Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,553)

Search Parameters:
Keywords = application awareness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3397 KiB  
Article
Comparative Analysis of Object Detection Models for Edge Devices in UAV Swarms
by Dimitrios Meimetis, Ioannis Daramouskas, Niki Patrinopoulou, Vaios Lappas and Vassilis Kostopoulos
Machines 2025, 13(8), 684; https://doi.org/10.3390/machines13080684 (registering DOI) - 4 Aug 2025
Abstract
This study presented a comprehensive investigation into the performance of object detection models tailored for edge devices, particularly in the context of Unmanned Aerial Vehicle swarms. Object detection plays a pivotal role in enhancing autonomous navigation, situational awareness, and target tracking capabilities within [...] Read more.
This study presented a comprehensive investigation into the performance of object detection models tailored for edge devices, particularly in the context of Unmanned Aerial Vehicle swarms. Object detection plays a pivotal role in enhancing autonomous navigation, situational awareness, and target tracking capabilities within UAV swarms, where computing resources are constrained by the onboard low-cost computers. Initially, a thorough review of the existing literature was conducted to identify state-of-the-art object detection models suitable for deployment on edge devices. These models are evaluated based on their speed, accuracy, and efficiency, with a focus on real-time inference capabilities crucial for Unmanned Aerial Vehicle applications. Following the literature review, selected models undergo empirical validation through custom training using the Vision Meets Drone dataset, a widely recognized dataset for Unmanned Aerial Vehicle-based object detection tasks. Performance metrics such as mean average precision, inference speed, and resource utilization were measured and compared across different models. Lastly, the study extended its analysis beyond traditional object detection to explore the efficacy of instance segmentation and proposed an optimization to an object tracking technique within the context of unmanned Aerial Vehicles. Instance segmentation offers finer-grained object delineation, enabling more precise target or landmark identification and tracking, albeit at higher resource usage and higher inference time. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

25 pages, 6934 KiB  
Article
Feature Constraints Map Generation Models Integrating Generative Adversarial and Diffusion Denoising
by Chenxing Sun, Xixi Fan, Xiechun Lu, Laner Zhou, Junli Zhao, Yuxuan Dong and Zhanlong Chen
Remote Sens. 2025, 17(15), 2683; https://doi.org/10.3390/rs17152683 - 3 Aug 2025
Abstract
The accelerated evolution of remote sensing technology has intensified the demand for real-time tile map generation, highlighting the limitations of conventional mapping approaches that rely on manual cartography and field surveys. To address the critical need for rapid cartographic updates, this study presents [...] Read more.
The accelerated evolution of remote sensing technology has intensified the demand for real-time tile map generation, highlighting the limitations of conventional mapping approaches that rely on manual cartography and field surveys. To address the critical need for rapid cartographic updates, this study presents a novel multi-stage generative framework that synergistically integrates Generative Adversarial Networks (GANs) with Diffusion Denoising Models (DMs) for high-fidelity map generation from remote sensing imagery. Specifically, our proposed architecture first employs GANs for rapid preliminary map generation, followed by a cascaded diffusion process that progressively refines topological details and spatial accuracy through iterative denoising. Furthermore, we propose a hybrid attention mechanism that strategically combines channel-wise feature recalibration with coordinate-aware spatial modulation, enabling the enhanced discrimination of geographic features under challenging conditions involving edge ambiguity and environmental noise. Quantitative evaluations demonstrate that our method significantly surpasses established baselines in both structural consistency and geometric fidelity. This framework establishes an operational paradigm for automated, rapid-response cartography, demonstrating a particular utility in time-sensitive applications including disaster impact assessment, unmapped terrain documentation, and dynamic environmental surveillance. Full article
Show Figures

Figure 1

22 pages, 3994 KiB  
Article
Analysis of Foaming Properties, Foam Stability, and Basic Physicochemical and Application Parameters of Bio-Based Car Shampoos
by Bartosz Woźniak, Agata Wawrzyńczak and Izabela Nowak
Coatings 2025, 15(8), 907; https://doi.org/10.3390/coatings15080907 (registering DOI) - 2 Aug 2025
Abstract
Environmental protection has become one of the key challenges of our time. This has led to an increase in pro-environmental activities in the field of cosmetics and household chemicals, where manufacturers are increasingly trying to meet the expectations of consumers who are aware [...] Read more.
Environmental protection has become one of the key challenges of our time. This has led to an increase in pro-environmental activities in the field of cosmetics and household chemicals, where manufacturers are increasingly trying to meet the expectations of consumers who are aware of the potential risks associated with the production of cosmetics and household chemistry products. This is one of the most important challenges of today’s industry, given that some of the raw materials still commonly used, such as surfactants, may be toxic to aquatic organisms. Many companies are choosing to use natural raw materials that have satisfactory performance properties but are also environmentally friendly. In addition, modern products are also characterized by reduced consumption of water, resources, and energy in production processes. These measures reduce the carbon footprint and reduce the amount of plastic packaging required. In the present study, seven formulations of environmentally friendly car shampoo concentrates were developed, based entirely on mixtures of bio-based surfactants. The developed formulations were tested for application on the car body surface, allowing the selection of the two best products. For these selected formulations, an in-depth physicochemical analysis was carried out, including pH, density, and viscosity measurements. Comparison of the results with commercial products available on the market was also performed. Additionally, using the multiple light scattering method, the foamability and foam stability were determined for the car shampoos developed. The results obtained indicate the very high application potential of the products under study, which combine high performance and environmental concerns. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

24 pages, 1964 KiB  
Article
Data-Driven Symmetry and Asymmetry Investigation of Vehicle Emissions Using Machine Learning: A Case Study in Spain
by Fei Wu, Jinfu Zhu, Hufang Yang, Xiang He and Qiao Peng
Symmetry 2025, 17(8), 1223; https://doi.org/10.3390/sym17081223 - 2 Aug 2025
Viewed by 153
Abstract
Understanding vehicle emissions is essential for developing effective carbon reduction strategies in the transport sector. Conventional emission models often assume homogeneity and linearity, overlooking real-world asymmetries that arise from variations in vehicle design and powertrain configurations. This study explores how machine learning and [...] Read more.
Understanding vehicle emissions is essential for developing effective carbon reduction strategies in the transport sector. Conventional emission models often assume homogeneity and linearity, overlooking real-world asymmetries that arise from variations in vehicle design and powertrain configurations. This study explores how machine learning and explainable AI techniques can effectively capture both symmetric and asymmetric emission patterns across different vehicle types, thereby contributing to more sustainable transport planning. Addressing a key gap in the existing literature, the study poses the following question: how do structural and behavioral factors contribute to asymmetric emission responses in internal combustion engine vehicles compared to new energy vehicles? Utilizing a large-scale Spanish vehicle registration dataset, the analysis classifies vehicles by powertrain type and applies five supervised learning algorithms to predict CO2 emissions. SHapley Additive exPlanations (SHAPs) are employed to identify nonlinear and threshold-based relationships between emissions and vehicle characteristics such as fuel consumption, weight, and height. Among the models tested, the Random Forest algorithm achieves the highest predictive accuracy. The findings reveal critical asymmetries in emission behavior, particularly among hybrid vehicles, which challenge the assumption of uniform policy applicability. This study provides both methodological innovation and practical insights for symmetry-aware emission modeling, offering support for more targeted eco-design and policy decisions that align with long-term sustainability goals. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

26 pages, 1567 KiB  
Article
A CDC–ANFIS-Based Model for Assessing Ship Collision Risk in Autonomous Navigation
by Hee-Jin Lee and Ho Namgung
J. Mar. Sci. Eng. 2025, 13(8), 1492; https://doi.org/10.3390/jmse13081492 - 1 Aug 2025
Viewed by 125
Abstract
To improve collision risk prediction in high-traffic coastal waters and support real-time decision-making in maritime navigation, this study proposes a regional collision risk prediction system integrating the Computed Distance at Collision (CDC) method with an Adaptive Neuro-Fuzzy Inference System (ANFIS). Unlike Distance at [...] Read more.
To improve collision risk prediction in high-traffic coastal waters and support real-time decision-making in maritime navigation, this study proposes a regional collision risk prediction system integrating the Computed Distance at Collision (CDC) method with an Adaptive Neuro-Fuzzy Inference System (ANFIS). Unlike Distance at Closest Point of Approach (DCPA), which depends on the position of Global Positioning System (GPS) antennas, Computed Distance at Collision (CDC) directly reflects the actual hull shape and potential collision point. This enables a more realistic assessment of collision risk by accounting for the hull geometry and boundary conditions specific to different ship types. The system was designed and validated using ship motion simulations involving bulk and container ships across varying speeds and crossing angles. The CDC method was used to define collision, almost-collision, and near-collision situations based on geometric and hydrodynamic criteria. Subsequently, the FIS–CDC model was constructed using the ANFIS by learning patterns in collision time and distance under each condition. A total of four input variables—ship speed, crossing angle, remaining time, and remaining distance—were used to infer the collision risk index (CRI), allowing for a more nuanced and vessel-specific assessment than traditional CPA-based indicators. Simulation results show that the time to collision decreases with higher speeds and increases with wider crossing angles. The bulk carrier exhibited a wider collision-prone angle range and a greater sensitivity to speed changes than the container ship, highlighting differences in maneuverability and risk response. The proposed system demonstrated real-time applicability and accurate risk differentiation across scenarios. This research contributes to enhancing situational awareness and proactive risk mitigation in Maritime Autonomous Surface Ship (MASS) and Vessel Traffic System (VTS) environments. Future work will focus on real-time CDC optimization and extending the model to accommodate diverse ship types and encounter geometries. Full article
25 pages, 2860 KiB  
Review
Multimodal Sensing-Enabled Large Language Models for Automated Emotional Regulation: A Review of Current Technologies, Opportunities, and Challenges
by Liangyue Yu, Yao Ge, Shuja Ansari, Muhammad Imran and Wasim Ahmad
Sensors 2025, 25(15), 4763; https://doi.org/10.3390/s25154763 (registering DOI) - 1 Aug 2025
Viewed by 304
Abstract
Emotion regulation is essential for mental health. However, many people ignore their own emotional regulation or are deterred by the high cost of psychological counseling, which poses significant challenges to making effective support widely available. This review systematically examines the convergence of multimodal [...] Read more.
Emotion regulation is essential for mental health. However, many people ignore their own emotional regulation or are deterred by the high cost of psychological counseling, which poses significant challenges to making effective support widely available. This review systematically examines the convergence of multimodal sensing technologies and large language models (LLMs) for the development of Automated Emotional Regulation (AER) systems. The review draws upon a comprehensive analysis of the existing literature, encompassing research papers, technical reports, and relevant theoretical frameworks. Key findings indicate that multimodal sensing offers the potential for rich, contextualized data pertaining to emotional states, while LLMs provide improved capabilities for interpreting these inputs and generating nuanced, empathetic, and actionable regulatory responses. The integration of these technologies, including physiological sensors, behavioral tracking, and advanced LLM architectures, presents the improvement of application, moving AER beyond simpler, rule-based systems towards more adaptive, context-aware, and human-like interventions. Opportunities for personalized interventions, real-time support, and novel applications in mental healthcare and other domains are considerable. However, these prospects are counterbalanced by significant challenges and limitations. In summary, this review synthesizes current technological advancements, identifies substantial opportunities for innovation and application, and critically analyzes the multifaceted technical, ethical, and practical challenges inherent in this domain. It also concludes that while the integration of multimodal sensing and LLMs holds significant potential for AER, the field is nascent and requires concerted research efforts to realize its full capacity to enhance human well-being. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

17 pages, 587 KiB  
Review
Exploring the Potential of Biochar in Enhancing U.S. Agriculture
by Saman Janaranjana Herath Bandara
Reg. Sci. Environ. Econ. 2025, 2(3), 23; https://doi.org/10.3390/rsee2030023 - 1 Aug 2025
Viewed by 117
Abstract
Biochar, a carbon-rich material derived from biomass, presents a sustainable solution to several pressing challenges in U.S. agriculture, including soil degradation, carbon emissions, and waste management. Despite global advancements, the U.S. biochar market remains underexplored in terms of economic viability, adoption potential, and [...] Read more.
Biochar, a carbon-rich material derived from biomass, presents a sustainable solution to several pressing challenges in U.S. agriculture, including soil degradation, carbon emissions, and waste management. Despite global advancements, the U.S. biochar market remains underexplored in terms of economic viability, adoption potential, and sector-specific applications. This narrative review synthesizes two decades of literature to examine biochar’s applications, production methods, and market dynamics, with a focus on its economic and environmental role within the United States. The review identifies biochar’s multifunctional benefits: enhancing soil fertility and crop productivity, sequestering carbon, reducing greenhouse gas emissions, and improving water quality. Recent empirical studies also highlight biochar’s economic feasibility across global contexts, with yield increases of up to 294% and net returns exceeding USD 5000 per hectare in optimized systems. Economically, the global biochar market grew from USD 156.4 million in 2021 to USD 610.3 million in 2023, with U.S. production reaching ~50,000 metric tons annually and a market value of USD 203.4 million in 2022. Forecasts project U.S. market growth at a CAGR of 11.3%, reaching USD 478.5 million by 2030. California leads domestic adoption due to favorable policy and biomass availability. However, barriers such as inconsistent quality standards, limited awareness, high costs, and policy gaps constrain growth. This study goes beyond the existing literature by integrating market analysis, SWOT assessment, cost–benefit findings, and production technologies to highlight strategies for scaling biochar adoption. It concludes that with supportive legislation, investment in research, and enhanced supply chain transparency, biochar could become a pivotal tool for sustainable development in the U.S. agricultural and environmental sectors. Full article
Show Figures

Figure 1

15 pages, 317 KiB  
Review
The Contribution of Artificial Intelligence in Nursing Education: A Scoping Review of the Literature
by Federico Cucci, Dario Marasciulo, Mattia Romani, Giovanni Soldano, Donato Cascio, Giorgio De Nunzio, Cosimo Caldararo, Ivan Rubbi, Elsa Vitale, Roberto Lupo and Luana Conte
Nurs. Rep. 2025, 15(8), 283; https://doi.org/10.3390/nursrep15080283 - 1 Aug 2025
Viewed by 119
Abstract
Background and Aim: Artificial intelligence (AI) is among the most promising innovations for transforming nursing education, making it more interactive, personalized, and competency-based. However, its integration also raises significant ethical and practical concerns. This scoping review aims to analyze and summarize key studies [...] Read more.
Background and Aim: Artificial intelligence (AI) is among the most promising innovations for transforming nursing education, making it more interactive, personalized, and competency-based. However, its integration also raises significant ethical and practical concerns. This scoping review aims to analyze and summarize key studies on the application of AI in university-level nursing education, focusing on its benefits, challenges, and future prospects. Methods: A scoping review was conducted using the Population, Concept, and Context (PCC) framework, targeting nursing students and educators in academic settings. A comprehensive search was carried out across the PubMed, Scopus, and Web of Science databases. Only peer-reviewed original studies published in English were included. Two researchers independently screened the studies, resolving any disagreements through team discussion. Data were synthesized narratively. Results: Of the 569 articles initially identified, 11 original studies met the inclusion criteria. The findings indicate that AI-based tools—such as virtual simulators and ChatGPT—can enhance students’ learning experiences, communication skills, and clinical preparedness. Nonetheless, several challenges were identified, including increased simulation-related anxiety, potential misuse, and ethical concerns related to data quality, privacy, and academic integrity. Conclusions: AI offers significant opportunities to enhance nursing education; however, its implementation must be approached with critical awareness and responsibility. It is essential that students develop both digital competencies and ethical sensitivity to fully leverage AI’s potential while ensuring high-quality education and responsible nursing practice. Full article
Show Figures

Figure 1

24 pages, 3559 KiB  
Article
Advancing Online Road Safety Education: A Gamified Approach for Secondary School Students in Belgium
by Imran Nawaz, Ariane Cuenen, Geert Wets, Roeland Paul and Davy Janssens
Appl. Sci. 2025, 15(15), 8557; https://doi.org/10.3390/app15158557 (registering DOI) - 1 Aug 2025
Viewed by 175
Abstract
Road traffic accidents are a leading cause of injury and death among adolescents, making road safety education crucial. This study assesses the performance of and users’ opinions on the Route 2 School (R2S) traffic safety education program, designed for secondary school students (13–17 [...] Read more.
Road traffic accidents are a leading cause of injury and death among adolescents, making road safety education crucial. This study assesses the performance of and users’ opinions on the Route 2 School (R2S) traffic safety education program, designed for secondary school students (13–17 years) in Belgium. The program incorporates gamified e-learning modules containing, among others, podcasts, interactive 360° visuals, and virtual reality (VR), to enhance traffic knowledge, situation awareness, risk detection, and risk management. This study was conducted across several cities and municipalities within Belgium. More than 600 students from school years 3 to 6 completed the platform and of these more than 200 students filled in a comprehensive questionnaire providing detailed feedback on platform usability, preferences, and behavioral risk assessments. The results revealed shortcomings in traffic knowledge and skills, particularly among older students. Gender-based analysis indicated no significant performance differences overall, though females performed better in risk management and males in risk detection. Furthermore, students from cities outperformed those from municipalities. Feedback on the R2S platform indicated high usability and engagement, with VR-based simulations receiving the most positive reception. In addition, it was highlighted that secondary school students are high-risk groups for distraction and red-light violations as cyclists and pedestrians. This study demonstrates the importance of gamified, technology-enhanced road safety education while underscoring the need for module-specific improvements and regional customization. The findings support the broader application of e-learning methodologies for sustainable, behavior-oriented traffic safety education targeting adolescents. Full article
(This article belongs to the Special Issue Technology Enhanced and Mobile Learning: Innovations and Applications)
Show Figures

Figure 1

16 pages, 1651 KiB  
Article
Modular Pipeline for Text Recognition in Early Printed Books Using Kraken and ByT5
by Yahya Momtaz, Lorenza Laccetti and Guido Russo
Electronics 2025, 14(15), 3083; https://doi.org/10.3390/electronics14153083 - 1 Aug 2025
Viewed by 157
Abstract
Early printed books, particularly incunabula, are invaluable archives of the beginnings of modern educational systems. However, their complex layouts, antique typefaces, and page degradation caused by bleed-through and ink fading pose significant challenges for automatic transcription. In this work, we present a modular [...] Read more.
Early printed books, particularly incunabula, are invaluable archives of the beginnings of modern educational systems. However, their complex layouts, antique typefaces, and page degradation caused by bleed-through and ink fading pose significant challenges for automatic transcription. In this work, we present a modular pipeline that addresses these problems by combining modern layout analysis and language modeling techniques. The pipeline begins with historical layout-aware text segmentation using Kraken, a neural network-based tool tailored for early typographic structures. Initial optical character recognition (OCR) is then performed with Kraken’s recognition engine, followed by post-correction using a fine-tuned ByT5 transformer model trained on manually aligned line-level data. By learning to map noisy OCR outputs to verified transcriptions, the model substantially improves recognition quality. The pipeline also integrates a preprocessing stage based on our previous work on bleed-through removal using robust statistical filters, including non-local means, Gaussian mixtures, biweight estimation, and Gaussian blur. This step enhances the legibility of degraded pages prior to OCR. The entire solution is open, modular, and scalable, supporting long-term preservation and improved accessibility of cultural heritage materials. Experimental results on 15th-century incunabula show a reduction in the Character Error Rate (CER) from around 38% to around 15% and an increase in the Bilingual Evaluation Understudy (BLEU) score from 22 to 44, confirming the effectiveness of our approach. This work demonstrates the potential of integrating transformer-based correction with layout-aware segmentation to enhance OCR accuracy in digital humanities applications. Full article
Show Figures

Figure 1

36 pages, 5053 KiB  
Systematic Review
Prescriptive Maintenance: A Systematic Literature Review and Exploratory Meta-Synthesis
by Marko Orošnjak, Felix Saretzky and Slawomir Kedziora
Appl. Sci. 2025, 15(15), 8507; https://doi.org/10.3390/app15158507 (registering DOI) - 31 Jul 2025
Viewed by 150
Abstract
Prescriptive Maintenance (PsM) transforms industrial asset management by enabling autonomous decisions through simultaneous failure anticipation and optimal maintenance recommendations. Yet, despite increasing research interest, the conceptual clarity, technological maturity, and practical deployment of PsM remains fragmented. Here, we conduct a comprehensive and application-oriented [...] Read more.
Prescriptive Maintenance (PsM) transforms industrial asset management by enabling autonomous decisions through simultaneous failure anticipation and optimal maintenance recommendations. Yet, despite increasing research interest, the conceptual clarity, technological maturity, and practical deployment of PsM remains fragmented. Here, we conduct a comprehensive and application-oriented Systematic Literature Review of studies published between 2013–2024. We identify key enablers—artificial intelligence and machine learning, horizontal and vertical integration, and deep reinforcement learning—that map the functional space of PsM across industrial sectors. The results from our multivariate meta-synthesis uncover three main thematic research clusters, ranging from decision-automation of technical (multi)component-level systems to strategic and organisational-support strategies. Notably, while predictive models are widely adopted, the translation of these capabilities to PsM remains limited. Primary reasons include semantic interoperability, real-time optimisation, and deployment scalability. As a response, a structured research agenda is proposed to emphasise hybrid architectures, context-aware prescription mechanisms, and alignment with Industry 5.0 principles of human-centricity, resilience, and sustainability. The review establishes a critical foundation for future advances in intelligent, explainable, and action-oriented maintenance systems. Full article
Show Figures

Figure 1

38 pages, 401 KiB  
Article
The Use of Artificial Intelligence Tools for Religious Purposes: Empirical Research Among Hungarian Religious Communities
by Mónika Andok, Zoltán Rajki and Szilvia Dornics
Religions 2025, 16(8), 999; https://doi.org/10.3390/rel16080999 (registering DOI) - 31 Jul 2025
Viewed by 361
Abstract
This study empirically investigates the use of artificial intelligence (AI) tools within Hungarian religious communities, with a focus on Catholic respondents, to assess their awareness, application, and acceptance of AI in religious contexts. By religious communities, we do not mean monastic or priestly [...] Read more.
This study empirically investigates the use of artificial intelligence (AI) tools within Hungarian religious communities, with a focus on Catholic respondents, to assess their awareness, application, and acceptance of AI in religious contexts. By religious communities, we do not mean monastic or priestly communities, but rather communities of lay religious people. Conducted between 10 February and 11 March 2025, the questionnaire-based research (N = 133) employs Campbell’s Religious Social Shaping of Technology (RSST) framework to analyze attitudes toward AI across 15 religious functions. Six hypotheses explore gender differences, religiosity types (church-based vs. self-defined), and the acceptability, authenticity, and ethicality of AI applications. Findings reveal high acceptance for administrative tasks (e.g., email list updates: 64.7%) and technical functions (e.g., live translation: 65.4%), but low acceptance for spiritual roles (e.g., spiritual leadership: 12.8%). Self-defined religious individuals are significantly more accepting, perceiving AI as more authentic and ethical compared to those adhering to church teachings. No significant gender differences were found. The study contributes to digital religion studies, highlighting the influence of religiosity on AI adoption, though its non-representative sample limits generalizability. Full article
(This article belongs to the Special Issue Religious Communities and Artificial Intelligence)
29 pages, 1119 KiB  
Systematic Review
Phishing Attacks in the Age of Generative Artificial Intelligence: A Systematic Review of Human Factors
by Raja Jabir, John Le and Chau Nguyen
AI 2025, 6(8), 174; https://doi.org/10.3390/ai6080174 - 31 Jul 2025
Viewed by 315
Abstract
Despite the focus on improving cybersecurity awareness, the number of cyberattacks has increased significantly, leading to huge financial losses, with their risks spreading throughout the world. This is due to the techniques deployed in cyberattacks that mainly aim at exploiting humans, the weakest [...] Read more.
Despite the focus on improving cybersecurity awareness, the number of cyberattacks has increased significantly, leading to huge financial losses, with their risks spreading throughout the world. This is due to the techniques deployed in cyberattacks that mainly aim at exploiting humans, the weakest link in any defence system. The existing literature on human factors in phishing attacks is limited and does not live up to the witnessed advances in phishing attacks, which have become exponentially more dangerous with the introduction of generative artificial intelligence (GenAI). This paper studies the implications of AI advancement, specifically the exploitation of GenAI and human factors in phishing attacks. We conduct a systematic literature review to study different human factors exploited in phishing attacks, potential solutions and preventive measures, and the complexity introduced by GenAI-driven phishing attacks. This paper aims to address the gap in the research by providing a deeper understanding of the evolving landscape of phishing attacks with the application of GenAI and associated human implications, thereby contributing to the field of knowledge to defend against phishing attacks by creating secure digital interactions. Full article
Show Figures

Figure 1

19 pages, 991 KiB  
Article
Residents’ Willingness to Participate in E-Waste Recycling: Evidence by Theory of Reasoned Action
by Ziyi Zhao, Pengyu Dai, Chaoqun Zheng and Huaming Song
Sustainability 2025, 17(15), 6953; https://doi.org/10.3390/su17156953 (registering DOI) - 31 Jul 2025
Viewed by 189
Abstract
E-waste, a form of solid waste, contains many recyclable metals, but improper disposal can make it very harmful. Therefore, the recycling of e-waste is very important, and the willingness of residents to participate is crucial in e-waste recycling. Taking Jiangsu Province, China as [...] Read more.
E-waste, a form of solid waste, contains many recyclable metals, but improper disposal can make it very harmful. Therefore, the recycling of e-waste is very important, and the willingness of residents to participate is crucial in e-waste recycling. Taking Jiangsu Province, China as an example, we used the theory of reasoned action (TRA) to construct a research model to investigate the factors influencing residents’ willingness to participate in e-waste recycling. The paper introduces impression management motivation and further reveals the application of the Hawthorne effect in e-waste recycling. The paper also introduces the awareness of benefits, which encompasses personal economic benefits, physical health benefits, and environmental benefits, with physical health benefits being ignored by most of the previous literature. In addition, knowledge and convenience are also introduced in this paper. A total of 400 valid responses were used to test the hypotheses of the structural equation model. It was found that all factors positively influenced residents’ willingness to engage in e-waste recycling. Attitude has a mediating role in the effects of convenience, knowledge, and awareness of benefits on willingness, and subjective norms have a mediating role in the effects of impression management motivation on willingness. The model explains 82.9% of the variance in residents’ willingness to recycle e-waste, surpassing the original TRA model’s explanatory power and confirming the strength of the extended framework. The study provides valuable policy implications for the government to promote e-waste recycling. Full article
Show Figures

Figure 1

23 pages, 1396 KiB  
Article
Unsupervised Anomaly Detection Method for Electrical Equipment Based on Audio Latent Representation and Parallel Attention Mechanism
by Wei Zhou, Shaoping Zhou, Yikun Cao, Junkang Yang and Hongqing Liu
Appl. Sci. 2025, 15(15), 8474; https://doi.org/10.3390/app15158474 - 30 Jul 2025
Viewed by 192
Abstract
The stable operation of electrical equipment is critical for industrial safety, yet traditional anomaly detection methods often suffer from limitations, such as high resource demands, dependency on expert knowledge, and lack of real-world capabilities. To address these challenges, this article proposes an unsupervised [...] Read more.
The stable operation of electrical equipment is critical for industrial safety, yet traditional anomaly detection methods often suffer from limitations, such as high resource demands, dependency on expert knowledge, and lack of real-world capabilities. To address these challenges, this article proposes an unsupervised anomaly detection method for electrical equipment, utilizing audio latent representation and a parallel attention mechanism. The framework employs an autoencoder to extract low-dimensional features from audio signals and introduces a phase-aware parallel attention block to dynamically weight these features for an improved anomaly sensitivity. With adversarial training and a dual-encoding mechanism, the proposed method demonstrates robust performance in complex scenarios. Using public datasets (MIMII and ToyADMOS) and our collected real-world wind turbine data, it achieves high AUC scores, surpassing the best baselines, which demonstrates our framework design is suitable for industrial applications. Full article
Show Figures

Figure 1

Back to TopTop