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Abstract: Micromelalopha troglodyta (Graeser) (Lepidoptera: Notodontidae) is a notorious pest of
poplar. Coevolution with poplars rich in plant secondary metabolites prompts M. troglodyta to
expand effective detoxification mechanisms against toxic plant secondary metabolites. Although
glutathione S-transferases (GSTs) play an important role in xenobiotic detoxification in M. troglodyta,
it is unclear how GSTs act in response to toxic secondary metabolites in poplar. In this study,
five GST gene core promoters were accurately identified by a 5’ loss luciferase reporter assay, and
the core promoters were significantly induced by two plant secondary metabolites in vitro. Two
transcription factors, cap ‘n’ collar C (CncC) and aryl hydrocarbon receptor nuclear translocator
(ARNT), were cloned in M. troglodyta. MtCncC and MtARNT clustered well with other insect CncCs
and ARNTs, respectively. In addition, MtCncC and MtARNT could bind the MtGSTt1 promoter
and strongly improve transcriptional activity, respectively. However, MtCncC and MtARNT had no
regulatory function on the MtGSTz1 promoter. Our findings revealed the molecular mechanisms of
the transcription factors MtCncC and MtARNT in regulating the GST genes of M. troglodyta. These
results provide useful information for the control of M. troglodyta.

Keywords: Micromelalopha troglodyta (Graeser); transcription factors; detoxification genes; promoters;
plant secondary metabolites

1. Introduction

Plants are the main food source for animals, while insects serve as important con-
sumers of plants. They constantly fight against each other. From a plant perspective,
many plants produce defensive toxins or inhibitors to repel insects, including secondary
metabolites such as isoflavones, furanocoumarins, terpenoids, alkaloids and cyanogenic
glycosides [1]. From an insect perspective, insects are protected from plant secondary
metabolites mainly through increased physiological tolerance, metabolic capacity of the
detoxification system, or behavioral avoidance [2]. As insects attempt to increase new host
plant species, these mechanisms will continue to evolve [3].

Micromelalopha troglodyta (Graeser), which is mainly found in China, is an important
leaf-feeding pest of poplar trees and can be widely spread causing heavy losses to the
forestry industry [4,5]. Poplar secondary metabolites such as tannic acid and quercetin, as
toxic natural products, have a toxic effect on M. troglodyta [6,7]. It is well known that the
powerful detoxification metabolism mechanism of insects is an important way to overcome
plant chemicals [8]. There are several enzymes involved in metabolizing heterologous
substances and converting them into less toxic hydrophilic compounds. Major enzyme
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superfamilies include glutathione S-transferases (GSTs), cytochrome P450 monooxygenases
(P450s), ATP-binding cassette (ABC) transporters, UDP-glycosyltransferases (UGTs), and
carboxylesterases (CarEs) [9]. GSTs are important detoxifying enzymes in M. troglodyta that
are involved in the metabolism of plant secondary metabolites [6,8]. Mounting evidence
suggests that GSTs can detoxify secondary metabolites produced by plants during the insect
feeding process [10,11]. GST activity of Myzus persicae could be induced by different host
plants of Brassica species, suggesting that GSTs might play roles in host plant adaptation
in M. persicase [12]. Multiple poplar secondary metabolites could induce the expression of
GST genes in Lymantria dispar, and the adaptation of L. dispar to plant secondary metabolites
was reduced after interference with GST genes [13]. Red palm weevils could excrete and
degrade a variety of toxic plant secondary metabolites by upregulating GST genes [14].
Hence, these findings demonstrated that GSTs play an important role in participating in
the metabolism of xenobiotics in pests.

The detoxification genes are transcriptionally activated by a common mechanism
of transcription factors [15]. Transcription factors are a class of DNA-binding proteins,
including cis- and trans-acting factors, that can enhance or repress the initiation of gene
transcription by binding to specific promoter sequences [16]. Cap ‘n’ collar C (CncC) and
aryl hydrocarbon receptor nuclear translocator (ARNT) are two important transcription
factors in insects, with an essential role in the regulation of detoxification enzymes [15–18].
Mammalian nuclear factor erythroid 2-related Factor 2 (Nrf2), a homolog of CncC, is able
to induce the expression of detoxification genes in response to stress from xenobiotic sub-
stances [19,20]. CncC regulates the expression of many detoxification genes (GSTs, P450s
and esterases) involved in insect metabolism and detoxification [20,21]. Spodoptera litura
Nrf2 acted as a cis-regulatory element that activated the excretion and degradation of
indole-3-methanol (I3C) and chlorpyrifos by upregulating GSTe1, which could improve
the response of S. litura to phytochemicals and insecticides [22]. In Leptinotarsa decemlin-
eata, several imidacloprid-resistant GST genes were regulated by the transcription factors
CncC and Maf [23]. The aryl hydrocarbon receptor (AhR) and ARNT are members of
the bHLH-PAS family of transcription factors. They are ligand-activated transcription
factors involved in the perception and delivery of stimuli in response to endogenous and
xenobiotic stress [24,25]. Enhancer sequences of phase I and phase II genes (such as P450s
and GSTs) can be recognized and activated by the AhR-ARNT complex [26]. The Spodoptera
exigua transcription factors AhR and ARNT coordinately regulated the expression of multi-
ple GSTs conferring insecticide resistance [27]. In locusts, AhR could improve tolerance
to chlorpyrifos by increasing the expression of LmGSTd7 [28]. Combining the information
above, CncC and ARNT are important transcriptional regulators of insect GST genes, and
they play an important role in governing the expression of GSTs. However, the mode of
regulation of GST genes by the two transcription factors in M. troglodyta is not clear.

We cloned five GST promoters of M. troglodyta and demonstrated that tannic acid
could induce the activity of these five MtGST promoters [4]. To date, it has not been
reported at home or abroad how the expression of GST in M. troglodyta is regulated to
adapt to plant secondary metabolite stress. In this study, we focused on the following three
questions: (1) Where is the core region of the MtGST promoter located? (2) Will the core
region of the MtGST promoter be responsive to plant secondary metabolites? and (3) Do
MtCncC and MtARNT interact with the promoters of GST? This study elucidated the role
of MtCncC and MtARNT in regulating GST metabolism of plant secondary metabolites,
which would be helpful to find new target genes to control M. troglodyta.

2. Results
2.1. MtGST Promoter Activity Analysis

In our previous study, we cloned five MtGST promoters. To determine the regions
that are essential for GST expression, we constructed several deletion structures containing
5’ loss fragments and inserted them into the pGL4.10-Basic vector (Figure 1).
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The pGL4.10-(−642/+290) vector of MtGSTd2 promoter had relatively high luciferase 
expression compared with that of pGL4.10-(−402/+290), which showed that sequences 
were essential for the transcription of MtGSTd2 located in the 240 bp region between −642 
and −402 bp (Figure 1A). The pGL4.10-(−596/+414) vector of MtGSTo1 promoter exhibited 
relatively high luciferase expression compared with that of pGL4.10-(−360/+414) and 
pGL4.10-(−127/+414), which suggested that −596 to −360 region was critical for MtGSTo1 

Figure 1. Relative luciferase activities of the 5’ loss fragment of MtGST promoters. (A): MtGSTd2
promoter constructs; (B): MtGSTo1 promoter constructs; (C): MtGSTs1 promoter constructs; (D): Mt-
GSTt1 promoter constructs; (E): MtGSTz1 promoter constructs; F: Prediction analysis of the promoter
regions of five MtGST genes. Each value is presented as the mean ± SD of three replicates, and
different lowercase letters show significant differences (p < 0.05). (F): The core regions deduced from
five MtGST promoters. The location of nucleotides was marked relative to the transcription start site
indicated by +1 and the translation start site indicated by ATG. The red box represents the core region
of each promoter.

The pGL4.10-(−642/+290) vector of MtGSTd2 promoter had relatively high luciferase
expression compared with that of pGL4.10-(−402/+290), which showed that sequences
were essential for the transcription of MtGSTd2 located in the 240 bp region between −642
and −402 bp (Figure 1A). The pGL4.10-(−596/+414) vector of MtGSTo1 promoter exhibited
relatively high luciferase expression compared with that of pGL4.10-(−360/+414) and
pGL4.10-(−127/+414), which suggested that −596 to −360 region was critical for MtGSTo1
transcription (Figure 1B). The pGL4.10-(−576/+385) vector of MtGSTs1 promoter displayed
relatively high luciferase expression than that of the pGL4.10-(−361/+385), and pGL4.10-
(−70/+385) of MtGSTs1 had low luciferase expression compared to pGL4.10-(−361/+385),
which suggested that sequences were essential for the transcription of MtGSTs1 located
in the 215 bp region between −576 and −361 bp (Figure 1C). The pGL4.10-(−574/+340)
vector of MtGSTt1 promoter had relatively high luciferase expression compared with that of
pGL4.10-(−334/+340), and the pGL4.10-(−334/+340) vector of MtGSTt1 had high luciferase
expression levels compared to pGL4.10-(−1052/+340) and pGL4.10-(−1555/+340), which
showed that the 240 bp transcription region between −574 and −334 was critical for
MtGSTt1 expression (Figure 1D). The pGL4.10-(−350/+521) vector of MtGSTz1 promoter
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had relatively high luciferase expression compared with that of pGL4.10-(−500/+521) and
pGL4.10-(−220/+521), which suggested that sequences between −350 and −220 were
critical for MtGSTz1 expression (Figure 1E). The main regulatory regions of the five MtGST
promoters were shown in Figure 1F.

2.2. Induction Effect of Tannic Acid and Quercetin on the Core Region of Two Promoters

Due to the high transcriptional activity of MtGSTt1 (−574/+340) and MtGSTz1
(−350/+521) promoters, we used them as examples to explore the promoter response to
tannic acid and quercetin (Figures 2 and 3). The promoter activity of MtGSTt1 (−574/+340)
was significantly induced by tannic acid at a low concentration (0.56 mg/L), while it was
inhibited by tannic acid at 2.8, 14 and 70 mg/L (Figure 2A). The MtGSTt1 (−574/+340)
promoter showed an increasing and then decreasing trend under quercetin stress, and the
highest promoter activity was observed when the quercetin concentration was 7 mg/L
(Figure 2B). These data showed that the promoter activity of the core region of MtGSTt1
(−574/+340) could be induced by tannic acid and quercetin. For MtGSTz1 (−350/+521)
promoter, the promoter activity was strongly induced by 2.8 mg/L tannic acid (Figure 3A),
while it was repressed at 70 mg/L tannic acid (Figure 3A). We also observed that the
promoter activity of MtGSTz1 (−350/+521) was notably increased when Sf9 cells were
treated with quercetin at 0.28, 1.4 and 7 mg/L and sharply repressed at 35 mg/L (Figure 3B).
These data suggested that tannic acid and quercetin could influence the core region of
MtGSTz1 promoter.
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2.3. Cloning and Phylogenetic Analysis of MtCncC

To explore the regulatory mode of promoters by transcription factors. The CncC gene
of M. troglodyta was obtained from the transcriptome database and confirmed by cloning
and resequencing. MtCncC is a 1671 bp open reading frame (ORF) sequence and encodes
556 AA residues. The amino acid sequence of MtCncC is listed in Supplemental Material S1.
Twenty-six representative insect CncC amino acid sequences were selected for constructing
the phylogenetic tree using the maximum likelihood (ML) method of MEGA X based
on the multiple alignment built with Clustal W. The phylogenetic analysis showed that
CncCs from different species were classified into six order clusters, and MtCncC was clearly
classified into Lepidoptera subclusters, which suggested that MtCncC had a high identity
with other lepidopteran insects CncCs (Figure 4).
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2.4. Cloning and Phylogenetic Analysis of MtARNT

Another transcription factor ARNT was also identified from the transcriptome database
and confirmed by cloning and resequencing. MtARNT is a 1440 bp ORF sequence and
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encodes 479 AA residues. The amino acid sequence of MtARNT is listed in Supplemental
Material S1. The phylogenetic tree of MtARNT was built according to the above method.
Phylogenetic analysis showed that MtARNT was grouped into Lepidoptera subclusters
and had a high similarity with ARNTs from other insects (Figure 5).
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2.5. Analysis of the Transcriptional Activity of MtGST Promoters Regulated by
MtCncC/MtARNT

To further determine the interaction relationship between the MtCncC/MtARNT
and MtGST promoters, we selected the MtGSTt1 (−574/+340) and MtGSTz1 (−350/+521)
promoters with high transcription activity to verify the regulatory role of ARNT and
CncC. pGL4.10-MtGSTt1 (−574/+340) and pGL4.10-MtGSTz1 (−350/+521) promoters
were transfected into Sf9 cells. MtCncC and MtARNT sequences were constructed into
pAC-V5 basic expression vector and named pAC-CncC and pAC-ARNT, respectively. The
pAC-V5 basic expression vector was used as a negative control. The transcription factors
MtCncC/MtARNT and the promoter constructs were cotransfected into Sf9 cells. As shown
in Figure 6A, the luciferase activity of pGL4.10-MtGSTt1 (−574/+340) promoter strongly
increased when cotransfected with pAC-CncC or pAC-ARNT. These results showed that
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the expression of MtCncC/MtARNT in Sf9 cells facilitates MtGSTt1 (−574/+340) promoter
transcription, but there was no significant change when cotransfected with pAC-CncC
and pAC-ARNT. When pAC-CncC/pAC-ARNT was cotransfected with pGL4.10-MtGSTz1
(−350/+521) promoter, the transcriptional activity of the MtGSTz1 (−350/+521) promoter
was not increased (Figure 6B).
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3. Discussion

GSTs are broadly distributed and important detoxifying enzymes in aerobic organisms
that catalyze glutathione (GSH) binding to endogenous and exogenous compounds and
excrete them outside cells, thus reducing their damage to the cells [29,30]. In insects, GSTs
are a family of multifunctional enzymes involved in the detoxification of toxic compounds,
including plant secondary metabolites [4,31,32]. There are six cytoplasmic GST gene
families, including epsilon, omega, delta, theta, sigma, and zeta [33]. In a previous study,
we demonstrated that all five GST genes of M. troglodyta could be significantly induced by
tannic acid, which belong to the omega, delta, theta, sigma, and zeta families. Subsequently,
we cloned the 5’ flanking promoter sequences of these five GST genes and found that they
could be induced by tannic acid [4].

The promoter is a very important regulatory element in gene transcription that deter-
mines the pattern and intensity of gene expression [34]. Many inducible promoters have
been identified from insects, plants and pathogens to explore the in-depth mechanisms
of their regulation [35–37]. The promoter of Drosophila heat shock protein (Hsp70) could
enhance the expression of Hsp70 more than 200-fold after heat stimulation treatment [36].
Adding a stress-inducible promoter before the DREB1A gene in plants could enhance the
drought, high salt and low temperature resistance of transgenic plants [37]. Bombyx mori
nucleopolyhedrovirus (BmNPV)-inducible promoters were applied for gene therapy [38].
Currently, the promoters of GST have been reported in a few insects. In S. litura, the
GST promoter acted as an important element for upregulating the expression of GST and
improved S. litura tolerance to insecticides [22]. It was reported that the promoters of
S. exigua GSTs were coregulated by two transcription factors, which enhanced the resis-
tance of insects to xenobiotic stress [27]. Although we previously obtained five MtGST
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promoters, their regulatory mechanisms for MtGST genes are not clear. In the present
study, we further identified the core regions of the five MtGST promoters in vitro by a 5’
loss fragment assay. The activity of the core regions of MtGSTt1 (−574/+340) and MtGSTz1
(−350/+521) promoters were also well induced by low concentrations of tannic acid and
quercetin, which suggested that the core sequences of MtGST promoters have significant
activity in response to plant secondary metabolites. However, we also found that higher
concentrations of tannic acid and quercetin would decrease the activity of luciferase de-
spite that they were not toxic to Sf9 cells. Based on a previous study, when human cells
were exposed to xenobiotic stress, low concentrations of xenobiotics induced the promoter
activity of pituitary adenylate cyclase-activating polypeptide (PACAP) receptor 1 (PAC1-R)
while high concentrations of xenobiotics inhibited PAC1-R promoter activity [39]. Thus, we
hypothesized that the relationship between GST promoter activity and plant secondary
metabolites (tannic acid and quercetin) also presented a dose-dependent way. Once the
concentrations of plant secondary metabolites exceeded the range causing induction, they
might inhibit the activity of promoters. These findings provided useful information for
understanding the mechanism of GST transcriptional regulation in M. troglodyta.

The transcription factor Nrf2, which is a member of the basic leucine-zipper family, is
an oxygen-sensitive transcription factor and a vital physiological stress response mechanism
in organisms [40]. Under oxidative stress, Nrf2 can translocate into the nucleus to bind
to antioxidant response elements (AREs) and heterodimerize with MafK to regulate the
expression of detoxification genes [41]. The mutation of Nrf2 in mice makes it more
sensitive to xenobiotic stress [42]. Nrf2 can recognize specific DNA sequences in the
presence of nuclear factor-erythroid 2 [43]. CncC in insects is homologous to Nrf2 and is an
important transcription factor for regulating detoxification genes. In silkworm, both CncC
and detoxification genes (including GSTs and P450s) regulated by CncC were upregulated
after phoxim treatment [44]. The CncC-mediated detoxification pathway was associated
with oxidative stress in Drosophila, and it was found that CncC could upregulate GSTd
expression to enhance the ability to resist oxidative stress [45]. Nrf2 was able to regulate the
detoxification enzyme gene CYP6A2 and increase resistance to DTT in Drosophila [46]. In
Tribolium castaneum, the transcription factors CncC and Maf could regulate the expression
of the CYP6BQ gene and increase resistance to deltamethrin [47]. Based on the results of
phylogenetic analysis in this study, MtCncC was highly similar to CncCs from other insects.
Therefore, we speculated that MtCncC is relatively conserved and has similar characteristics
to other CncCs. In our study, by cotransfecting constructs containing MtCncC sequences
and MtGST promoter sequences, we observed a significant induction of the MtGSTt1
(−574/+340) promoter by MtCncC, which suggests that MtCncC acts as a transcription
factor responsible for the activity of the MtGSTt1 (−574/+340) promoter.

ARNT is also a regulatory element of xenobiotic stress response genes and a member
of the bHLH-PAS transcription factor superfamily [25]. AhR is another bHLH-PAS protein
family member that is a ligand-activated transcription factor [48]. In vertebrates, AhR
has two isoforms, AhR1 and AhR2. AhR1 is found in all vertebrates, while AhR2 is
present in some vertebrates [49]. AhR and ARNT can form heterodimers to bind enhancer
DNA sequences and activate antioxidant and xenobiotic metabolic genes such as GSTs
and P450s [26,50]. In mammals, some GSTs were regulated by AhR/ARNT [51,52]. In
insects, AhR/ARNT was associated with the regulation of Aphis gossypii Glover CYP450 to
improve its tolerance to spirotetramat [53]. In M. persicae, AhR/ARNT could upregulate
the expression levels of CYP450 to confer resistance to pesticides [54]. NlARNT could bind
to the CarE7 promoter and strongly induce transcriptional activity to enhance resistance to
xenogenic stress in Nilaparvata lugens [55]. In this study, the phylogenetic relationship of
MtARNT was closely related to that of other insect ARNTs. We hypothesized that MtARNT
is highly similar to other ARNTs and has similar functions to other ARNTs. In this study, by
cotransfecting constructs containing MtARNT sequences and MtGST promoter sequences,
the MtGSTt1 (−574/+340) promoter was significantly induced by MtARNT, which suggests
that MtARNT acts as an important cis-regulatory element responsible for the transcriptional



Int. J. Mol. Sci. 2023, 24, 2190 9 of 14

activity of MtGSTt1 (−574/+340). CncC and ARNT coordinately regulated the expression of
GST in S. exigua [27]. In mammals, the interaction between AhR and Nrf2 may be achieved
through multiple mechanisms, including Nrf2 as a target gene of AhR, indirect activation
of Nrf2 via CYP1A1-generated reactive oxygen species, and direct cross-interaction of
AhR/XRE and Nrf2/ARE signaling [56]. According to our results, MtCncC and MtARNT
did not coregulate the MtGST promoters and even appeared to reduce the transcriptional
activity of the promoters. Thus, we speculated that MtCncC and MtARNT regulate the
GST genes of M. troglodyta in a complex process.

In summary, this study identified the core regions of the five MtGST promoters and
demonstrated their involvement in the response to tannic acid and quercetin stress. Further-
more, we identified two important transcription factors MtCncC and MtARNT involved in
the regulation of the GST gene promoter. These results suggested that transcription factors
regulate the expression of GSTs conferring resistance to plant secondary metabolites in M.
troglodyta, and provided useful information for a better understanding of the regulatory
mechanism between transcription factors and GSTs in M. troglodyta. Future studies will
need to examine the mechanism of posttranscriptional regulation of GSTs in M. troglodyta.

4. Materials and Methods
4.1. Insect Rearing and Cell Culture

M. troglodyta larvae were gathered from poplar (Populus × euramericana ‘Nanlin 895’)
trees in Nanjing, Jiangsu Province, China. The larvae were fed fresh poplar leaves with a
photoperiod of 16 h:8 h (light: dark), a temperature of 26 ± 1 ◦C and a relative humidity
of 70–80%. Third-instar larvae were used for subsequent experiments. Sf9 cells were
routinely maintained with SF-900 II serum-free medium (Invitrogen, Carlsbad, CA, USA)
with 10% fetal bovine serum (HyClone, Logan, UT, USA), 50 mg/mL streptomycin and
50 mg/mL penicillin (Invitrogen) at 28 ◦C. Sf9 cells were cultured for 3 days and then used
for transfection experiments.

4.2. Cloning and Sequencing 5’ Loss Fragments of GST Promoters

First, the transcription factor-binding sites for all full-length MtGST promoter se-
quences were predicted on the website http://alggen.lsi.upc.es (accessed on 10 November
2022) to avoid disrupting the integrity of the binding sites when the promoters of different
fragments were cloned. The 5’ loss fragments of each MtGST promoter were amplified from
the full-length sequences of the MtGST promoters using TaKaRa Ex Premier™ DNA Poly-
merase (Takara, Dalian, Liaoning, China). All primers were designed by Primer 5 software
and were listed in Table 1. Each forward primer sequence and reverse primer sequence
were added with Nhe I and Xho I restriction enzyme cleavage sites, respectively. Each
5’ loss fragment of MtGST promoter was ligated to a TA clone vector pMD-19T (Takara,
Dalian, Liaoning, China), and the correct clone product was obtained by sequencing. The
PGL4.10-Basic vector and the pMD-19T with the 5’ loss fragment were digested with Nhe I
and Xho I. Then, the 5’ loss fragment of MtGST promoter was ligated to the PGL4.10-Basic
vector using T4 DNA ligase (Takara, Dalian, Liaoning, China), and the ligation product
was transformed into E. coli cells. The plasmid DNA was purified from E. coli cells for
subsequent cell transfection experiments.

http://alggen.lsi.upc.es
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Table 1. The primers used for this study.

Primer Names Forward Primer Sequences (5’-3’) Reverse Primer Sequences (5’-3’) Experiments

Pro-MtGSTd2 (−642/+290) CTCGAGAGATTACTATAGGGCACG GCTAGCAGGTAGTACAGGTCG

5’ loss fragment
MtGST promoters

Pro-MtGSTd2 (−402/+290) CTCGAGCTTAGCTGGTTGC GCTAGCAGGTAGTACAGGTCG

Pro-MtGSTo1 (−596/+414) CTCGAGATTACTATAGGGCACGC GCTAGCGGTTTGTAAATGTTTT

Pro-MtGSTo1 (−360/+414) CTCGAGTAACAATTGGCAC GCTAGCGAATACACGCAGTTT

Pro-MtGSTo1 (−127/+414) CTCGAGTCCGACTTTGTGAA GCTAGCGAATACACGCAGTTT

Pro-MtGSTs1 (−576/+385) CTCGAGCGACGAAGGCTT GCTAGCTCAGTAACAACGAC

Pro-MtGSTs1 (−361/+385) CTCGAGCCTTCCAGTAGTTTG GCTAGCTCAGTAACAACGAC

Pro-MtGSTs1 (−70/+385) CTCGAGCATCGTTTCTAGAGT GCTAGCTCAGTAACAACGAC

Pro-MtGSTt1 (−1552/+340) CTCGAGTGCCTGCAGGTC GCTAGCGATTTCTTCACAGAGTG

Pro-MtGSTt1 (−1055/+340) CTCGAGTGTCCCGTCACA GCTAGCGATTTCTTCACAGAGTG

Pro-MtGSTt1 (−574/+340) CTCGAGTTGGACTATAGCCTTC GCTAGCGATTTCTTCACAGAGTG

Pro-MtGSTt1 (−334/+340) CTCGAGCATGCTATGCCC GCTAGCGATTTCTTCACAGAGTG

Pro-MtGSTz1 (−500/+521) CTCGAGGGCACGCGTG GCTAGCAGCGATAGATAAGCG

Pro-MtGSTz1 (−350/+521) CTCGAGGACGTTGGCATT GCTAGCAGCGATAGATAAGCG

Pro-MtGSTz1 (−220/+521) CTCGAGTCTTATTTGGAAACG GCTAGCAGCGATAGATAAGCG

ARNT ATGAGTTTATTGACTGATGTCTGCCT TCACCGGCGCCCGCCGCC Gene cloning
CncC ATGCTGCACCCGGCCAT TCACTGATCGTAGTGCTTCGCTT

pAC-V5-ARNT GCGGCCGCATGAGTTTATTGACTGAT GGCGCGCCCCGGCGCCCGCCGCC pAC-V5 vector construct
pAC-V5-CncC GCGGCCGCATGCTGCACCCGGCCAT GGCGCGCCCTGATCGTAGTGCTTCGCTT

Note: The underline within primers indicated the restriction sites.
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4.3. Promoter Activity Analysis by Luciferase Reporter Assays

Sf9 cells (2.0 × 106 /well) were cultured in a 24-well culture plate, and each 5’ loss
fragment promoter plasmid (700 ng/well) and pRL-TK (interference renilla luciferase
reporter plasmid, Promega, Madison, WI, USA) (70 ng/well) were cotransfected using
2 µL/well Cellfectin II reagent (Invitrogen) in accordance with our previous method (Tang
et al., 2020). After 48 h, Sf9 cells were harvested and lysed in 1 × passive lysis buffer
(Promega), and the renilla and firefly luciferase activities were measured using the Dual-
Luciferase® Reporter Assay System kit (Promega) on an FLx800TM fluorescence microplate
reader (BioTek, Winooski, VT, USA). The promoter activity was calculated by normalizing
the relative activity of firefly luciferase with that of renilla luciferase. Three replicates were
performed for each treatment independently.

Tannic acid was initially solubilized in a small volume of acetone and then diluted in
sterilized water to 70, 14, 2.8 and 0.56 mg/L, and sterilized water was used as a control.
Quercetin was serially diluted in acetone to 35, 7, 1.4 and 0.28 mg/L, and acetone was used
as a control. The concentrations of tannic acid and quercetin were determined according to
previous study [4,57]. Sf9 cells (2.0 × 106 /well) were cultured in a 24-well culture plate,
and then each 5’ loss fragment promoter plasmid (700 ng/well) and pRL-TK (interference
plasmid) (70 ng/well) were cotransfected using 2 µL/well Cellfectin II reagent (Invitrogen).
At 5 h posttransfection, we changed the transfection solution to cell culture medium
containing 10 µL of tannic acid or quercetin with serum and double antibiotics. After 48 h,
we measured luciferase activity using a Dual-Luciferase® Reporter Assay System kit on a
microplate reader. The luciferase activity was calculated according to the above method.

4.4. Cloning the Sequences of MtCncC and MtARNT Genes

Total RNA was extracted from third-instar larvae using TRIzol Reagent (Takara, Dalian,
Liaoning, China) according to the protocol. The quality and integrity of RNA were ex-
amined by a NanoDrop spectrophotometer and agarose gel electrophoresis, respectively.
M. troglodyta RNA was reverse transcribed using the PrimeScriptTM 1st Strand cDNA Syn-
thesis Kit (Takara, Dalian, Liaoning, China), and the cDNA was used for cloning MtCncC
and MtARNT. The primers for cloning MtCncC and MtARNT were designed according to
the transcriptome database and were listed in Table 1. Polymerase chain reaction (PCR) was
performed using Premix Ex Taq™ (Takara, Dalian, Liaoning, China). The PCR program
was as follows: 98 ◦C for 3 min; 35 cycles of 98 ◦C for 10 s, approximately 60 ◦C for 30 s
and 72 ◦C for 90 s; an extension cycle of 72 ◦C for 5 min. The MtCncC and MtARNT DNA
were ligated to the pMD-19T clone vector. The constructs were transformed into E. coli cells
and sequenced by Sangon Biotech (Shanghai) Co., Ltd. The amino acid (AA) sequences of
MtCncC and MtARNT were deduced from the NCBI Open Reading Frame (ORF) finder
(https://www.ncbi.nlm.nih.gov/orffinder/, accessed on 10 November 2022).

4.5. Phylogenetic Analysis of MtCncC and MtARNT

A phylogenetic tree was constructed to investigate the relationship between MtCncC
and other insect CncC, and we picked Cap ‘n’ Collar as a keyword to query the nonre-
dundant database (https://www.ncbi.nlm.nih.gov/ (accessed on 10 November 2022)).
Multiple AA sequence alignment analysis was carried out using MEGA X (version 10.1)
and Clustal X software (version 2.1). The phylogenetic tree was inferred by the maximum
likelihood (ML) method in MEGA X with 1000 bootstrap replicates. The phylogenetic tree
of MtARNT was inferred using the same methods.

4.6. Cotransfection of MtCncC and MtARNT with MtGSTt1 (−574/+340) or MtGSTz1
(−350/+521) Promoter

Using two primer pairs pAC-V5-CncC and pAC-V5-ARNT (Table 1), the MtCncC
and MtARNT were amplified, respectively. Then MtCncC and MtARNT were cloned
into pAC-V5 (Invitrogen). Sf9 cells (2.0 × 106/well) were cultured in a 24-well culture
plate, and 350 ng of the promoter plasmid and 350 ng of the pAC-V5, pAC-V5-MtARNT,

https://www.ncbi.nlm.nih.gov/orffinder/
https://www.ncbi.nlm.nih.gov/
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pAC-V5-MtCncC or pAC-V5-MtARNT and pAC-V5-MtCncC expression plasmids were
cotransfected using 2 µL/well Cellfectin II reagent (Invitrogen). After 48 h induction, Sf9
cells were harvested and lysed to measure the renilla and firefly luciferase activities.

4.7. Statistical Analysis

ANOVA of the data collected from these experiments was performed using InStat
software (GraphPad, San Diego, CA, USA). The significant differences of all two samples
were evaluated using Student’s t test (two-tailed unpaired t test). The statistical significance
of multisample comparisons was assessed with one-way ANOVA followed by Tukey’s
multiple comparisons. A value of p < 0.05 was considered significantly different.
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