyum, Wojciech Placha, Zorica Janjetovic, Konrad Kleszczyński, Venkatram Atigadda, Yuhua Song, Chander Raman, Cornelis J. Elferink, Judith Varady Hobrath, Anton M. Jetten and Russel J. Reiter
Int. J. Mol. Sci. 2023, 24(20), 15496; https://doi.org/10.3390/ijms242015496 - 23 Oct 2023
Cited by 42 | Viewed by 3320
Abstract
Melatonin is widely present in Nature. It has pleiotropic activities, in part mediated by interactions with high-affinity G-protein-coupled melatonin type 1 and 2 (MT1 and MT2) receptors or under extreme conditions, e.g., ischemia/reperfusion. In pharmacological concentrations, it is given to counteract the massive [...] Read more.
Melatonin is widely present in Nature. It has pleiotropic activities, in part mediated by interactions with high-affinity G-protein-coupled melatonin type 1 and 2 (MT1 and MT2) receptors or under extreme conditions, e.g., ischemia/reperfusion. In pharmacological concentrations, it is given to counteract the massive damage caused by MT1- and MT2-independent mechanisms. The aryl hydrocarbon receptor (AhR) is a perfect candidate for mediating the latter effects because melatonin has structural similarity to its natural ligands, including tryptophan metabolites and indolic compounds. Using a cell-based Human AhR Reporter Assay System, we demonstrated that melatonin and its indolic and kynuric metabolites act as agonists on the AhR with EC50’s between 10−4 and 10−6 M. This was further validated via the stimulation of the transcriptional activation of the CYP1A1 promoter. Furthermore, melatonin and its metabolites stimulated AhR translocation from the cytoplasm to the nucleus in human keratinocytes, as demonstrated by ImageStream II cytometry and Western blot (WB) analyses of cytoplasmic and nuclear fractions of human keratinocytes. These functional analyses are supported by in silico analyses. We also investigated the peroxisome proliferator-activated receptor (PPAR)γ as a potential target for melatonin and metabolites bioregulation. The binding studies using a TR-TFRET kit to assay the interaction of the ligand with the ligand-binding domain (LBD) of the PPARγ showed agonistic activities of melatonin, 6-hydroxymelatonin and N-acetyl-N-formyl-5-methoxykynuramine with EC50’s in the 10−4 M range showing significantly lower affinities that those of rosiglitazone, e.g., a 10−8 M range. These interactions were substantiated by stimulation of the luciferase activity of the construct containing PPARE by melatonin and its metabolites at 10−4 M. As confirmed by the functional assays, binding mode predictions using a homology model of the AhR and a crystal structure of the PPARγ suggest that melatonin and its metabolites, including 6-hydroxymelatonin, 5-methoxytryptamine and N-acetyl-N-formyl-5-methoxykynuramine, are excellent candidates to act on the AhR and PPARγ with docking scores comparable to their corresponding natural ligands. Melatonin and its metabolites were modeled into the same ligand-binding pockets (LBDs) as their natural ligands. Thus, functional assays supported by molecular modeling have shown that melatonin and its indolic and kynuric metabolites can act as agonists on the AhR and they can interact with the PPARγ at high concentrations. This provides a mechanistic explanation for previously reported cytoprotective actions of melatonin and its metabolites that require high local concentrations of the ligands to reduce cellular damage under elevated oxidative stress conditions. It also identifies these compounds as therapeutic agents to be used at pharmacological doses in the prevention or therapy of skin diseases. Full article
(This article belongs to the Special Issue Vitamin D, Melatonin and Their Precursors in Natural Product)
Show Figures

Figure 1

13 pages, 17757 KiB  
Article
Anti-Pollutant Activity of Porphyra yezoensis Water Extract and Its Active Compound, Porphyra 334, against Urban Particulate Matter-Induced Keratinocyte Cell Damage
by Seoyoung Choi, Jeong Hun Lee, Sae Woong Oh, Eunbi Yu, Kitae Kwon, Sung Joo Jang, Dong Sun Shin, Sang Hyun Moh and Jongsung Lee
Mar. Drugs 2023, 21(2), 121; https://doi.org/10.3390/md21020121 - 13 Feb 2023
Cited by 6 | Viewed by 3261
Abstract
Urban particulate matter (UPM) causes skin aging and inflammatory reactions by influencing skin cells through the aryl hydrocarbon receptor (AhR) signaling pathway. Porphyra yezoensis (also known as Pyropia yezoensis), a red alga belonging to the Bangiaceae family, is an edible red seaweed. [...] Read more.
Urban particulate matter (UPM) causes skin aging and inflammatory reactions by influencing skin cells through the aryl hydrocarbon receptor (AhR) signaling pathway. Porphyra yezoensis (also known as Pyropia yezoensis), a red alga belonging to the Bangiaceae family, is an edible red seaweed. Here, we examined the anti-pollutant effect of P. yezoensis water extract. While UPM treatment induced xenobiotic response element (XRE) promoter luciferase activity, P. yezoensis water extract reduced UPM-induced XRE activity. Next, we isolated an active compound from P. yezoensis and identified it as porphyra 334. Similar to the P. yezoensis water extract, porphyra 334 attenuated UPM-induced XRE activity. Moreover, although UPM augmented AhR nuclear translocation, which led to an increase in cytochrome P450 1A1 (CYP1A1) mRNA levels, these effects were reduced by porphyra 334. Moreover, UPM induced the production of reactive oxygen species (ROS) and reduced cell proliferation. These effects were attenuated in response to porphyra 334 treatment. Furthermore, our results revealed that the increased ROS levels induced by UPM treatment induced transient receptor potential vanilloid 1 (TRPV1) activity, which is related to skin aging and inflammatory responses. However, porphyra 334 treatment reduced this reaction by inhibiting ROS production induced by CYP1A1 activation. This indicates that porphyra 334, an active compound of P. yezoensis, attenuates UP-induced cell damage by inhibiting AhR-induced ROS production, which results in a reduction in TRPV1 activation, leading to cell proliferation. This also suggests that porphyra 334 could protect the epidermis from harmful pollutants. Full article
Show Figures

Figure 1

14 pages, 1608 KiB  
Article
Cap ‘n’ Collar C and Aryl Hydrocarbon Receptor Nuclear Translocator Facilitate the Expression of Glutathione S-Transferases Conferring Adaptation to Tannic Acid and Quercetin in Micromelalopha troglodyta (Graeser) (Lepidoptera: Notodontidae)
by Zhiqiang Wang, Xiaoling Shi, Yujingyun Zhou, Fang Tang, Xiwu Gao and Pei Liang
Int. J. Mol. Sci. 2023, 24(3), 2190; https://doi.org/10.3390/ijms24032190 - 22 Jan 2023
Cited by 4 | Viewed by 2931
Abstract
Micromelalopha troglodyta (Graeser) (Lepidoptera: Notodontidae) is a notorious pest of poplar. Coevolution with poplars rich in plant secondary metabolites prompts M. troglodyta to expand effective detoxification mechanisms against toxic plant secondary metabolites. Although glutathione S-transferases (GSTs) play an important role in xenobiotic detoxification [...] Read more.
Micromelalopha troglodyta (Graeser) (Lepidoptera: Notodontidae) is a notorious pest of poplar. Coevolution with poplars rich in plant secondary metabolites prompts M. troglodyta to expand effective detoxification mechanisms against toxic plant secondary metabolites. Although glutathione S-transferases (GSTs) play an important role in xenobiotic detoxification in M. troglodyta, it is unclear how GSTs act in response to toxic secondary metabolites in poplar. In this study, five GST gene core promoters were accurately identified by a 5’ loss luciferase reporter assay, and the core promoters were significantly induced by two plant secondary metabolites in vitro. Two transcription factors, cap ‘n’ collar C (CncC) and aryl hydrocarbon receptor nuclear translocator (ARNT), were cloned in M. troglodyta. MtCncC and MtARNT clustered well with other insect CncCs and ARNTs, respectively. In addition, MtCncC and MtARNT could bind the MtGSTt1 promoter and strongly improve transcriptional activity, respectively. However, MtCncC and MtARNT had no regulatory function on the MtGSTz1 promoter. Our findings revealed the molecular mechanisms of the transcription factors MtCncC and MtARNT in regulating the GST genes of M. troglodyta. These results provide useful information for the control of M. troglodyta. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

17 pages, 6409 KiB  
Article
A Window of Vulnerability: Chronic Environmental Stress Does Not Impair Reproduction in the Swordfish Xiphias gladius
by Giorgia Gioacchini, Sara Filippi, Rossella Debernardis, Luca Marisaldi, Riccardo Aiese Cigliano and Oliana Carnevali
Animals 2023, 13(2), 269; https://doi.org/10.3390/ani13020269 - 12 Jan 2023
Cited by 2 | Viewed by 2429
Abstract
Xiphias gladius is an important fishing resource. The Mediterranean stock is affected by overfishing and is declining. In this light, the aim of this study was to evaluate the cross-talk among metabolism, stress response, immune system and reproduction in immature and mature females, [...] Read more.
Xiphias gladius is an important fishing resource. The Mediterranean stock is affected by overfishing and is declining. In this light, the aim of this study was to evaluate the cross-talk among metabolism, stress response, immune system and reproduction in immature and mature females, coupling histological and transcriptomic approaches. The transcriptome of livers from 3 immature and 3 mature females was analyzed using the Artificial Intelligence RNA-Seq. For the histological analysis, ovary and liver samples were collected from 50 specimens caught during the reproductive season in the Mediterranean Sea. A total of 750 genes were differentially expressed between the livers. The gene ontologtabey analysis showed 91 upregulated and 161 downregulated biological process GO terms. Instead, the KEGG enrichment analysis revealed 15 enriched pathways. Furthermore, the binding occurring between estrogen receptors and aryl hydrocarbon receptor nuclear translocator, upregulated in mature females, could be liable for the inhibition of detoxification pathway. Indeed, at the histological level, mature females showed a higher density and number of melanomacrophage centers, biomarkers of stress. The present findings reveal the cross-talk among response to environmental stressors, metabolism and reproduction, highlighting that mature females invest a lot of energy in reproduction instead of immune response and detoxification. Full article
Show Figures

Figure 1

14 pages, 7164 KiB  
Article
Circadian Rhythm Disorders Aggravate Periodontitis by Modulating BMAL1
by Xiaomeng Liu, Niuben Cao, Xinchan Liu, Yu Deng, Yu Xin, Ruobing Fu, Xirui Xin, Yubo Hou and Weixian Yu
Int. J. Mol. Sci. 2023, 24(1), 374; https://doi.org/10.3390/ijms24010374 - 26 Dec 2022
Cited by 12 | Viewed by 3197
Abstract
Circadian rhythms regulate the body’s homeostasis through the temporal control of tissue-specific circadian rhythm control genes. Circadian rhythm disorders (CRD) affect the expression levels of circadian rhythms-associated genes in brain and muscle aryl hydrocarbon receptor nuclear translocator-like-1(BMAL1), which is thought to contribute to [...] Read more.
Circadian rhythms regulate the body’s homeostasis through the temporal control of tissue-specific circadian rhythm control genes. Circadian rhythm disorders (CRD) affect the expression levels of circadian rhythms-associated genes in brain and muscle aryl hydrocarbon receptor nuclear translocator-like-1(BMAL1), which is thought to contribute to metabolic disorders and an altered immune system. However, the relationship between CRD and the development of periodontitis was poorly reported. Therefore, this study aimed to investigate the role played by BMAL1 in periodontitis. We used a modified multi-platform approach (MMPM) to induce circadian rhythm disturbances in rats to investigate the role of BMAL1 in periodontitis. Our results showed significant downregulation of BMAL1 in the CRD with periodontitis group, significant resorption of alveolar bone, increased osteoclast differentiation, and upregulation of the inflammatory signaling molecule NF-κB. In addition, apoptosis and oxidative stress levels were increased in periodontal tissues. Collectively, our study suggests that BMAL1 is a key regulator in periodontitis exacerbated by CRD and that CRD may lead to the downregulation of BMAL1, thereby exacerbating oxidative stress and apoptosis in periodontal tissues. Our study found that BMAL1 may be associated with the progression of periodontitis and provides a new perspective on the treatment of periodontitis. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

13 pages, 1915 KiB  
Article
Identification and Functional Characterization of the Transcription Factors AhR/ARNT in Dendroctonus armandi
by Bin Liu and Hui Chen
Cells 2022, 11(23), 3856; https://doi.org/10.3390/cells11233856 - 30 Nov 2022
Cited by 9 | Viewed by 1954
Abstract
The aryl hydrocarbon receptor (AhR) and aryl hydrocarbon receptor nuclear translocator (ARNT) belong to the bHLH-PAS (basic Helix–Loop–Helix–Period/ARNT/Single-minded) family of transcription factors, which participate in the sensing and transmitting stimuli of exogenous and endogenous chemical substances, and subsequently activates genes transcription involved in [...] Read more.
The aryl hydrocarbon receptor (AhR) and aryl hydrocarbon receptor nuclear translocator (ARNT) belong to the bHLH-PAS (basic Helix–Loop–Helix–Period/ARNT/Single-minded) family of transcription factors, which participate in the sensing and transmitting stimuli of exogenous and endogenous chemical substances, and subsequently activates genes transcription involved in various detoxification and physiological functions. However, they have not been identified in Dendroctonus armandi, and their roles in the detoxification metabolism are unclear. In the present study, AhR and ARNT of D. armandi were characterized. Spatiotemporal expression profiling indicated that DaAhR and DaARNT were highly expressed in the adult and larval stages of D. armandi and mainly expressed in the midgut and Malpighian tubules of adults. Additionally, the expression of DaAhR and DaARNT significantly increased after exposure to (−)-𝛽-pinene, (+)-3-carene, and (±)-limonene. Silencing DaAhR and DaARNT increased the susceptibility of D. armandi to (−)-𝛽-pinene, (+)-3-carene, and (±)-limonene, and the activities of detoxification enzyme were also remarkably reduced. Moreover, DaCYP6DF1 and DaGSTs2 were significantly down-regulated after injections of dsAhR and dsARNT in the male and female adults, with the expression of DaCYP6DF1 decreasing by higher than 70%. The present study revealed that the transcription factors AhR and ARNT of D. armandi were induced by terpenoids and participated in the regulation of DaCYP6DF1 expression, which was associated with D. armandi’s susceptibility to (−)-𝛽-pinene and (±)-limonene. These results may provide a theoretical basis for the integrated control of D. armandi and improve our comprehension of insect toxicology. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

13 pages, 3258 KiB  
Article
CYP1A1, VEGFA and Adipokine Responses of Human Adipocytes Co-exposed to PCB126 and Hypoxia
by Zeinab El Amine, Jean-François Mauger and Pascal Imbeault
Cells 2022, 11(15), 2282; https://doi.org/10.3390/cells11152282 - 24 Jul 2022
Cited by 9 | Viewed by 2586
Abstract
It is increasingly recognized that hypoxia may develop in adipose tissue as its mass expands. Adipose tissue is also the main reservoir of lipophilic pollutants, including polychlorinated biphenyls (PCBs). Both hypoxia and PCBs have been shown to alter adipose tissue functions. The signaling [...] Read more.
It is increasingly recognized that hypoxia may develop in adipose tissue as its mass expands. Adipose tissue is also the main reservoir of lipophilic pollutants, including polychlorinated biphenyls (PCBs). Both hypoxia and PCBs have been shown to alter adipose tissue functions. The signaling pathways induced by hypoxia and pollutants may crosstalk, as they share a common transcription factor: aryl hydrocarbon receptor nuclear translocator (ARNT). Whether hypoxia and PCBs crosstalk and affect adipokine secretion in human adipocytes remains to be explored. Using primary human adipocytes acutely co-exposed to different levels of hypoxia (24 h) and PCB126 (48 h), we observed that hypoxia significantly inhibits the PCB126 induction of cytochrome P450 (CYP1A1) transcription in a dose-response manner, and that Acriflavine (ACF)—an HIF1α inhibitor—partially restores the PCB126 induction of CYP1A1 under hypoxia. On the other hand, exposure to PCB126 did not affect the transcription of the vascular endothelial growth factor-A (VEGFA) under hypoxia. Exposure to hypoxia increased leptin and interleukin-6 (IL-6), and decreased adiponectin levels dose-dependently, while PCB126 increased IL-6 and IL-8 secretion in a dose-dependent manner. Co-exposure to PCB126 and hypoxia did not alter the adipokine secretion pattern observed under hypoxia and PCB126 exposure alone. In conclusion, our results indicate that (1) hypoxia inhibits PCB126-induced CYP1A1 expression at least partly through ARNT-dependent means, suggesting that hypoxia could affect PCB metabolism and toxicity in adipose tissue, and (2) hypoxia and PCB126 affect leptin, adiponectin, IL-6 and IL-8 secretion differently, with no apparent crosstalk between the two factors. Full article
(This article belongs to the Special Issue The Adipose Tissue: From “Cinderella” to “Lion King” Organ)
Show Figures

Figure 1

18 pages, 4019 KiB  
Article
Aryl Hydrocarbon Receptor (AhR)-Mediated Signaling in iPSC-Derived Human Motor Neurons
by Saima Jalil Imran, Barbora Vagaska, Jan Kriska, Miroslava Anderova, Mario Bortolozzi, Gino Gerosa, Patrizia Ferretti and Radim Vrzal
Pharmaceuticals 2022, 15(7), 828; https://doi.org/10.3390/ph15070828 - 4 Jul 2022
Cited by 4 | Viewed by 4269
Abstract
Exposure to environmental pollutants and endogenous metabolites that induce aryl hydrocarbon receptor (AhR) expression has been suggested to affect cognitive development and, particularly in boys, also motor function. As current knowledge is based on epidemiological and animal studies, in vitro models are needed [...] Read more.
Exposure to environmental pollutants and endogenous metabolites that induce aryl hydrocarbon receptor (AhR) expression has been suggested to affect cognitive development and, particularly in boys, also motor function. As current knowledge is based on epidemiological and animal studies, in vitro models are needed to better understand the effects of these compounds in the human nervous system at the molecular level. Here, we investigated expression of AhR pathway components and how they are regulated by AhR ligands in human motor neurons. Motor neurons generated from human induced pluripotent stem cells (hiPSCs) were characterized at the molecular level and by electrophysiology. mRNA levels of AhR target genes, CYP1A1 and CYP1B1 (cytochromes P450 1A1/1B1), and AhR signaling components were monitored in hiPSCs and in differentiated neurons following treatment with AhR ligands, 2,3,7,8,-tetrachlodibenzo-p-dioxin (TCDD), L-kynurenine (L-Kyn), and kynurenic acid (KA), by RT-qPCR. Changes in AhR cellular localization and CYP1A1 activity in neurons treated with AhR ligands were also assessed. The neurons we generated express motor neuron-specific markers and are functional. Transcript levels of CYP1B1, AhR nuclear translocators (ARNT1 and ARNT2) and the AhR repressor (AhRR) change with neuronal differentiation, being significantly higher in neurons than hiPSCs. In contrast, CYP1A1 and AhR transcript levels are slightly lower in neurons than in hiPSCs. The response to TCDD treatment differs in hiPSCs and neurons, with only the latter showing significant CYP1A1 up-regulation. In contrast, TCDD slightly up-regulates CYP1B1 mRNA in hiPSCs, but downregulates it in neurons. Comparison of the effects of different AhR ligands on AhR and some of its target genes in neurons shows that L-Kyn and KA, but not TCDD, regulate AhR expression and differently affect CYP1A1 and CYP1B1 expression. Finally, although TCDD does not significantly affect AhR transcript levels, it induces AhR protein translocation to the nucleus and increases CYP1A1 activity. This is in contrast to L-Kyn and KA, which either do not affect or reduce, respectively, CYP1A1 activity. Expression of components of the AhR signaling pathway are regulated with neuronal differentiation and are differently affected by TCDD, suggesting that pluripotent stem cells might be less sensitive to this toxin than neurons. Crucially, AhR signaling is affected differently by TCDD and other AhR ligands in human motor neurons, suggesting that they can provide a valuable tool for assessing the impact of environmental pollutants. Full article
(This article belongs to the Special Issue Drug Screening or Drug Designing Based on Stem Cell Models)
Show Figures

Figure 1

14 pages, 2287 KiB  
Article
ARNT Inhibits H5N1 Influenza A Virus Replication by Interacting with the PA Protein
by Huapeng Feng, Zeng Wang, Pengyang Zhu, Li Wu, Jianzhong Shi, Yanbing Li, Jianhong Shu, Yulong He and Huihui Kong
Viruses 2022, 14(7), 1347; https://doi.org/10.3390/v14071347 - 21 Jun 2022
Cited by 5 | Viewed by 3175
Abstract
Increasing evidence suggests that the polymerase acidic (PA) protein of influenza A viruses plays an important role in viral replication and pathogenicity. However, information regarding the interaction(s) of host factors with PA is scarce. By using a yeast two-hybrid screen, we identified a [...] Read more.
Increasing evidence suggests that the polymerase acidic (PA) protein of influenza A viruses plays an important role in viral replication and pathogenicity. However, information regarding the interaction(s) of host factors with PA is scarce. By using a yeast two-hybrid screen, we identified a novel host factor, aryl hydrocarbon receptor nuclear translocator (ARNT), that interacts with the PA protein of the H5N1 virus. The interaction between PA and human ARNT was confirmed by co-immunoprecipitation and immunofluorescence microscopy. Moreover, overexpression of ARNT downregulated the polymerase activity and inhibited virus propagation, whereas knockdown of ARNT significantly increased the polymerase activity and virus replication. Mechanistically, overexpression of ARNT resulted in the accumulation of PA protein in the nucleus and inhibited both the replication and transcription of the viral genome. Interaction domain mapping revealed that the bHLH/PAS domain of ARNT mainly interacted with the C-terminal domain of PA. Together, our results demonstrate that ARNT inhibits the replication of the H5N1 virus and could be a target for the development of therapeutic strategies against H5N1 influenza viruses. Full article
(This article belongs to the Special Issue Molecular Biology of Influenza Viruses)
Show Figures

Figure 1

16 pages, 2821 KiB  
Article
Antioxidant Activities and Mechanisms of Tomentosin in Human Keratinocytes
by Seyoung Yang, See-Hyoung Park, Sae Woong Oh, Kitae Kwon, Eunbi Yu, Chae Won Lee, Youn Kyoung Son, Changmu Kim, Byoung-Hee Lee, Jae Youl Cho, Youn-Jung Kim and Jongsung Lee
Antioxidants 2022, 11(5), 990; https://doi.org/10.3390/antiox11050990 - 18 May 2022
Cited by 11 | Viewed by 3543
Abstract
Tomentosin, one of natural sesquiterpene lactones sourced from Inula viscosa L., exerts therapeutic effects in various cell types. Here, we investigated the antioxidant activities and the underlying action mechanisms of tomentosin in HaCaT cells (a human keratinocyte cell line). Specifically, we examined the [...] Read more.
Tomentosin, one of natural sesquiterpene lactones sourced from Inula viscosa L., exerts therapeutic effects in various cell types. Here, we investigated the antioxidant activities and the underlying action mechanisms of tomentosin in HaCaT cells (a human keratinocyte cell line). Specifically, we examined the involvement of tomentosin in aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways. Treatment with tomentosin for up to 60 min triggered the production of reactive oxygen species (ROS), whereas treatment for 4 h or longer decreased ROS production. Tomentosin treatment also induced the nuclear translocation of Nrf2 and upregulated the expression of Nrf2 and its target genes. These data indicate that tomentosin induces ROS production at an early stage which activates the Nrf2 pathway by disrupting the Nrf2–Keap1 complex. However, at a later stage, ROS levels were reduced by tomentosin-induced upregulation of antioxidant genes. In addition, tomentosin induced the phosphorylation of mitogen-activated protein kinases (MAPKs) including p38 MAPK and c-Jun N-terminal kinase (JNK). SB203580 (a p38 MAPK inhibitor) and SP600125 (a JNK inhibitor) attenuated the tomentosin-induced phosphorylation of Nrf2, suggesting that JNK and p38 MAPK signaling pathways can contribute to the tomentosin-induced Nrf2 activation through phosphorylation of Nrf2. Furthermore, N-acetyl-L-cysteine (NAC) treatment blocked both tomentosin-induced production of ROS and the nuclear translocation of Nrf2. These data suggest that tomentosin-induced Nrf2 signaling is mediated both by tomentosin-induced ROS production and the activation of p38 MAPK and JNK. Moreover, tomentosin inhibited the AhR signaling pathway, as evidenced by the suppression of xenobiotic-response element (XRE) reporter activity and the translocation of AhR into nucleus induced by urban pollutants, especially benzo[a]pyrene. These findings suggest that tomentosin can ameliorate skin damage induced by environmental pollutants. Full article
Show Figures

Graphical abstract

17 pages, 2411 KiB  
Article
Genome-Wide ChIPseq Analysis of AhR, COUP-TF, and HNF4 Enrichment in TCDD-Treated Mouse Liver
by Giovan N. Cholico, Rance Nault and Tim R. Zacharewski
Int. J. Mol. Sci. 2022, 23(3), 1558; https://doi.org/10.3390/ijms23031558 - 29 Jan 2022
Cited by 7 | Viewed by 2507
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor known for mediating the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. Although the canonical mechanism of AhR activation involves heterodimerization with the aryl hydrocarbon receptor nuclear translocator, other transcriptional regulators that [...] Read more.
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor known for mediating the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. Although the canonical mechanism of AhR activation involves heterodimerization with the aryl hydrocarbon receptor nuclear translocator, other transcriptional regulators that interact with AhR have been identified. Enrichment analysis of motifs in AhR-bound genomic regions implicated co-operation with COUP transcription factor (COUP-TF) and hepatocyte nuclear factor 4 (HNF4). The present study investigated AhR, HNF4α and COUP-TFII genomic binding and effects on gene expression associated with liver-specific function and cell differentiation in response to TCDD. Hepatic ChIPseq data from male C57BL/6 mice at 2 h after oral gavage with 30 µg/kg TCDD were integrated with bulk RNA-sequencing (RNAseq) time-course (2–72 h) and dose–response (0.01–30 µg/kg) datasets to assess putative AhR, HNF4α and COUP-TFII interactions associated with differential gene expression. Functional enrichment analysis of differentially expressed genes (DEGs) identified differential binding enrichment for AhR, COUP-TFII, and HNF4α to regions within liver-specific genes, suggesting intersections associated with the loss of liver-specific functions and hepatocyte differentiation. Analysis found that the repression of liver-specific, HNF4α target and hepatocyte differentiation genes, involved increased AhR and HNF4α binding with decreased COUP-TFII binding. Collectively, these results suggested TCDD-elicited loss of liver-specific functions and markers of hepatocyte differentiation involved interactions between AhR, COUP-TFII and HNF4α. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

19 pages, 2324 KiB  
Article
Aberrant Upregulation of Indoleamine 2,3-Dioxygenase 1 Promotes Proliferation and Metastasis of Hepatocellular Carcinoma Cells via Coordinated Activation of AhR and β-Catenin Signaling
by Chih-Ta Chen, Pei-Hua Wu, Chia-Chi Hu, Hsiao-Ching Nien, Jin-Town Wang, Jin-Chuan Sheu and Lu-Ping Chow
Int. J. Mol. Sci. 2021, 22(21), 11661; https://doi.org/10.3390/ijms222111661 - 28 Oct 2021
Cited by 16 | Viewed by 3225
Abstract
Hepatocellular carcinoma (HCC) is the fourth most common cause of cancer-related death worldwide. Chronic liver inflammation due to hepatitis virus infection and other major effectors is a major risk factor of HCC. Indoleamine 2,3-dioxygenase 1 (IDO1), a heme enzyme highly expressed upon stimulation [...] Read more.
Hepatocellular carcinoma (HCC) is the fourth most common cause of cancer-related death worldwide. Chronic liver inflammation due to hepatitis virus infection and other major effectors is a major risk factor of HCC. Indoleamine 2,3-dioxygenase 1 (IDO1), a heme enzyme highly expressed upon stimulation with proinflammatory cytokines such as interferon-γ (IFN-γ), is activated to modulate the tumor microenvironment and potentially crucial in the development of certain cancer types. Earlier studies have majorly reported an immunomodulatory function of IDO1. However, the specific role of IDO1 in cancer cells, particularly HCC, remains to be clarified. Analysis of The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA LIHC) dataset in the current study revealed a significant correlation between IDO1 expression and HCC. We further established inducible IDO1-expressing cell models by coupling lentivirus-mediated knockdown and IFN-γ induction of IDO1 in normal and HCC cells. In functional assays, proliferation and motility-related functions of HCC cells were compromised upon suppression of IDO1, which may partially be rescued by its enzymatic product, kynurenine (KYN), while normal hepatocytes were not affected. Aryl hydrocarbon receptor (AhR), a reported endogenous KYN receptor, is suggested to participate in tumorigenesis. In mechanistic studies, IDO1 activation promoted both AhR and β-catenin activity and nuclear translocation. Immunofluorescence staining and co-immunoprecipitation assays further disclosed interactions between AhR and β-catenin. In addition, we identified a Src-PTEN-PI3K/Akt-GSK-3β axis involved in β-catenin stabilization and activation following IDO1-mediated AhR activation. IDO1-induced AhR and β-catenin modulated the expression of proliferation- and EMT-related genes to facilitate growth and metastasis of HCC cells. Our collective findings provide a mechanistic basis for the design of more efficacious IDO1-targeted therapy for HCC. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

Back to TopTop