Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,730)

Search Parameters:
Keywords = art communication

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 330 KiB  
Essay
Music and Arts in Early Childhood Education: Paths for Professional Development Towards Social and Human Development
by Helena Rodrigues, Ana Isabel Pereira, Paulo Maria Rodrigues, Paulo Ferreira Rodrigues and Angelita Broock
Educ. Sci. 2025, 15(8), 991; https://doi.org/10.3390/educsci15080991 (registering DOI) - 4 Aug 2025
Abstract
This article examines training itineraries for early childhood education professionals in Portugal, focusing on promoting social and human development through music and the arts for infants. The training models discussed are categorized as short-term and long-term, encompassing both theory and practice through a [...] Read more.
This article examines training itineraries for early childhood education professionals in Portugal, focusing on promoting social and human development through music and the arts for infants. The training models discussed are categorized as short-term and long-term, encompassing both theory and practice through a transdisciplinary approach. Based on initiatives promoted by the Companhia de Música Teatral (CMT) and the Education and Human Development Group of the Centre for the Study of Sociology and Musical Aesthetics (CESEM) at NOVA University Lisbon, the article highlights projects such as: (i) Opus Tutti and GermInArte, developed between 2011 and 2018; (ii) the Postgraduate Course Music in Childhood: Intervention and Research, offered at the University since 2020/21, which integrates art, health, and education, promoting collaborative work between professionals; and (iii) Mil Pássaros (Thousand Birds), developed since 2020, which exemplifies the integration of environmental education and artistic practices. The theoretical basis of these training programs combines neuroscientific and educational evidence, emphasizing the importance of the first years of life for integral development. Studies, such as those by Heckman, reinforce the impact of early investment in children’s development. Edwin Gordon’s Music Learning Theory and Malloch and Trevarthen’s concept of ‘communicative musicality’ structure the design of these courses, recognizing music as a catalyst for cognitive, emotional, and social skills. The transformative role of music and the arts in educational and social contexts is emphasized, in line with the Sustainable Development Goals of the 2030 Agenda, by proposing approaches that articulate creation, intervention, and research to promote human development from childhood onwards. Full article
28 pages, 3364 KiB  
Review
Principles, Applications, and Future Evolution of Agricultural Nondestructive Testing Based on Microwaves
by Ran Tao, Leijun Xu, Xue Bai and Jianfeng Chen
Sensors 2025, 25(15), 4783; https://doi.org/10.3390/s25154783 - 3 Aug 2025
Viewed by 56
Abstract
Agricultural nondestructive testing technology is pivotal in safeguarding food quality assurance, safety monitoring, and supply chain transparency. While conventional optical methods such as near-infrared spectroscopy and hyperspectral imaging demonstrate proficiency in surface composition analysis, their constrained penetration depth and environmental sensitivity limit effectiveness [...] Read more.
Agricultural nondestructive testing technology is pivotal in safeguarding food quality assurance, safety monitoring, and supply chain transparency. While conventional optical methods such as near-infrared spectroscopy and hyperspectral imaging demonstrate proficiency in surface composition analysis, their constrained penetration depth and environmental sensitivity limit effectiveness in dynamic agricultural inspections. This review highlights the transformative potential of microwave technologies, systematically examining their operational principles, current implementations, and developmental trajectories for agricultural quality control. Microwave technology leverages dielectric response mechanisms to overcome traditional limitations, such as low-frequency penetration for grain silo moisture testing and high-frequency multi-parameter analysis, enabling simultaneous detection of moisture gradients, density variations, and foreign contaminants. Established applications span moisture quantification in cereal grains, oilseed crops, and plant tissues, while emerging implementations address storage condition monitoring, mycotoxin detection, and adulteration screening. The high-frequency branch of the microwave–millimeter wave systems enhances analytical precision through molecular resonance effects and sub-millimeter spatial resolution, achieving trace-level contaminant identification. Current challenges focus on three areas: excessive absorption of low-frequency microwaves by high-moisture agricultural products, significant path loss of microwave high-frequency signals in complex environments, and the lack of a standardized dielectric database. In the future, it is essential to develop low-cost, highly sensitive, and portable systems based on solid-state microelectronics and metamaterials, and to utilize IoT and 6G communications to enable dynamic monitoring. This review not only consolidates the state-of-the-art but also identifies future innovation pathways, providing a roadmap for scalable deployment of next-generation agricultural NDT systems. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

32 pages, 17593 KiB  
Review
Responsive Therapeutic Environments: A Dual-Track Review of the Research Literature and Design Case Studies in Art Therapy for Children with Autism Spectrum Disorder
by Jing Liang, Jingxuan Jiang, Jinghao Hei and Jiaqi Zhang
Buildings 2025, 15(15), 2735; https://doi.org/10.3390/buildings15152735 - 3 Aug 2025
Viewed by 76
Abstract
Art therapy serves as a crucial intervention modality for children with autism spectrum disorder (ASD), demonstrating unique value in emotional expression, sensory integration, and social communication. However, current practice presents critical challenges, including the disconnect between design expertise and clinical needs, unclear mechanisms [...] Read more.
Art therapy serves as a crucial intervention modality for children with autism spectrum disorder (ASD), demonstrating unique value in emotional expression, sensory integration, and social communication. However, current practice presents critical challenges, including the disconnect between design expertise and clinical needs, unclear mechanisms of environmental factors’ impact on therapeutic outcomes, and insufficient evidence-based support for technology integration. Purpose: This study aimed to construct an evidence-based theoretical framework for art therapy environment design for children with autism, clarifying the relationship between environmental design elements and therapeutic effectiveness. Methodology: Based on the Web of Science database, this study employed a dual-track approach comprising bibliometric analysis and micro-qualitative content analysis to systematically examine the knowledge structure and developmental trends. Research hotspots were identified through keyword co-occurrence network analysis using CiteSpace, while 24 representative design cases were analyzed to gain insights into design concepts, emerging technologies, and implementation principles. Key Findings: Through keyword network visualization analysis, this study identified ten primary research clusters that were systematically categorized into four core design elements: sensory feedback design, behavioral guidance design, emotional resonance design, and therapeutic support design. A responsive therapeutic environment conceptual framework was proposed, encompassing four interconnected components based on the ABC model from positive psychology: emotional, sensory, environmental, and behavioral dimensions. Evidence-based design principles were established emphasizing child-centeredness, the promotion of multisensory expression, the achievement of dynamic feedback, and appropriate technology integration. Research Contribution: This research establishes theoretical connections between environmental design elements and art therapy effectiveness, providing a systematic design guidance framework for interdisciplinary teams, including environmental designers, clinical practitioners, technology developers, and healthcare administrators. The framework positions technology as a therapeutic mediator rather than a driver, ensuring technological integration supports rather than interferes with children’s natural creative impulses. This contributes to creating more effective environmental spaces for art therapy activities for children with autism while aligning with SDG3 goals for promoting mental health and reducing inequalities in therapeutic access. Full article
(This article belongs to the Special Issue Art and Design for Healing and Wellness in the Built Environment)
Show Figures

Graphical abstract

32 pages, 9914 KiB  
Review
Technology Advancements and the Needs of Farmers: Mapping Gaps and Opportunities in Row Crop Farming
by Rana Umair Hameed, Conor Meade and Gerard Lacey
Agriculture 2025, 15(15), 1664; https://doi.org/10.3390/agriculture15151664 - 1 Aug 2025
Viewed by 226
Abstract
Increased food production demands, labor shortages, and environmental concerns are driving the need for innovative agricultural technologies. However, effective adoption depends critically on aligning robot innovations with the needs of farmers. This paper examines the alignment between the needs of farmers and the [...] Read more.
Increased food production demands, labor shortages, and environmental concerns are driving the need for innovative agricultural technologies. However, effective adoption depends critically on aligning robot innovations with the needs of farmers. This paper examines the alignment between the needs of farmers and the robotic systems used in row crop farming. We review current commercial agricultural robots and research, and map these to the needs of farmers, as expressed in the literature, to identify the key issues holding back large-scale adoption. From initial pool of 184 research articles, 19 survey articles, and 82 commercial robotic solutions, we selected 38 peer-reviewed academic studies, 12 survey articles, and 18 commercially available robots for in-depth review and analysis for this study. We identify the key challenges faced by farmers and map them directly to the current and emerging capabilities of agricultural robots. We supplement the data gathered from the literature review of surveys and case studies with in-depth interviews with nine farmers to obtain deeper insights into the needs and day-to-day operations. Farmers reported mixed reactions to current technologies, acknowledging efficiency improvements but highlighting barriers such as capital costs, technical complexity, and inadequate support systems. There is a notable demand for technologies for improved plant health monitoring, soil condition assessment, and enhanced climate resilience. We then review state-of-the-art robotic solutions for row crop farming and map these technological capabilities to the farmers’ needs. Only technologies with field validation or operational deployment are included, to ensure practical relevance. These mappings generate insights that underscore the need for lightweight and modular robot technologies that can be adapted to diverse farming practices, as well as the need for farmers’ education and simpler interfaces to robotic operations and data analysis that are actionable for farmers. We conclude with recommendations for future research, emphasizing the importance of co-creation with the farming community to ensure the adoption and sustained use of agricultural robotic solutions. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

26 pages, 1790 KiB  
Article
A Hybrid Deep Learning Model for Aromatic and Medicinal Plant Species Classification Using a Curated Leaf Image Dataset
by Shareena E. M., D. Abraham Chandy, Shemi P. M. and Alwin Poulose
AgriEngineering 2025, 7(8), 243; https://doi.org/10.3390/agriengineering7080243 - 1 Aug 2025
Viewed by 176
Abstract
In the era of smart agriculture, accurate identification of plant species is critical for effective crop management, biodiversity monitoring, and the sustainable use of medicinal resources. However, existing deep learning approaches often underperform when applied to fine-grained plant classification tasks due to the [...] Read more.
In the era of smart agriculture, accurate identification of plant species is critical for effective crop management, biodiversity monitoring, and the sustainable use of medicinal resources. However, existing deep learning approaches often underperform when applied to fine-grained plant classification tasks due to the lack of domain-specific, high-quality datasets and the limited representational capacity of traditional architectures. This study addresses these challenges by introducing a novel, well-curated leaf image dataset consisting of 39 classes of medicinal and aromatic plants collected from the Aromatic and Medicinal Plant Research Station in Odakkali, Kerala, India. To overcome performance bottlenecks observed with a baseline Convolutional Neural Network (CNN) that achieved only 44.94% accuracy, we progressively enhanced model performance through a series of architectural innovations. These included the use of a pre-trained VGG16 network, data augmentation techniques, and fine-tuning of deeper convolutional layers, followed by the integration of Squeeze-and-Excitation (SE) attention blocks. Ultimately, we propose a hybrid deep learning architecture that combines VGG16 with Batch Normalization, Gated Recurrent Units (GRUs), Transformer modules, and Dilated Convolutions. This final model achieved a peak validation accuracy of 95.24%, significantly outperforming several baseline models, such as custom CNN (44.94%), VGG-19 (59.49%), VGG-16 before augmentation (71.52%), Xception (85.44%), Inception v3 (87.97%), VGG-16 after data augumentation (89.24%), VGG-16 after fine-tuning (90.51%), MobileNetV2 (93.67), and VGG16 with SE block (94.94%). These results demonstrate superior capability in capturing both local textures and global morphological features. The proposed solution not only advances the state of the art in plant classification but also contributes a valuable dataset to the research community. Its real-world applicability spans field-based plant identification, biodiversity conservation, and precision agriculture, offering a scalable tool for automated plant recognition in complex ecological and agricultural environments. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
Show Figures

Figure 1

35 pages, 2730 KiB  
Review
Deep Learning and NLP-Based Trend Analysis in Actuators and Power Electronics
by Woojun Jung and Keuntae Cho
Actuators 2025, 14(8), 379; https://doi.org/10.3390/act14080379 - 1 Aug 2025
Viewed by 98
Abstract
Actuators and power electronics are fundamental components of modern control systems, enabling high-precision functionality, enhanced energy efficiency, and sophisticated automation. This study investigates evolving research trends and thematic developments in these areas spanning the last two decades (2005–2024). This study analyzed 1840 peer-reviewed [...] Read more.
Actuators and power electronics are fundamental components of modern control systems, enabling high-precision functionality, enhanced energy efficiency, and sophisticated automation. This study investigates evolving research trends and thematic developments in these areas spanning the last two decades (2005–2024). This study analyzed 1840 peer-reviewed abstracts obtained from the Web of Science database using BERTopic modeling, which integrates transformer-based sentence embeddings with UMAP for dimensionality reduction and HDBSCAN for clustering. The approach also employed class-based TF-IDF calculations, intertopic distance visualization, and hierarchical clustering to clarify topic structures. The analysis revealed a steady increase in research publications, with a marked surge post-2015. From 2005 to 2014, investigations were mainly focused on established areas including piezoelectric actuators, adaptive control, and hydraulic systems. In contrast, the 2015–2024 period saw broader diversification into new topics such as advanced materials, robotic mechanisms, resilient systems, and networked actuator control through communication protocols. The structural topic analysis indicated a shift from a unified to a more differentiated and specialized spectrum of research themes. This study offers a rigorous, data-driven outlook on the increasing complexity and diversity of actuator and power electronics research. The findings are pertinent for researchers, engineers, and policymakers aiming to advance state-of-the-art, sustainable industrial technologies. Full article
(This article belongs to the Special Issue Power Electronics and Actuators—Second Edition)
Show Figures

Figure 1

22 pages, 16421 KiB  
Article
Deep Neural Network with Anomaly Detection for Single-Cycle Battery Lifetime Prediction
by Junghwan Lee, Longda Wang, Hoseok Jung, Bukyu Lim, Dael Kim, Jiaxin Liu and Jong Lim
Batteries 2025, 11(8), 288; https://doi.org/10.3390/batteries11080288 - 30 Jul 2025
Viewed by 489
Abstract
Large-scale battery datasets often contain anomalous data due to sensor noise, communication errors, and operational inconsistencies, which degrade the accuracy of data-driven prognostics. However, many existing studies overlook the impact of such anomalies or apply filtering heuristically without rigorous benchmarking, which can potentially [...] Read more.
Large-scale battery datasets often contain anomalous data due to sensor noise, communication errors, and operational inconsistencies, which degrade the accuracy of data-driven prognostics. However, many existing studies overlook the impact of such anomalies or apply filtering heuristically without rigorous benchmarking, which can potentially introduce biases into training and evaluation pipelines. This study presents a deep learning framework that integrates autoencoder-based anomaly detection with a residual neural network (ResNet) to achieve state-of-the-art prediction of remaining useful life at the cycle level using only a single-cycle input. The framework systematically filters out anomalous samples using multiple variants of convolutional and sequence-to-sequence autoencoders, thereby enhancing data integrity before optimizing and training the ResNet-based models. Benchmarking against existing deep learning approaches demonstrates a significant performance improvement, with the best model achieving a mean absolute percentage error of 2.85% and a root mean square error of 40.87 cycles, surpassing prior studies. These results indicate that autoencoder-based anomaly filtering significantly enhances prediction accuracy, reinforcing the importance of systematic anomaly detection in battery prognostics. The proposed method provides a scalable and interpretable solution for intelligent battery management in electric vehicles and energy storage systems. Full article
(This article belongs to the Special Issue Machine Learning for Advanced Battery Systems)
Show Figures

Figure 1

19 pages, 4572 KiB  
Article
The Role of Craft in Special Education: Insights from the CRAEFT Program
by Danae Kaplanidi, Athina Sismanidou, Katerina Ziova, Christodoulos Riggas and Nikolaos Partarakis
Heritage 2025, 8(8), 303; https://doi.org/10.3390/heritage8080303 - 29 Jul 2025
Viewed by 521
Abstract
This study explores the potential of craft-based activities in the context of special education, focusing on a papier mâché sculpting workshop implemented at the Special Kindergarten of Komotini, Greece, as part of the Horizon Europe Craeft project. The initiative aimed to assess how [...] Read more.
This study explores the potential of craft-based activities in the context of special education, focusing on a papier mâché sculpting workshop implemented at the Special Kindergarten of Komotini, Greece, as part of the Horizon Europe Craeft project. The initiative aimed to assess how such creative activities could enhance the learning experience of children with intellectual and motor impairments, foster socialization, and develop fine motor skills. With reference to literature in art therapy, craft education, and inclusive pedagogy, the study applied a mixed-methods approach combining observation, visual analysis, and a survey. The findings indicate that, despite varied levels of participation based on individual needs, all students engaged meaningfully with the materials and activities. School professionals observed increased student engagement, emotional comfort, and communication, while also identifying the activity as well adapted and replicable in similar contexts. The results highlight the value of crafts in special education, not only as a sensory and cognitive stimulus but also as a means of fostering inclusion and self-expression. The study concludes with a call for further research into the role of tactile materials and hand gestures in relation to specific impairments. Full article
Show Figures

Figure 1

23 pages, 20415 KiB  
Article
FireNet-KD: Swin Transformer-Based Wildfire Detection with Multi-Source Knowledge Distillation
by Naveed Ahmad, Mariam Akbar, Eman H. Alkhammash and Mona M. Jamjoom
Fire 2025, 8(8), 295; https://doi.org/10.3390/fire8080295 - 26 Jul 2025
Viewed by 448
Abstract
Forest fire detection is an essential application in environmental surveillance since wildfires cause devastating damage to ecosystems, human life, and property every year. The effective and accurate detection of fire is necessary to allow for timely response and efficient management of disasters. Traditional [...] Read more.
Forest fire detection is an essential application in environmental surveillance since wildfires cause devastating damage to ecosystems, human life, and property every year. The effective and accurate detection of fire is necessary to allow for timely response and efficient management of disasters. Traditional techniques for fire detection often experience false alarms and delayed responses in various environmental situations. Therefore, developing robust, intelligent, and real-time detection systems has emerged as a central challenge in remote sensing and computer vision research communities. Despite recent achievements in deep learning, current forest fire detection models still face issues with generalizability, lightweight deployment, and accuracy trade-offs. In order to overcome these limitations, we introduce a novel technique (FireNet-KD) that makes use of knowledge distillation, a method that maps the learning of hard models (teachers) to a light and efficient model (student). We specifically utilize two opposing teacher networks: a Vision Transformer (ViT), which is popular for its global attention and contextual learning ability, and a Convolutional Neural Network (CNN), which is esteemed for its spatial locality and inductive biases. These teacher models instruct the learning of a Swin Transformer-based student model that provides hierarchical feature extraction and computational efficiency through shifted window self-attention, and is thus particularly well suited for scalable forest fire detection. By combining the strengths of ViT and CNN with distillation into the Swin Transformer, the FireNet-KD model outperforms state-of-the-art methods with significant improvements. Experimental results show that the FireNet-KD model obtains a precision of 95.16%, recall of 99.61%, F1-score of 97.34%, and mAP@50 of 97.31%, outperforming the existing models. These results prove the effectiveness of FireNet-KD in improving both detection accuracy and model efficiency for forest fire detection. Full article
Show Figures

Figure 1

29 pages, 7518 KiB  
Article
LEDs for Underwater Optical Wireless Communication
by Giuseppe Schirripa Spagnolo, Giorgia Satta and Fabio Leccese
Photonics 2025, 12(8), 749; https://doi.org/10.3390/photonics12080749 - 25 Jul 2025
Viewed by 384
Abstract
LEDs are readily controllable and demonstrate rapid switching capabilities. These attributes facilitate their efficient integration across a broad spectrum of applications. Indeed, their inherent versatility renders them ideally suited for diverse sectors, including consumer electronics, traffic signage, automotive technology, and architectural illumination. Furthermore, [...] Read more.
LEDs are readily controllable and demonstrate rapid switching capabilities. These attributes facilitate their efficient integration across a broad spectrum of applications. Indeed, their inherent versatility renders them ideally suited for diverse sectors, including consumer electronics, traffic signage, automotive technology, and architectural illumination. Furthermore, LEDs serve as effective light sources for applications in spectroscopy, agriculture, pest control, and wireless optical transmission. The capability to choice high-efficiency LED devices with a specified dominant wavelength renders them particularly well-suited for integration into underwater optical communication systems. In this paper, we present the state-of-the-art of Light-Emitting Diodes (LEDs) for use in underwater wireless optical communications (UOWC). In particular, we focus on the challenges posed by water turbidity and evaluate the optimal wavelengths for communication in coastal environments, especially in the presence of chlorophyll or suspended particulate matter. Given the growing development and applications of underwater optical communication, it is crucial that the topic becomes not only a subject of research but also part of the curricula in technical school and universities. To this end, we introduce a simple and cost-effective UOWC system designed for educational purposes. Some tests have been conducted to evaluate the system’s performance, and the results have been reported. Full article
Show Figures

Figure 1

17 pages, 4338 KiB  
Article
Lightweight Attention-Based CNN Architecture for CSI Feedback of RIS-Assisted MISO Systems
by Anming Dong, Yupeng Xue, Sufang Li, Wendong Xu and Jiguo Yu
Mathematics 2025, 13(15), 2371; https://doi.org/10.3390/math13152371 - 24 Jul 2025
Viewed by 246
Abstract
Reconfigurable Intelligent Surface (RIS) has emerged as a promising enabling technology for wireless communications, which significantly enhances system performance through real-time manipulation of electromagnetic wave reflection characteristics. In RIS-assisted communication systems, existing deep learning-based channel state information (CSI) feedback methods often suffer from [...] Read more.
Reconfigurable Intelligent Surface (RIS) has emerged as a promising enabling technology for wireless communications, which significantly enhances system performance through real-time manipulation of electromagnetic wave reflection characteristics. In RIS-assisted communication systems, existing deep learning-based channel state information (CSI) feedback methods often suffer from excessive parameter requirements and high computational complexity. To address this challenge, this paper proposes LwCSI-Net, a lightweight autoencoder network specifically designed for RIS-assisted multiple-input single-output (MISO) systems, aiming to achieve efficient and low-complexity CSI feedback. The core contribution of this work lies in an innovative lightweight feedback architecture that deeply integrates multi-layer convolutional neural networks (CNNs) with attention mechanisms. Specifically, the network employs 1D convolutional operations with unidirectional kernel sliding, which effectively reduces trainable parameters while maintaining robust feature-extraction capabilities. Furthermore, by incorporating an efficient channel attention (ECA) mechanism, the model dynamically allocates weights to different feature channels, thereby enhancing the capture of critical features. This approach not only improves network representational efficiency but also reduces redundant computations, leading to optimized computational complexity. Additionally, the proposed cross-channel residual block (CRBlock) establishes inter-channel information-exchange paths, strengthening feature fusion and ensuring outstanding stability and robustness under high compression ratio (CR) conditions. Our experimental results show that for CRs of 16, 32, and 64, LwCSI-Net significantly improves CSI reconstruction performance while maintaining fewer parameters and lower computational complexity, achieving an average complexity reduction of 35.63% compared to state-of-the-art (SOTA) CSI feedback autoencoder architectures. Full article
(This article belongs to the Special Issue Data-Driven Decentralized Learning for Future Communication Networks)
Show Figures

Figure 1

14 pages, 6060 KiB  
Article
Text Typing Using Blink-to-Alphabet Tree for Patients with Neuro-Locomotor Disabilities
by Seungho Lee and Sangkon Lee
Sensors 2025, 25(15), 4555; https://doi.org/10.3390/s25154555 - 23 Jul 2025
Viewed by 254
Abstract
Lou Gehrig’s disease, also known as ALS, is a progressive neurodegenerative condition that weakens muscles and can lead to paralysis as it progresses. For patients with severe paralysis, eye-tracking devices such as eye mouse enable communication. However, the equipment is expensive, and the [...] Read more.
Lou Gehrig’s disease, also known as ALS, is a progressive neurodegenerative condition that weakens muscles and can lead to paralysis as it progresses. For patients with severe paralysis, eye-tracking devices such as eye mouse enable communication. However, the equipment is expensive, and the calibration process is very difficult and frustrating for patients to use. To alleviate this problem, we propose a simple and efficient method to type texts intuitively with graphical guidance on the screen. Specifically, the method detects patients’ eye blinks in video frames to navigate through three sequential steps, narrowing down the choices from 9 letters, to 3 letters, and finally to a single letter (from a 26-letter alphabet). In this way, a patient is able to rapidly type a letter of the alphabet by blinking a minimum of three times and a maximum of nine times. The proposed method integrates an API of large language model (LLM) to further accelerate text input and correct sentences in terms of typographical errors, spacing, and upper/lower case. Experiments on ten participants demonstrate that the proposed method significantly outperforms three state-of-the-art methods in both typing speed and typing accuracy, without requiring any calibration process. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

30 pages, 5311 KiB  
Article
Ancient Earth Births: Compelling Convergences of Geology, Orality, and Rock Art in California and the Great Basin
by Alex K. Ruuska
Arts 2025, 14(4), 82; https://doi.org/10.3390/arts14040082 - 22 Jul 2025
Viewed by 541
Abstract
This article critically considers sample multigenerational oral traditions of Numic-speaking communities known as the Nüümü (Northern Paiute), Nuwu (Southern Paiute), and Newe (Western Shoshone), written down over the last 151 years. Utilizing the GOAT! phenomenological method to compare the onto-epistemologies of Numic peoples [...] Read more.
This article critically considers sample multigenerational oral traditions of Numic-speaking communities known as the Nüümü (Northern Paiute), Nuwu (Southern Paiute), and Newe (Western Shoshone), written down over the last 151 years. Utilizing the GOAT! phenomenological method to compare the onto-epistemologies of Numic peoples with a wide range of data from (G)eology, (O)ral traditions, (A)rchaeology and (A)nthropology, and (T)raditional knowledge, the author analyzed 824 multigenerational ancestral teachings. These descriptions encode multigenerational memories of potential geological, climatic, and ecological observations and interpretations of multiple locations and earth processes throughout the Numic Aboriginal homelands within California and the Great Basin. Through this layered and comparative analysis, the author identified potential convergences of oral traditions, ethnography, ethnohistory, rock art, and geological processes in the regions of California, the Great Basin, and the Colorado Plateau, indicative of large-scale earth changes, cognized by Numic Indigenous communities as earth birthing events, occurring during the Late Pleistocene/Early Holocene to Middle and Late Holocene, including the Late Dry Period, Medieval Climatic Anomaly, and Little Ice Age. Full article
(This article belongs to the Special Issue Advances in Rock Art Studies)
Show Figures

Figure 1

15 pages, 441 KiB  
Article
Efficient Nyström-Based Unitary Single-Tone 2D DOA Estimation for URA Signals
by Liping Yuan, Ke Wang and Fengkai Luan
Mathematics 2025, 13(15), 2335; https://doi.org/10.3390/math13152335 - 22 Jul 2025
Viewed by 146
Abstract
We propose an efficient Nyström-based unitary subspace method for low-complexity two-dimensional (2D) direction-of-arrival (DOA) estimation in uniform rectangular array (URA) signal processing systems. The conventional high-resolution DOA estimation methods often suffer from excessive computational complexity, particularly when dealing with large-scale antenna arrays. The [...] Read more.
We propose an efficient Nyström-based unitary subspace method for low-complexity two-dimensional (2D) direction-of-arrival (DOA) estimation in uniform rectangular array (URA) signal processing systems. The conventional high-resolution DOA estimation methods often suffer from excessive computational complexity, particularly when dealing with large-scale antenna arrays. The proposed method addresses this challenge by combining the Nyström approximation with a unitary transformation to reduce the computational burden while maintaining estimation accuracy. The signal subspace is approximated using a partitioned covariance matrix, and a real-valued transformation is applied to further simplify the eigenvalue decomposition (EVD) process. Furthermore, the linear prediction coefficients are estimated via a weighted least squares (WLS) approach, enabling robust extraction of the angular parameters. The 2D DOA estimates are then derived from these coefficients through a closed-form solution, eliminating the need for exhaustive spectral searches. Numerical simulations demonstrate that the proposed method achieves comparable estimation performance to state-of-the-art techniques while significantly reducing computational complexity. For a fixed array size of M=N=20, the proposed method demonstrates significant computational efficiency, requiring less than 50% of the running time compared to conventional ESPRIT, and only 6% of the time required by ML methods, while maintaining similar performance. This makes it particularly suitable for real-time applications where computational efficiency is critical. The novelty lies in the integration of Nyström approximation and unitary subspace techniques, which jointly enable efficient and accurate 2D DOA estimation without sacrificing robustness against noise. The method is applicable to a wide range of array processing scenarios, including radar, sonar, and wireless communications. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

16 pages, 1839 KiB  
Article
Crowds of Feminists: The Hybrid Activist Poetics of “No Manifesto” and Jennif(f)er Tamayo’s YOU DA ONE
by Becca Klaver
Humanities 2025, 14(7), 153; https://doi.org/10.3390/h14070153 - 18 Jul 2025
Viewed by 270
Abstract
This essay examines two hybrid poetic texts that emerged from a period of feminist activism in U.S. and global poetry communities from 2014 to 2017: the collaboratively, anonymously authored “No Manifesto” (2015) and the radically revised second edition of the book of poetry [...] Read more.
This essay examines two hybrid poetic texts that emerged from a period of feminist activism in U.S. and global poetry communities from 2014 to 2017: the collaboratively, anonymously authored “No Manifesto” (2015) and the radically revised second edition of the book of poetry and visual art YOU DA ONE by Jennif(f)er Tamayo. “No Manifesto” and YOU DA ONE embrace the hybrid tactics of collectivity, incongruity, and nonresolution as ways of protesting sexism and sexual violence in poetry communities. Synthesizing theories of hybridity from poetry criticism as well as immigrant and borderlands studies, the essay defines hybridity as a literary representation of cultural positions forcefully imposed upon subjects. Born out of the domination of sexual and state violence, hybridity marks the wound that remakes the subject, who develops strategies for resistance. By refusing to play by the rules of poetic or social discourse—the logics of domination that would have them be singular, cohesive, and compliant—Tamayo and the authors of “No Manifesto” insist on alternative ways of performing activism, composing literature, and entering the public sphere. These socially engaged, hybrid poetic texts demonstrate the power of the collective to disrupt the social and literary status quo. Full article
(This article belongs to the Special Issue Hybridity and Border Crossings in Contemporary North American Poetry)
Back to TopTop