Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (46,996)

Search Parameters:
Keywords = application control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2330 KiB  
Article
Adaptive Differential Evolution Algorithm for Induced Polarization Parameters in Frequency-Domain Controlled-Source Electromagnetic Data
by Lei Zhou, Tianjun Cheng, Min Yao, Jianzhong Cheng, Xingbing Xie, Yurong Mao and Liangjun Yan
Minerals 2025, 15(7), 754; https://doi.org/10.3390/min15070754 - 18 Jul 2025
Abstract
The frequency-domain controlled-source electromagnetic method (CSEM) has been widely used in fields such as oil and gas and mineral resource exploration. In areas with a significant IP response, the CSEM signals will be modified by the IP response of the subsurface. Accurately extracting [...] Read more.
The frequency-domain controlled-source electromagnetic method (CSEM) has been widely used in fields such as oil and gas and mineral resource exploration. In areas with a significant IP response, the CSEM signals will be modified by the IP response of the subsurface. Accurately extracting resistivity and polarization information from CSEM signals may significantly improve the exploration interpretations. In this study, we replaced real resistivity with the Cole–Cole complex resistivity model in a forward simulation of the CSEM to obtain electric field responses that included both induced polarization and electromagnetic effects. Based on this, we used the adaptive differential evolution algorithm to perform a 1-d inversion of these data to extract both the resistivity and IP parameters. Inversion of the electric field responses from representative three-layer geoelectric models, as well as from a more realistic seven-layer model, showed that the inversions were able to effectively recover resistivity and polarization information from the modeled responses, validating our methodology. The electric field response of the real geoelectric model, with 20% random noise added, was then used to simulate actual measured CSEM signals, as well as subjected to multiple inversion tests. The results of these tests continued to accurately reflect the resistivity and polarization information of the model, confirming the applicability and reliability of the algorithm. These results have significant implications for the processing and interpretation of CSEM data when induced polarization effects merit consideration and are expected to promote the use of the CSEM in more fields. Full article
(This article belongs to the Special Issue Electromagnetic Inversion for Deep Ore Explorations)
Show Figures

Figure 1

28 pages, 3531 KiB  
Review
Review of Acoustic Emission Detection Technology for Valve Internal Leakage: Mechanisms, Methods, Challenges, and Application Prospects
by Dongjie Zheng, Xing Wang, Lingling Yang, Yunqi Li, Hui Xia, Haochuan Zhang and Xiaomei Xiang
Sensors 2025, 25(14), 4487; https://doi.org/10.3390/s25144487 - 18 Jul 2025
Abstract
Internal leakage within the valve body constitutes a severe potential safety hazard in industrial fluid control systems, attributable to its high concealment and the resultant difficulty in detection via conventional methodologies. Acoustic emission (AE) technology, functioning as an efficient non-destructive testing approach, is [...] Read more.
Internal leakage within the valve body constitutes a severe potential safety hazard in industrial fluid control systems, attributable to its high concealment and the resultant difficulty in detection via conventional methodologies. Acoustic emission (AE) technology, functioning as an efficient non-destructive testing approach, is capable of capturing the transient stress waves induced by leakage, thereby furnishing an effective means for the real-time monitoring and quantitative assessment of internal leakage within the valve body. This paper conducts a systematic review of the theoretical foundations, signal-processing methodologies, and the latest research advancements related to the technology for detecting internal leakage in the valve body based on acoustic emission. Firstly, grounded in Lechlier’s acoustic analogy theory, the generation mechanism of acoustic emission signals arising from valve body leakage is elucidated. Secondly, a detailed analysis is conducted on diverse signal processing techniques and their corresponding optimization strategies, encompassing parameter analysis, time–frequency analysis, nonlinear dynamics methods, and intelligent algorithms. Moreover, this paper recapitulates the current challenges encountered by this technology and delineates future research orientations, such as the fusion of multi-modal sensors, the deployment of lightweight deep learning models, and integration with the Internet of Things. This study provides a systematic reference for the engineering application and theoretical development of the acoustic emission-based technology for detecting internal leakage in valves. Full article
(This article belongs to the Topic Advances in Non-Destructive Testing Methods, 3rd Edition)
Show Figures

Figure 1

22 pages, 1250 KiB  
Review
Lignin Waste Valorization in the Bioeconomy Era: Toward Sustainable Innovation and Climate Resilience
by Alfonso Trezza, Linta Mahboob, Anna Visibelli, Michela Geminiani and Annalisa Santucci
Appl. Sci. 2025, 15(14), 8038; https://doi.org/10.3390/app15148038 - 18 Jul 2025
Abstract
Lignin, the most abundant renewable aromatic biopolymer on Earth, is rapidly emerging as a powerful enabler of next-generation sustainable technologies. This review shifts the focus to the latest industrial breakthroughs that exploit lignin’s multifunctional properties across energy, agriculture, healthcare, and environmental sectors. Lignin-derived [...] Read more.
Lignin, the most abundant renewable aromatic biopolymer on Earth, is rapidly emerging as a powerful enabler of next-generation sustainable technologies. This review shifts the focus to the latest industrial breakthroughs that exploit lignin’s multifunctional properties across energy, agriculture, healthcare, and environmental sectors. Lignin-derived carbon materials are offering scalable, low-cost alternatives to critical raw materials in batteries and supercapacitors. In agriculture, lignin-based biostimulants and controlled-release fertilizers support resilient, low-impact food systems. Cosmetic and pharmaceutical industries are leveraging lignin’s antioxidant, UV-protective, and antimicrobial properties to create bio-based, clean-label products. In water purification, lignin-based adsorbents are enabling efficient and biodegradable solutions for persistent pollutants. These technological leaps are not merely incremental, they represent a paradigm shift toward a materials economy powered by renewable carbon. Backed by global sustainability roadmaps like the European Green Deal and China’s 14th Five-Year Plan, lignin is moving from industrial residue to strategic asset, driven by unprecedented investment and cross-sector collaboration. Breakthroughs in lignin upgrading, smart formulation, and application-driven design are dismantling long-standing barriers to scale, performance, and standardization. As showcased in this review, lignin is no longer just a promising biopolymer, it is a catalytic force accelerating the global transition toward circularity, climate resilience, and green industrial transformation. The future of sustainable innovation is lignin-enabled. Full article
(This article belongs to the Special Issue Biosynthesis and Applications of Natural Products)
21 pages, 6795 KiB  
Article
Enhanced Metal Surface Processing Through the No-Stray-Corrosion Controllable Electrolyte DistributionElectrochemical Machining Method Utilizing a Water-Absorbent Porous Ball
by Jiankang Wang, Qiyuan Cao, Ye Chen, Wataru Natsu and Jianshu Cao
Micromachines 2025, 16(7), 822; https://doi.org/10.3390/mi16070822 - 18 Jul 2025
Abstract
The Electrochemical Machining (ECM) method is one of the most widely used processing methods in metal surface processing, due to its unique advantages. However, the electrolyte in ECM causes stray corrosion on the workpiece. To overcome these shortcomings, we have developed a no-stray-corrosion [...] Read more.
The Electrochemical Machining (ECM) method is one of the most widely used processing methods in metal surface processing, due to its unique advantages. However, the electrolyte in ECM causes stray corrosion on the workpiece. To overcome these shortcomings, we have developed a no-stray-corrosion ECM method called the controllable electrolyte distribution ECM (CED-ECM) method. However, its practical application in metal surface processing remains largely unexplored. In this study, to improve the CED-ECM method, we delved deeper into the aforementioned aspects by simulating the actual ECM process using COMSOL Multiphysics and rigorously validating the simulation results through practical experimental observations. Then, our efforts led to the application of the CED-ECM method to metal surface processing for the SUS304 workpiece, producing noteworthy results that manifest in diverse cross-sectional profiles on the processed surfaces. This research demonstrates a validated simulation framework for the CED-ECM process and establishes a method for creating user-defined surface profiles by controlling pass intervals, enabling new applications in surface texturing. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

22 pages, 2137 KiB  
Article
Maximum Power Extraction of Photovoltaic Systems Using Dynamic Sliding Mode Control and Sliding Observer
by Ali Karami-Mollaee and Oscar Barambones
Mathematics 2025, 13(14), 2305; https://doi.org/10.3390/math13142305 - 18 Jul 2025
Abstract
In this paper, a robust optimized controller is implemented in the photovoltaic generator system (PVGS). The PVGS is composed of individual photovoltaic (PV) cells, which convert solar energy to electrical energy. To optimize the efficiency of the PVGS under variable solar irradiance and [...] Read more.
In this paper, a robust optimized controller is implemented in the photovoltaic generator system (PVGS). The PVGS is composed of individual photovoltaic (PV) cells, which convert solar energy to electrical energy. To optimize the efficiency of the PVGS under variable solar irradiance and temperatures, a maximum power point tracking (MPPT) controller is necessary. Additionally, the PVGS output voltage is typically low for many applications. To achieve the MPPT and to gain the output voltage, an increasing boost converter (IBC) is employed. Then, two issues should be considered in MPPT. At first, a smooth control signal for adjusting the duty cycle of the IBC is important. Another critical issue is the PVGS and IBC unknown sections, i.e., the total system uncertainty. Therefore, to address the system uncertainties and to regulate the smooth duty cycle of the converter, a robust dynamic sliding mode control (DSMC) is proposed. In DSMC, a low-pass integrator is placed before the system to suppress chattering and to produce a smooth actuator signal. However, this integrator increases the system states, and hence, a sliding mode observer (SMO) is proposed to estimate this additional state. The stability of the proposed control scheme is demonstrated using the Lyapunov theory. Finally, to demonstrate the effectiveness of the proposed method and provide a reliable comparison, conventional sliding mode control (CSMC) with the same proposed SMO is also implemented. Full article
(This article belongs to the Special Issue Applied Mathematics and Intelligent Control in Electrical Engineering)
34 pages, 897 KiB  
Review
Writing the Future: Artificial Intelligence, Handwriting, and Early Biomarkers for Parkinson’s Disease Diagnosis and Monitoring
by Giuseppe Marano, Sara Rossi, Ester Maria Marzo, Alice Ronsisvalle, Laura Artuso, Gianandrea Traversi, Antonio Pallotti, Francesco Bove, Carla Piano, Anna Rita Bentivoglio, Gabriele Sani and Marianna Mazza
Biomedicines 2025, 13(7), 1764; https://doi.org/10.3390/biomedicines13071764 - 18 Jul 2025
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder that impairs motor function, including the fine motor control required for handwriting. Traditional diagnostic methods often lack sensitivity and objectivity in the early stages, limiting opportunities for timely intervention. There is a growing need for [...] Read more.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder that impairs motor function, including the fine motor control required for handwriting. Traditional diagnostic methods often lack sensitivity and objectivity in the early stages, limiting opportunities for timely intervention. There is a growing need for non-invasive, accessible tools capable of capturing subtle motor changes that precede overt clinical symptoms. Among early PD manifestations, handwriting impairments such as micrographia have shown potential as digital biomarkers. However, conventional handwriting analysis remains subjective and limited in scope. Recent advances in artificial intelligence (AI) and machine learning (ML) enable automated analysis of handwriting dynamics, such as pressure, velocity, and fluency, collected via digital tablets and smartpens. These tools support the detection of early-stage PD, monitoring of disease progression, and assessment of therapeutic response. This paper highlights how AI-enhanced handwriting analysis provides a scalable, non-invasive method to support diagnosis, enable remote symptom tracking, and personalize treatment strategies in PD. This approach integrates clinical neurology with computer science and rehabilitation, offering practical applications in telemedicine, digital health, and personalized medicine. By capturing dynamic features often missed by traditional assessments, AI-based handwriting analysis contributes to a paradigm shift in the early detection and long-term management of PD, with broad relevance across neurology, digital diagnostics, and public health innovation. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
37 pages, 2819 KiB  
Article
Macroscopic-Level Collaborative Optimization Framework for IADS: Multiple-Route Terminal Maneuvering Area Scheduling Problem
by Chaoyu Xia, Minghua Hu, Xiuying Zhu, Yi Wen, Junqing Wu and Changbo Hou
Aerospace 2025, 12(7), 639; https://doi.org/10.3390/aerospace12070639 - 18 Jul 2025
Abstract
The terminal maneuvering area (TMA) serves as a critical transition zone between upper enroute airways and airports, representing one of the most complex regions for managing high volumes of arrival and departure traffic. This paper presents the multi-route TMA scheduling problem as an [...] Read more.
The terminal maneuvering area (TMA) serves as a critical transition zone between upper enroute airways and airports, representing one of the most complex regions for managing high volumes of arrival and departure traffic. This paper presents the multi-route TMA scheduling problem as an optimization challenge aimed at optimizing TMA interventions, such as rerouting, speed control, time-based metering, dynamic minimum time separation, and holding procedures; the objective function minimizes schedule deviations and the accumulated holding time. Furthermore, the problem is formulated as a mixed-integer linear program (MILP) to facilitate finding solutions. A rolling horizon control (RHC) dynamic optimization framework is also introduced to decompose the large-scale problem into manageable subproblems for iterative resolution. To demonstrate the applicability and effectiveness of the proposed scheduling models, a hub airport—Chengdu Tianfu International Airport (ICAO code: ZUTF) in the Cheng-Yu Metroplex—is selected for validation. Numerical analyses confirm the superiority of the proposed models, which are expected to reduce aircraft delays, shorten airborne and holding times, and improve airspace resource utilization. This study provides intelligent decision support and engineering design ideas for the macroscopic-level collaborative optimization framework of the Integrated Arrival–Departure and Surface (IADS) system. Full article
(This article belongs to the Collection Air Transportation—Operations and Management)
22 pages, 2039 KiB  
Article
Quality and Physiology of Selected Mentha Genotypes Under Coloured Shading Nets
by Charlotte Hubert-Schöler, Saskia Tsiaparas, Katharina Luhmer, Marcel D. Moll, Maike Passon, Matthias Wüst, Andreas Schieber and Ralf Pude
Agronomy 2025, 15(7), 1735; https://doi.org/10.3390/agronomy15071735 - 18 Jul 2025
Abstract
Improving the quality of compounds in medicinal and aromatic plants is crucial due to their uses in the pharmaceutical, cosmetics, and food sectors. One way of influencing plant composition is through exposure to different light conditions. Therefore, a two-year field study (2023–2024) was [...] Read more.
Improving the quality of compounds in medicinal and aromatic plants is crucial due to their uses in the pharmaceutical, cosmetics, and food sectors. One way of influencing plant composition is through exposure to different light conditions. Therefore, a two-year field study (2023–2024) was conducted to investigate the impact of coloured shading nets on the physiology, essential oil (EO) content, and composition of three Mentha genotypes: Mentha × piperita ‘Multimentha’, Mentha × piperita ‘Fränkische Blaue’, and Mentha rotundifolia ‘Apfelminze’. In addition to an unshaded control, the Mentha plants were grown under red and blue shading nets. Plant height and vegetation indices were collected weekly. Biomass accumulation, EO content, and composition were determined for each harvest. Both red and blue shading were found to influence the physiological responses and EO compositions of the plants, with red shading promoting slightly higher p-menthone levels in ‘Fränkische Blaue’ and ‘Multimentha’, while blue shading slightly increased carvone levels in ‘Apfelminze’. While EO content varied across harvest seasons (spring, summer, and autumn), ‘Fränkische Blaue’ responded to red shading, demonstrating an increased EO content. The findings suggest that targeted use of coloured shading nets can modulate EO quality. However, genotype-specific responses highlight the necessity of further research to define shading applications for different species and genotypes. Full article
(This article belongs to the Special Issue Cultivation and Utilization of Herbal and Aromatic Plants)
Show Figures

Figure 1

42 pages, 3736 KiB  
Article
Practical Application of Complementary Regulation Strategy of Run-of-River Small Hydropower and Distributed Photovoltaic Based on Multi-Scale Copula-MPC Algorithm
by Xianpin Zhu, Weibo Li, Shuai Cao and Wei Xu
Energies 2025, 18(14), 3833; https://doi.org/10.3390/en18143833 - 18 Jul 2025
Abstract
A novel multi-scale copula-based model predictive control (MPC) method is proposed to address the core regulation challenges of runoff hydropower and distributed photovoltaic systems within high-penetration renewable energy grids. Complex spatio-temporal complementarity under ecological constraints and the limitations of conventional methods were critically [...] Read more.
A novel multi-scale copula-based model predictive control (MPC) method is proposed to address the core regulation challenges of runoff hydropower and distributed photovoltaic systems within high-penetration renewable energy grids. Complex spatio-temporal complementarity under ecological constraints and the limitations of conventional methods were critically analyzed. The core innovation lies in integrating copula theory with MPC, enabling adaptive spatio-temporal optimization and weight adjustment to significantly enhance the efficiency of complementary regulation and overcome traditional performance bottlenecks. Key nonlinear dependencies of water–solar resources were investigated, and mainstream techniques (copula analysis, MPC, rolling optimization, adaptive weighting) were evaluated for their applicability. Future directions for improving modeling precision and intelligent adaptive control are outlined. Full article
Show Figures

Figure 1

43 pages, 3663 KiB  
Review
Smart and Biodegradable Polymers in Tissue Engineering and Interventional Devices: A Brief Review
by Rashid Dallaev
Polymers 2025, 17(14), 1976; https://doi.org/10.3390/polym17141976 - 18 Jul 2025
Abstract
Recent advancements in polymer science have catalyzed a transformative shift in biomedical engineering, particularly through the development of biodegradable and smart polymers. This review explores the evolution, functionality, and application of these materials in areas such as tissue scaffolding, cardiovascular occluders, and controlled [...] Read more.
Recent advancements in polymer science have catalyzed a transformative shift in biomedical engineering, particularly through the development of biodegradable and smart polymers. This review explores the evolution, functionality, and application of these materials in areas such as tissue scaffolding, cardiovascular occluders, and controlled drug delivery systems. Emphasis is placed on shape-memory polymers (SMPs), conductive polymers, and polymer-based composites that combine tunable degradation, mechanical strength, and bioactivity. The synergy between natural and synthetic polymers—augmented by nanotechnology and additive manufacturing—enables the creation of intelligent scaffolds and implantable devices tailored for specific clinical needs. Key fabrication methods, including electrospinning, freeze-drying, and emulsion-based techniques, are discussed in relation to pore structure and functionalization strategies. Finally, the review highlights emerging trends, including ionic doping, 3D printing, and multifunctional nanocarriers, outlining their roles in the future of regenerative medicine and personalized therapeutics. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
18 pages, 1182 KiB  
Article
Effects of Remote Barley Seed Treatment with Weak Non-Thermal Pulsed Electromagnetic Fields on Plant Development and Yields
by Igor F. Turkanov, Elena V. Bondarchuk, Valery G. Gryaznov, Ekaterina A. Galkina, Alexey Yu. Guzenko, Vladimir G. Zainullin, Elena G. Kozar and Irina M. Kaigorodova
Seeds 2025, 4(3), 35; https://doi.org/10.3390/seeds4030035 - 18 Jul 2025
Abstract
Numerous scientific studies have confirmed the effectiveness of seed bioactivation using electromagnetic fields (EMFs) in agriculture. This article presents the results of the remote application of an EMF TOR device in the cultivation of barley Hordeum vulgare L. Laboratory studies and field tests [...] Read more.
Numerous scientific studies have confirmed the effectiveness of seed bioactivation using electromagnetic fields (EMFs) in agriculture. This article presents the results of the remote application of an EMF TOR device in the cultivation of barley Hordeum vulgare L. Laboratory studies and field tests were conducted, showing a positive effect on the growth and development of plants both when treating dry seeds before sowing and when treating sown seeds in the field. The optimal time period for EMF treatment was determined: treating air-dried seeds with EMFs before sowing for 10–15 min increased germination by 5–18% and the growth rate of seedlings by 2–3 times. The maximum observed effect occurred during the treatment period from 7:00 to 11:00. As a result of changing the balance of phytohormones, the further stimulation of the root system and the assimilation surface of plants was noted due to a 1.5-fold increase in the content of auxins. The density of productive stems, ear length, seed set, and 1000 seed weight increased, which ultimately led to an increase in yield by more than 10% and, in some varieties, to a decrease in the protein content in grains compared to the control variant (by 3–22%), bringing them closer to brewing conditions. Full article
Show Figures

Figure 1

13 pages, 6483 KiB  
Article
Polyelectrolyte Microcapsule-Assembled Colloidosomes: A Novel Strategy for the Encapsulation of Hydrophobic Substances
by Egor V. Musin, Alexey V. Dubrovskii, Yuri S. Chebykin, Aleksandr L. Kim and Sergey A. Tikhonenko
Polymers 2025, 17(14), 1975; https://doi.org/10.3390/polym17141975 - 18 Jul 2025
Abstract
The encapsulation of hydrophobic substances remains a significant challenge due to limitations such as low loading efficiency, leakage, and poor distribution within microcapsules. This study introduces a novel strategy utilizing colloidosomes assembled from polyelectrolyte microcapsules (PMCs). PMCs were fabricated via layer-by-layer (LbL) assembly [...] Read more.
The encapsulation of hydrophobic substances remains a significant challenge due to limitations such as low loading efficiency, leakage, and poor distribution within microcapsules. This study introduces a novel strategy utilizing colloidosomes assembled from polyelectrolyte microcapsules (PMCs). PMCs were fabricated via layer-by-layer (LbL) assembly on manganese carbonate (MnCO3) or calcium carbonate (CaCO3) cores, followed by core dissolution. A solvent gradient replacement method was employed to substitute the internal aqueous phase of PMCs with kerosene, enabling the formation of colloidosomes through self-assembly upon resuspension in water. Comparative analysis revealed that MnCO3-based PMCs with smaller diameters (2.5–3 µm vs. 4.5–5.5 µm for CaCO3) exhibited 3.5-fold greater stability, attributed to enhanced inter-capsule interactions via electrostatic and hydrophobic forces. Confocal microscopy confirmed the structural integrity of colloidosomes, featuring a liquid kerosene core encapsulated within a PMC shell. Temporal stability studies indicated structural degradation within 30 min, though 5% of colloidosomes retained integrity post-water evaporation. PMC-based colloidosomes exhibit significant application potential due to their integration of colloidosome functionality with PMC-derived structural features—semi-permeability, tunable shell thickness/composition, and stimuli-responsive behavior—enabling their adaptability to diverse technological and biomedical contexts. This innovation holds promise for applications in drug delivery, agrochemicals, and environmental technologies, where controlled release and stability are critical. The findings highlight the role of core material selection and solvent engineering in optimizing colloidosome performance, paving the way for advanced encapsulation systems. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

35 pages, 2073 KiB  
Review
Using the Zero Trust Five-Step Implementation Process with Smart Environments: State-of-the-Art Review and Future Directions
by Shruti Kulkarni, Alexios Mylonas and Stilianos Vidalis
Future Internet 2025, 17(7), 313; https://doi.org/10.3390/fi17070313 - 18 Jul 2025
Abstract
There is a growing pressure on industry to secure environments and demonstrate their commitment in taking right steps to secure their products. This is because of the growing number of security compromises in the IT industry, Operational Technology environment, Internet of Things environment [...] Read more.
There is a growing pressure on industry to secure environments and demonstrate their commitment in taking right steps to secure their products. This is because of the growing number of security compromises in the IT industry, Operational Technology environment, Internet of Things environment and smart home devices. These compromises are not just about data breaches or data exfiltration, but also about unauthorised access to devices that are not configured correctly and vulnerabilities in software components, which usually lead to insecure authentication and authorisation. Incorrect configurations are usually in the form of devices being made available on the Internet (public domain), reusable credentials, access granted without verifying the requestor, and easily available credentials like default credentials. Organisations seeking to address the dual pressure of demonstrating steps in the right direction and addressing unauthorised access to resources can find a viable approach in the form of the zero trust concept. Zero trust principles are about moving security controls closer to the data, applications, assets and services and are based on the principle of “never trust, always verify”. As it stands today, zero trust research has advanced far beyond the concept of “never trust, always verify”. This paper provides the culmination of a literature review of research conducted in the space of smart home devices and IoT and the applicability of the zero trust five-step implementation process to secure them. We discuss the history of zero trust, the tenets of zero trust, the five-step implementation process for zero trust, and its adoption for smart home devices and Internet of Things, and we provide suggestions for future research. Full article
Show Figures

Figure 1

22 pages, 1258 KiB  
Review
Advances in Cryopreservation Strategies for 3D Biofabricated Constructs: From Hydrogels to Bioprinted Tissues
by Kaoutar Ziani, Laura Saenz-del-Burgo, Jose Luis Pedraz and Jesús Ciriza
Int. J. Mol. Sci. 2025, 26(14), 6908; https://doi.org/10.3390/ijms26146908 - 18 Jul 2025
Abstract
The cryopreservation of three-dimensional (3D) biofabricated constructs is a key enabler for their clinical application in regenerative medicine. Unlike two-dimensional (2D) cultures, 3D systems such as encapsulated cell spheroids, molded hydrogels, and bioprinted tissues present specific challenges related to cryoprotectant (CPA) diffusion, thermal [...] Read more.
The cryopreservation of three-dimensional (3D) biofabricated constructs is a key enabler for their clinical application in regenerative medicine. Unlike two-dimensional (2D) cultures, 3D systems such as encapsulated cell spheroids, molded hydrogels, and bioprinted tissues present specific challenges related to cryoprotectant (CPA) diffusion, thermal gradients, and ice formation during freezing and thawing. This review examines the current strategies for preserving 3D constructs, focusing on the role of biomaterials as cryoprotective matrices. Natural polymers (e.g., hyaluronic acid, alginate, chitosan), protein-based scaffolds (e.g., silk fibroin, sericin), and synthetic polymers (e.g., polyethylene glycol (PEG), polyvinyl alcohol (PVA)) are evaluated for their ability to support cell viability, structural integrity, and CPA transport. Special attention is given to cryoprotectant systems that are free of dimethyl sulfoxide (DMSO), and to the influence of hydrogel architecture on freezing outcomes. We have compared the efficacy and limitations of slow freezing and vitrification protocols and review innovative approaches such as temperature-controlled cryoprinting, nano-warming, and hybrid scaffolds with improved cryocompatibility. Additionally, we address the regulatory and manufacturing challenges associated with developing Good Manufacturing Practice (GMP)-compliant cryopreservation workflows. Overall, this review provides an integrated perspective on material-based strategies for 3D cryopreservation and identifies future directions to enable the long-term storage and clinical translation of engineered tissues. Full article
(This article belongs to the Special Issue Rational Design and Application of Functional Hydrogels)
Show Figures

Figure 1

27 pages, 5242 KiB  
Article
Development of a Compliant Pediatric Upper-Limb Training Robot Using Series Elastic Actuators
by Jhon Rodriguez-Torres, Paola Niño-Suarez and Mauricio Mauledoux
Actuators 2025, 14(7), 353; https://doi.org/10.3390/act14070353 - 18 Jul 2025
Abstract
Series elastic actuators (SEAs) represent a key technological solution to enhance safety, performance, and adaptability in robotic devices for physical training. Their ability to decouple the rigid actuator’s mechanical impedance from the load, combined with passive absorption of external disturbances, makes them particularly [...] Read more.
Series elastic actuators (SEAs) represent a key technological solution to enhance safety, performance, and adaptability in robotic devices for physical training. Their ability to decouple the rigid actuator’s mechanical impedance from the load, combined with passive absorption of external disturbances, makes them particularly suitable for pediatric applications. In children aged 2 to 5 years—where motor control is still developing and movements can be unpredictable or unstructured—SEAs provide a compliant mechanical response that ensures user protection and enables safe physical interaction. This study explores the role of SEAs as a central component for imparting compliance and backdrivability in robotic systems designed for upper-limb training. A dynamic model is proposed, incorporating interaction with the user’s limb, along with a computed torque control strategy featuring integral action. The system’s performance is validated through simulations and experimental tests, demonstrating stable trajectory tracking, disturbance absorption, and effective impedance decoupling. The results support the use of SEAs as a foundational technology for developing safe adaptive robotic solutions in pediatric contexts capable of responding flexibly to user variability and promoting secure interaction in early motor development environments. Full article
Show Figures

Figure 1

Back to TopTop